7.4平行线的性质教案
- 格式:doc
- 大小:162.00 KB
- 文档页数:3
八年级数学上册7.4平行线的性质说课稿(新版北师大版)一. 教材分析《八年级数学上册7.4平行线的性质》这一节内容,主要让学生了解和掌握平行线的性质。
教材通过引入平行线的概念,引导学生探究平行线之间的相互关系,从而得出平行线的性质。
这部分内容是学生进一步学习几何知识的基础,对于培养学生空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经掌握了基本的数学运算能力和一定的几何知识。
但在空间想象和逻辑推理方面,学生的能力层次不齐。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们通过观察、思考、讨论,逐步掌握平行线的性质。
三. 说教学目标1.知识与技能目标:让学生掌握平行线的性质,能运用平行线的性质解决一些简单的问题。
2.过程与方法目标:通过观察、实验、讨论等方法,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强团队合作意识。
四. 说教学重难点1.教学重点:平行线的性质。
2.教学难点:平行线性质的证明和运用。
五.说教学方法与手段1.教学方法:采用问题驱动法、讨论法、实验法等。
2.教学手段:多媒体课件、几何模型、黑板等。
六. 说教学过程1.导入新课:通过复习旧知识,引入平行线的概念,引导学生思考平行线之间的相互关系。
2.探究平行线的性质:让学生分组进行实验,观察平行线之间的相互关系,引导学生发现平行线的性质。
3.证明平行线的性质:引导学生运用已知几何知识,证明平行线的性质。
4.运用平行线的性质:通过例题,让学生学会运用平行线的性质解决实际问题。
5.课堂小结:总结本节课所学内容,强调平行线的性质及其运用。
6.布置作业:设计富有层次的作业,让学生巩固所学知识。
七. 说板书设计板书设计要简洁明了,突出平行线的性质。
可以设计如下板书:平行线的性质1.同一平面内,平行线不相交。
2.平行线之间的距离相等。
3.平行线与横截线所成的角相等。
八. 说教学评价教学评价主要包括过程性评价和终结性评价。
七年级数学《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的概念,掌握平行线的性质。
2. 学生能够运用平行线的性质解决实际问题。
过程与方法:1. 学生通过观察、实验、推理等方法,探索并证明平行线的性质。
2. 学生能够运用平行线的性质进行几何图形的分析和设计。
情感态度与价值观:1. 学生培养对数学的兴趣和好奇心,提高学习数学的积极性。
2. 学生培养合作、探究的学习态度,提高解决问题的能力。
二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1) 平行线上的任意一对对应角相等。
(2) 平行线上的任意一对内错角相等。
(3) 平行线上的任意一对同位角相等。
三、教学重点与难点:重点:1. 平行线的定义。
2. 平行线的性质。
难点:1. 平行线的性质的证明。
2. 运用平行线的性质解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生观察、实验、推理,探索平行线的性质。
2. 利用几何图形进行直观演示,帮助学生理解平行线的性质。
3. 设计实际问题,引导学生运用平行线的性质解决问题。
五、教学过程:1. 导入:引导学生回顾直线、射线、线段的概念,引入平行线的定义。
2. 新课讲解:讲解平行线的定义,引导学生观察平行线的性质,并进行证明。
3. 课堂练习:设计练习题,让学生运用平行线的性质解决问题。
4. 案例分析:分析实际问题,引导学生运用平行线的性质进行分析。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,拓展学生的知识运用。
六、教学评价:1. 评价目标:(1)了解学生对平行线概念的理解程度。
(2)检验学生对平行线性质的掌握情况。
(3)评估学生在实际问题中运用平行线性质解决问题的能力。
2. 评价方法:(1)课堂问答:通过提问,了解学生对平行线概念的理解程度。
(2)练习题:设计不同难度的练习题,检验学生对平行线性质的掌握情况。
(3)实际问题解决:让学生运用平行线性质解决实际问题,评估学生的实际应用能力。
七年级数学《平行线的性质》教案一、教学目标:1. 让学生理解平行线的性质,能够熟练运用平行线的性质解决实际问题。
2. 培养学生观察、思考、交流和合作的能力。
3. 培养学生对数学的兴趣和自信心。
二、教学内容:1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的点到另一条直线的距离相等。
(2)平行线之间的夹角相等。
(3)平行线与第三条直线相交,构成的内角和为180度。
三、教学重点与难点:重点:平行线的性质。
难点:平行线性质的应用。
四、教学方法:1. 采用问题驱动法,引导学生发现平行线的性质。
2. 利用多媒体辅助教学,直观展示平行线的性质。
3. 采用分组讨论法,培养学生合作学习的能力。
4. 运用练习法,巩固所学知识。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识平行线,激发学生学习兴趣。
2. 新课导入:介绍平行线的定义,引导学生思考平行线的性质。
3. 课堂讲解:讲解平行线的性质,引导学生通过观察、思考、交流得出结论。
4. 案例分析:分析实际问题,运用平行线的性质解决问题。
5. 课堂练习:布置练习题,让学生巩固所学知识。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评价:1. 课后作业:检查学生对平行线性质的理解和应用能力。
2. 课堂练习:观察学生在解决问题时的思维过程和方法,评估其对平行线性质的掌握程度。
3. 小组讨论:评估学生在团队合作中的表现,包括沟通交流、协作解决问题等。
七、教学拓展:1. 邀请数学家或者相关领域专家进行讲座,分享平行线在现实生活中的应用。
2. 组织学生进行数学竞赛,激发学生对数学的兴趣和挑战精神。
3. 引导学生进行小研究,探究平行线在其他学科领域中的应用。
八、教学资源:1. 教材:提供最新版的数学教材,以便学生能够跟随最新的教学大纲。
2. 多媒体课件:制作包含动画、图片和互动元素的课件,帮助学生直观理解平行线的性质。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:(1)理解平行线的定义;(2)掌握平行线的性质;(3)能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、思考、交流,培养学生的抽象思维能力;(2)利用几何画板软件,直观展示平行线的性质,提高学生的动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神。
二、教学重点与难点1. 教学重点:(1)平行线的定义;(2)平行线的性质。
2. 教学难点:(1)平行线性质的推导与理解;(2)运用平行线性质解决实际问题。
三、教学方法1. 情境创设:利用生活实例引入平行线的概念,激发学生兴趣;2. 合作学习:分组讨论,共同探索平行线的性质;3. 直观展示:利用几何画板软件,动态展示平行线的性质;4. 练习巩固:设计相关习题,巩固所学知识。
四、教学过程1. 导入新课:(1)利用生活实例,如同一平面内两条永不相交的直线;(2)引导学生思考:如何判断两条直线是否平行?2. 探究平行线的性质:(1)学生分组讨论,共同探究平行线的性质;(2)每组汇报探究成果,师生共同总结平行线的性质。
3. 直观展示:(1)利用几何画板软件,动态展示平行线的性质;(2)引导学生观察、思考,加深对平行线性质的理解。
4. 练习巩固:(1)设计相关习题,让学生运用所学知识解决问题;(2)教师点评,纠正错误,巩固知识点。
五、课后作业1. 概念巩固:回顾平行线的定义,加深对平行线概念的理解;2. 性质练习:完成课后习题,运用平行线的性质解决问题;3. 拓展延伸:探究平行线在实际生活中的应用,如交通规则等。
六、教学评估1. 课堂提问:通过提问了解学生对平行线性质的理解程度;2. 课后作业:检查学生完成作业的情况,巩固所学知识;3. 小组讨论:观察学生在小组讨论中的表现,了解合作学习能力;4. 期中期末考试:检验学生对平行线知识的掌握程度。
《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所形成的内错角相等。
(4)平行线与截线所形成的同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线性质的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 利用几何画板等软件,直观展示平行线的性质。
3. 组织小组讨论,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。
2. 自主探究:学生独立观察、操作,发现平行线的性质。
3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。
4. 教师讲解:总结平行线的性质,并进行推理和证明。
5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。
6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。
2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。
3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。
3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。
一、教学目标:知识与技能:1. 理解平行线的概念,能够识别和判断平行线;2. 掌握平行线的性质,能够运用平行线的性质解决实际问题。
过程与方法:1. 通过观察、操作、思考等活动,培养学生的观察能力和思维能力;2. 学会用画图工具绘制平行线,提高学生的动手操作能力。
情感态度价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性;2. 培养学生的团队合作精神,学会与他人交流和分享。
二、教学重点与难点:重点:1. 平行线的概念及性质;2. 运用平行线的性质解决实际问题。
难点:1. 平行线的判断;2. 运用平行线的性质解决复杂问题。
三、教学准备:教师准备:1. 平行线的图片或实物;2. 画图工具(如直尺、三角板等);3. 教学课件或黑板。
学生准备:1. 课本及相关学习资料;2. 画图工具。
四、教学过程:1. 导入:1.1 教师出示平行线的图片或实物,引导学生观察并说出平行线的特点;2. 探究平行线的性质:2.1 教师引导学生通过观察、操作、思考等活动,发现平行线的性质;3. 应用平行线的性质:3.1 教师出示实际问题,引导学生运用平行线的性质解决问题;3.2 学生独立思考,小组交流,展示解题过程,教师进行点评和指导。
五、作业布置:1. 练习课本上的相关题目;2. 运用平行线的性质解决实际问题,并将解题过程和答案写在作业本上。
教学反思:本节课通过观察、操作、思考等活动,让学生掌握了平行线的性质,并能运用平行线的性质解决实际问题。
在教学过程中,注意引导学生主动参与,培养学生的观察能力、思维能力和动手操作能力。
通过小组合作,培养学生的团队合作精神。
但在教学过程中,也发现部分学生对平行线的判断仍存在困难,需要在今后的教学中加强练习和指导。
六、教学拓展:1. 引导学生思考:还有哪些几何图形的性质可以运用到实际问题中?2. 学生举例说明,教师进行点评和指导。
七、课堂小结:八、课后反思:1. 教师对本节课的教学效果进行反思,分析学生的掌握情况;2. 针对学生的薄弱环节,制定相应的教学措施。
7.4 平行线的性质第一环节:情境引入活动内容:一条公路两次拐弯后,和原来的方向相同,第一次拐的角∠B是130°,第二次拐的角∠C是多少度?说明:这是一个实际问题,要求出∠C的度数,需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.活动目的:通过对一个实际问题的解决,引出平行线的性质。
教学效果:由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。
第二环节:探索与应用活动内容:①画出直线AB的平行线CD,结合画图过程思考画出的平行线,被第三条直线所截的同位角的关系是怎样的?②平行公理:两直线平行同位角相等.③两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?∵a∥b(已知),∴∠1=∠2(两条直线平行,同位角相等)∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,给出板书:两条平行线被第三条直线所截,内错角相等.师:下面请同学们自己推导同旁内角是互补的.并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.∵a∥b(已知)∴∠1=∠2(两直线平行,同位角相等)∵∠1+∠4=180°(邻补角定义)∴∠2+∠4=180°(等量代换)即:两条平行线被第三条直线所截,同旁内角互补,简单说成,两直线平行,同旁内角互补师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b,∴∠1=∠2(两直线平行,同位角相等).∵a∥b(已知),∴∠2=∠3(两直线平行,内错角相等).∵a∥b(已知),∴∠2+∠4=180°.(两直线平行,同旁内角互补)(板书在三条性质对应位置上)活动目的:通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性。
4平行线的性质●复习导入问题:上节课我们通过推理证得了平行线的判定定理,要证明两条直线平行,有哪些方法?一个基本事实是__同位角相等__,两直线平行;两个定理分别是__内错角相等__,两直线平行;__同旁内角互补__,两直线平行.通过平行线判定的基本事实和判定定理,我们知道它们的条件是角的大小关系,结论是两直线平行.如果我们把它们的条件和结论互换,那么得到的命题是真命题吗?这节课我们就来研究“平行线的性质”.【教学与建议】教学:教师提出问题,复习回顾上节课的重点内容,迅速将学生的注意力集中于课堂.建议:让学生回顾知识,为本节课的学习做好铺垫.●悬念激趣在数学课上,好玩的张明同学不小心把一把长方形直尺折断了,善于思考的同桌想考考张明就拼成如图所示的图形.点E,D,B,F在同一条直线上,若∠ADF=55°,则∠DBC的度数为多少?∠F呢?你能帮张明同学解决这些问题吗?这些问题与我们将要学习的知识有关,这节课我们就来研究“如果两条直线平行,那么角之间会有什么关系”这一问题.【教学与建议】教学:通过趣题导入,引出“两条直线平行,内错角、同旁内角分别有怎样的大小关系”,激发学生探究知识的欲望.建议:在学生操作时,教师要引导学生进行思考、分析.命题角度1利用平行线的性质解决与三角尺、直尺有关的问题解决此类问题的关键是从图形中找准“三线八角”中对应的同位角、内错角和同旁内角.【例1】(1)如图,把一块含有45°角的直角三角尺两个顶点放在直尺的对边上,若∠1=20°,则∠2的度数是(C)A.15°B.20°C.25°D.30°[第(1)题图][第(2)题图](2)将一把直尺和一块含30°和60°角的三角尺ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为__10°__.命题角度2利用平行线的性质解决折叠问题解决折叠问题的关键是找折叠前后的对应元素,然后利用对应元素的相等关系解决问题.【例2】将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是(D)A.45°B.55°C.65°D.75°命题角度3平行线性质与判定的综合运用以平行线为背景的角度等量关系判定,关键是要抓住“三线八角”中角之间的数量关系,进而由角的数量关系判断直线的关系.【例3】(1)如图,直线a∥b,∠1=65°,∠2=140°,则∠3等于(B)A.100°B.105°C.110°D.115°[第(1)题图][第(2)题图](2)如图,因为DF∥AC(已知),所以∠D+__∠CBD__=180°(两直线平行,同旁内角互补).因为∠C =∠D(已知),所以∠C+__∠CBD__=180°(等量变换),所以DB∥EC(同旁内角互补,两直线平行).高效课堂教学设计1.结合图形用符号语言来表示平行线的三条性质的条件和结论.2.总结归纳出证明的一般步骤.▲重点平行线的性质的探索及应用.▲难点运用平行线的性质和判定来解决问题.◆活动1创设情境导入新课(课件)现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补判定两条直线平行这三种方法.在这一节课里,大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?这是本节课我们将要学习的内容.◆活动2实践探究交流新知【探究1】证明:两直线平行,同位角相等.已知:如图,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.【思考】若直接用基本事实能否证明出来?证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如图所示.根据“同位角相等,两直线平行”,可知GH∥CD.又因为AB∥CD,这样经过点M存在两条直线AB和GH都与直线__CD__平行.这与基本事实“过直线外一点有且只有一条直线与这条直线平行”相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.【探究2】证明:两直线平行,内错角相等.(1)多媒体展示图形;(2)如图,直线l1∥l2,∠1和∠2是直线l1,l2被直线l截出的内错角.求证:∠1=∠2.证明:∵l1∥l2(已知),∴∠1=∠3(两直线平行,同位角相等).又∵∠2=∠3(对顶角相等),∴∠1=∠2(等量代换).【探究3】证明:两直线平行,同旁内角互补.(1)多媒体展示图形;(2)已知:如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角.求证:∠1+∠2=180°.证明:∵a∥b(已知),∴∠3=∠2(两直线平行,内错角相等).∵∠1+∠3=180°(平角的定义),∴∠1+∠2=180°(等量代换).【归纳】证明文字叙述类命题的一般步骤:第一步:先根据命题的条件即已知事项画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论、结合图形,写出已知、求证.第三步:经过分析,找出由已知推出求证的途径,写出证明过程.◆活动3开放训练应用举例【例1】(教材P176例题)已知:如图,b∥a,c∥a,∠1,∠2,∠3是直线a,b,c被直线d截出的同位角.求证:b∥c.【方法指导】平行线的性质.证明:∵b∥a(已知),∴∠1=__∠2__(两直线平行,__同位角__相等).∵c∥a(已知),∴∠3=__∠1__(两直线平行,__同位角__相等).∴∠2=∠3(等量代换)∴b∥c(__同位角__相等,两直线__平行__).【例2】如图,已知∠ABC+∠C=180°,BD平分∠ABC.∠CBD与∠D相等吗?请说明理由.【方法指导】由∠ABC+∠C=180°得到AB∥CD,再根据AB∥CD得到∠D=∠ABD.最后由角平分线得到结果.解:相等,理由:∵∠ABC+∠C=180°,∴AB∥CD.∴∠D=∠ABD.∵BD平分∠ABC,∴∠CBD=∠ABD.∴∠CBD=∠D.◆活动4随堂练习1.如图,已知直线DE经过点A,∠1=∠B,∠2=52°,则∠3的度数为(A)A.52°B.38°C.130°D.80°(第1题图)(第2题图)2.如图,已知直线a⊥c,b⊥c,∠1=140°,那么∠2的度数是(A)A.40°B.50°C.60°D.140°3.如图,在梯形ABCD中,AD∥BC,∠D=120°,∠DCA=20°,求∠BCA和∠DAC的度数.解:∠BCA=40°,∠DAC=40°.◆活动5课堂小结与作业学生活动:这节课学习了两条直线平行,同位角相等,内错角相等,同旁内角互补.教学说明:对这节课所学内容,学以致用.作业:课本P177习题7.5中的T1、T2、T4.通过生活中的事例,让学生感受数学来源于生活,通过问题的设置,训练学生语言表达的准确性和简洁性,为学生提供充分参与数学活动和探索的机会,让学生在轻松愉快的学习中掌握证明的步骤和格式.。
七年级数学《平行线的性质》教案一、教学目标1. 知识与技能:(1)能够识别同位角、内错角和同旁内角。
(2)理解平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、交流等活动,培养学生直观表达能力和逻辑思维能力。
(2)学会用平行线的性质解释生活中的现象。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性。
(2)渗透“处处留心皆学问”的思想,培养学生的观察能力和思考能力。
二、教学重点与难点1. 教学重点:(1)平行线的性质。
(2)运用平行线的性质解决实际问题。
2. 教学难点:(1)平行线性质的推导和理解。
(2)在实际问题中灵活运用平行线的性质。
三、教学方法1. 采用情境导入、观察、操作、交流、总结等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
四、教学过程1. 导入新课:(1)利用课件展示生活中的平行线现象,引导学生观察。
(2)提问:这些现象中,平行线有哪些特殊的性质呢?2. 探索平行线的性质:(1)学生分组讨论,观察同位角、内错角和同旁内角的变化。
(2)各组汇报讨论结果,教师总结并板书。
3. 实践应用:(1)学生自主设计练习题,运用平行线的性质解决问题。
(2)教师挑选题目进行讲解,引导学生总结解题方法。
五、课堂小结1. 学生总结本节课所学内容,分享自己的收获。
2. 教师对学生的总结进行点评,强调平行线性质的重要性。
六、课后作业1. 完成练习册相关题目。
2. 观察生活中更多的平行线现象,下节课分享。
七、教学反思教师在课后对自己的教学进行反思,针对学生的掌握情况,调整教学策略,为的教学做好准备。
八、教学评价1. 学生对平行线性质的理解和运用。
2. 学生在课堂上的参与度和合作意识。
3. 学生完成作业的质量。
九、教学拓展1. 探索更多生活中的平行线现象。
2. 了解平行线在几何学中的应用。
十、教学资源1. 多媒体课件。
2. 练习册。
平行线的性质一、教学目标:①运用已学知识推导平行线的性质定理;②应用平行线的性质进行简单的推理和计算;③应用平行线的性质解决相关问题。
二、学习者分析:通过课前推送自主学习任务单,通过云平台收集并分析学生学情数据(包括知识储备和活动经验基础两个方面)三、教学重难点及解决措施:教学重点是探索平行线的性质,并进行简单的推理和计算,教学难点是应用平行线的性质解决问题。
通过自主学习发现问题、小组合作探究解决问题,利用智慧学习环境进行展示交流、小组互评等活动,进而掌握平行线的性质;通过精准测评、分层练习检测学生能否应用平行线的性质进行推理和计算以及解决生活中的实际问题。
四、过程设计第一环节:复习回顾该环节包括阅读理解、作业、提问与理答三个学习活动。
①阅读理解:课前教师通过教育云平台创建并推送学习任务单及检测题,学生通过阅读教材和学习任务单进行自主学习。
②作业:学生完成并提交检测题,教师利用云平台数据分析学生学习效果,精准掌握学生学情。
③提问与理答:教师利用思维导图对学生已学知识进行回顾,通过个别提问,交流学习困惑,进一步了解学情,为后续调整教学提供依据。
第二环节:新知探究该环节通过完成两个探究任务来达成第1个教学目标。
第一个探究任务,主要通过作业、讨论与交流、汇报与成果展示等学习活动完成。
①作业。
教师安排第一个探究活动,学生自主完成任务。
(设计意图:通过自主探究,激发学生探究数学问题的兴趣,通过动手测量获得感性体验,帮助学生得出猜想。
)作业内容:学生利用练习本中的直线或用直尺和三角尺画两条平行线a∥b,再画一条截线 c 与这两条平行线相交,标出图中的八个角。
并完成以下任务:任务1:找出图中的同位角任务2:观察每组同位角之间有什么数量关系?说出你的猜想任务3:再任意画一条截线d,你的猜想还成立吗?②讨论与交流。
自主完成学习任务后,小组合作进行讨论交流,将结果拍照上传至云平台,并浏览其他小组成果。
(设计意图:通过小组合作探究,实现知识的协同建构,同时提升学生的沟通、表达、合作的能力。
《平行线的性质》优秀教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、归纳的能力,提高学生解决实际问题的能力。
3. 培养学生合作学习、积极参与的精神,提高学生的数学素养。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线互相平行。
(2)平行线与横穿它们的直线相交,交角相等。
(3)平行线之间的距离相等。
三、教学重点与难点1. 教学重点:平行线的概念及性质。
2. 教学难点:平行线性质的理解和应用。
四、教学方法1. 采用直观演示法,让学生通过观察、实践,理解平行线的性质。
2. 采用归纳法,引导学生通过观察、讨论,总结出平行线的性质。
3. 运用案例分析法,让学生通过解决实际问题,掌握平行线的性质。
五、教学步骤1. 导入新课:利用图片、生活实例等方式,引导学生了解平行线的概念。
2. 探究平行线的性质:(1)让学生自主尝试画出平行线,观察并总结平行线的性质。
(2)分组讨论,分享各组的发现,引导学生归纳出平行线的性质。
3. 讲解与应用:(1)教师讲解平行线的性质,并结合实例进行解释。
(2)设置练习题,让学生运用平行线的性质解决问题。
4. 总结与拓展:(1)对本节课所学内容进行总结,加深学生对平行线性质的理解。
(2)提出拓展问题,激发学生的学习兴趣,为后续学习做铺垫。
5. 布置作业:设计适量作业,巩固学生对平行线性质的掌握。
六、教学评估1. 课堂提问:通过提问了解学生对平行线概念和性质的理解程度。
2. 练习题反馈:分析学生完成练习题的情况,评估学生对平行线性质的掌握情况。
3. 作业批改:检查学生作业,了解学生对课堂所学知识的巩固程度。
七、教学反思1. 教师总结课堂教学效果,反思教学方法是否适合学生。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
3. 关注学生的学习需求,不断优化教学内容,提升教学质量。
八、教学拓展1. 利用多媒体展示平行线的实际应用场景,让学生感受数学与生活的联系。
7.4 平行线的性质1.理解并掌握平行线的性质公理和定理;(重点)2.能熟练运用平行线的性质进行简单的推理证明.(重点)一、情境导入一条公路两次拐弯后和原来的方向相同,第一次拐的角度∠B 是130°,第二次拐的角度∠C 是多少度?二、合作探究探究点一:平行线的性质定理1如图,在△ABC 中,点D 、E 、F 分别为BC 、AB 、AC 上的点,DE ∥AC 且DF∥AB.求证:∠BED=∠CFD.解析:由DE∥AC 可知∠BED =∠A ,由DF∥AB 可知∠CFD =∠A ,从而可得∠BED =∠CFD.证明:∵DE∥AC(已知),∴∠BED =∠A(两直线平行,同位角相等).∵DF∥AB(已知),∴∠CFD =∠A(两直线平行,同位角相等).∴∠BED=∠CFD(等量代换).方法总结:在已知两直线平行的前提下,若要求证的两角不是平行线被第三条直线所截得的角,就要借助一个中间量,将两者联系起来.探究点二:平行线的性质定理2如图,已知∠B=∠C,AE ∥BC ,说明AE 平分∠CAD.解析:要说明AE 平分∠CAD ,即∠DAE =∠CAE.由于AE∥BC ,根据平行线性质定理1和性质定理2可知∠DAE =∠B ,∠EAC =∠C.由∠B =∠C 即可得证.解:∵AE∥BC(已知),∴∠DAE =∠B(两直线平行,同位角相等), ∠EAC =∠C(两直线平行,内错角相等). ∵∠B =∠C(已知),∴∠DAE =∠EAC(等量代换), ∴AE 平分∠CAD.方法总结:单独考平行线某一性质的题很少,通常都是平行线的性质与其他知识的综合运用.探究点三:平行线的性质定理3如图,已知DA⊥AB,CB ⊥AB ,DE 平分∠ADC,CE 平分∠BCD,试说明DE⊥CE.解析:要证DE ⊥CE ,即∠DEC =90°.需证∠1+∠2=90°.由DE 、CE 分别平分∠ADC 、∠BCD ,则需证∠ADC +∠BCD =180°,从而需证AD∥BC. 解:∵DA⊥AB,CB ⊥AB ,∴AD ∥BC(垂直于同一直线的两直线平行),∴∠ADC +∠BCD =180°(两直线平行,同旁内角互补).∵DE 平分∠ADC,CE 平分∠BCD,∴∠1=12∠ADC ,∠2=12∠BCD.∴∠1+∠2=12×180°=90°,∴∠DEC=90°,即DE⊥CE.方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB ∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD ,但没有一条直线既与AB 相交,又与CD 相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E 作AB 的平行线.证明:如图所示,过点E 作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF ∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED +∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.三、板书设计 平行线的性质⎩⎪⎨⎪⎧两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补平行于同一条直线的两直线平行从简单的几何证明(平行线的判定与性质)入手,逐步形成一个更为清晰的证明思路,进一步理解和总结证明的步骤、格式、方法.了解两定理在条件和结构上的区别,体会正逆的思维过程. 进一步发展学生的推理能力,培养学生的逻辑思维能力.。
7.4平行线的性质(教案〕教学目标知识与技能:会根据“两直线平行,同位角相等〞证明“两直线平行,内错角相等〞和“两直线平行,同旁内角互补〞,并能简单地应用这些结论.过程与方法:了解性质定理与判定定理的联系,初步感受互逆的思维过程.情感态度与价值观:进一步理解证明的步骤、格式和方法,开展演绎推理能力.教学重难点【重点】理解和简单应用平行线的性质定理.【难点】运用公理、定理进行简单的推理,以及用几何语言进行表述.教学准备【教师准备】问题探索和例题的教学用图.【学生准备】复习平行线的判定定理.教学过程一、导入新课导入一:师:同学们,上课前,老师在纸上画了一个∠A,准备用量角器测量它的度数时,因不小心将纸片撕破,只剩下如下图的一局部,如果不能同时反向延长CD,EF的话,你能否利用所学的数学知识测出∠A的度数?(多媒体展示)(学生思考,互相交流解决方法)生1:根据两直线平行,同位角相等的知识,可以过C点作FE的平行线,构造∠A的同位角,那么可以测出∠A的度数.生2:根据两直线平行,内错角相等的知识,也可以过C点作FE的平行线,构造∠A的内错角.师:同学们利用平行线的性质解决这个问题的想法太棒了!那么,你知道这些性质是如何证明的吗?这节课就让我们来探究这个问题.(板书课题:4平行线的性质)[设计意图]通过趣味题导入,激发学生的探究知识的欲望,点燃学生思维的火花,使其进入最正确的学习状态.导入二:如下图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐30°,那么第二个弯应朝什么方向,才能不改变原来的方向?[处理方式]先给学生2分钟的时间自己探究,得出结论后小组讨论,最后选代表发言.学生观察,小组讨论,交流问题并发表见解,教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题.在学生探究讨论的过程中,少局部学生可能对题意理解不透彻,此时教师可以结合实际问题加以引导,引导性语言如下:(1)不改变方向,在数学中的理解应是什么;(2)在这个问题中包含了什么问题;(3)如何将它转化为数学问题.[设计意图]通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实生活,效劳于现实生活,同时也调动了学生的积极性,提高了学生的兴趣.二、新知构建[过渡语]上节课我们通过推理证得了平行线的判定定理,知道它们的条件是角的大小关系,其结论是两直线平行.如果我们把平行线的判定定理的条件和结论互换,那么得到的命题是真命题吗?(1)、两直线平行,同位角相等思路一活动内容:画出直线a的平行线b,结合画图过程思考:画出的平行线被第三条直线c所截的同位角的关系是怎样的?[处理方式]本节证明平行线的性质定理,将性质定理“两直线平行,同位角相等〞的证明作为选学内容,因此,第一局部以自学阅读的形式呈现,自学教材第175页内容(包括证明过程),学有余力的学生可以思考探究:应用平行线的性质定理“两直线平行,同位角相等〞可以得出什么?[设计意图]学生在自学的过程中,理解平行线的性质,并明确两直线平行的性质定理“两直线平行,同位角相等〞是推理论证后面两个性质定理的根底;“同位角相等〞是在“两直线平行〞的前提下才成立的,是平行线特有的性质.要防止一提到同位角就以为其相等的错误.思路二师:我们先来证明定理:两直线平行,同位角相等.你能否发现定理的条件是什么?生:两条平行直线被第三条直线所截.师:结论是什么?生:同位角相等.师:证明命题,要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为以下形式.【课件展示】:如下图,直线a∥b,∠1和∠2是直线a,b被直线c所截出的同位角.求证:∠1=∠2.请同学们自主学习教材第175页“两直线平行,同位角相等〞的证明过程.(学生阅读思考,互相交流心得)师:利用这个定理,你能证明哪些熟悉的结论?思路三【问题】:如下图,直线AB∥CD,∠1和∠2是直线AB,CD被直线EF截出的同位角.求证:∠1=∠2.【思考】(1)∠1和∠2在数量关系上有哪两种情况?(2)过直线外一点有几条直线与这条直线平行?[设计意图]为接下来用反证法证明上述定理作准备.证明:假设∠1≠∠2,那么我们可以过点M作直线GH,使∠EMH=∠2,如下图.根据“同位角相等,两直线平行〞,可知GH∥CD.又因为AB∥CD,所以此时经过点M存在两条直线AB和GH都与直线CD平行.这与根本领实“过直线外一点有且只有一条直线与这条直线平行〞相矛盾.这说明∠1≠∠2的假设不成立,所以∠1=∠2.【思考】为什么不能按如下方法证明上述定理?∵AB∥CD,∴∠2=∠AMN.又∵∠1=∠AMN,∴∠1=∠2.(2)、两直线平行,内错角相等;同旁内角互补(多媒体出示)根据同位角相等可以判定两直线平行,反过来,如果两直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?1.两条平行直线被第三条直线所截,同位角是相等的,那么内错角、同旁内角之间有什么关系呢?∵a∥b(),∴∠1=∠2(两条直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).师:由此我们又得到了平行线有怎样的性质呢?【学生活动】同学们积极举手答复以下问题.教师根据学生表达,给出板书:两条平行直线被第三条直线所截,内错角相等.2.下面请同学们自己推导同旁内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程并写出第三条性质,形成正确板书.∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).∵∠1+∠4=180°(邻补角的定义),∴∠2+∠4=180°(等量代换),即两条平行直线被第三条直线所截,同旁内角互补,简单说成“两直线平行,同旁内角互补〞.师:我们知道了平行线的性质,在今后我们经常要用它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵a∥b(),∴∠1=∠2(两直线平行,同位角相等).∵a∥b(),∴∠2=∠3(两直线平行,内错角相等).∵a∥b(),∴∠2+∠4=180°(两直线平行,同旁内角互补).(板书在三条性质的对应位置上)[处理方式]在完成“两直线平行,同位角相等〞的证明后,要求学生自主证明“两直线平行,内错角相等〞“两直线平行,同旁内角互补〞,然后将学生的证明过程整理出来,与教材中的进行比照,感受证明的过程和标准格式.通过对平行线性质的探索,使学生对证明的步骤、格式有更进一步的认识,认识证明的必要性.引导学生使用符号语言,充分调动学生的主动性和积极性,开展学生的符号感.[设计意图]在前面复习引入的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,而应充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣. (3)、两类定理的比拟两条直线被第三条直线所截.平行线的判定平行线的性质条件结论条件结论同位角相等两直线平行两直线平行同位角相等内错角相等两直线平行两直线平行内错角相等同旁内角互补两直线平行两直线平行同旁内角互补[处理方式]引导学生分组探究,并明确平行线的性质定理和判定定理的条件和结论正好相反.性质是由条件“平行〞得到结论“角的关系〞;判定是由条件“角的关系〞得到结论“平行〞.[设计意图]初步建立平行线的性质定理和判定定理之间的联系,初步感受互逆的思维过程.具体为:在判定中,把角相等或互补作为判断两直线是否平行的前提,角相等或互补是,结论是两直线平行,那么判定是由“角相等或互补〞推理论证“两直线平行〞.在性质中,两直线平行是条件,结论是角相等或互补,性质是用来说明两个角相等或互补的,即由“两直线平行〞推理论证“角相等或互补〞.四、平行线的传递性如果两条直线都和第三条直线平行,那么这两条直线也互相平行.:直线a,b,c被直线d所截,且a∥b,c∥b.求证:a∥c.[处理方式]学生自行尝试解答,小组合作探究后,比照不同的解法,并推荐一人答复以下问题,这样的气氛,激发了学生强烈的学习兴趣.[设计意图]对学生中出现的不同解法给予肯定,培养学生的解题能力.议一议:完成一个定理的证明,需要哪些环节?与同伴进行交流.[处理方式]引导学生回忆证明过程,梳理证明活动中的经验,小组尝试整理证明的步骤.教师强调:(1)证明的一般步骤:①理解题意;②根据题意正确画出图形;③结合图形,写出“〞和“求证〞;④分析题意,探索证明的思路;⑤依据寻求的思路,运用数学符号和数学语言条理清晰地写出证明过程;⑥检查表达过程是否正确、完善.(2)证明的思路:①可以从求证出发向追溯,也可以由向结论探索,还可以从和结论两个方向同时出发,互相接近.②对于用文字表达的命题的证明,要先分清命题的条件和结论,然后根据题意画出图形,写出和求证,证明即可.[设计意图]使学生明确证明的步骤与思路,能更好地完成几何证明题.[知识拓展]该定理的主要作用是判断两个角相等,即由两条直线之间的“位置关系〞转化为两角之间的“数量关系〞,能正确找到内错角是证明该定理的重点.如下图,AB∥CD,∠CDE=140°,那么∠A的度数为()A.140°B.60°C.50°D.40°〔解析〕∵∠CDE=140°,∴∠ADC=180°-140°=40°,∵AB∥CD(),∴∠A=∠ADC=40°(两直线平行,内错角相等).应选D.三、课堂总结四、课堂练习1.平行线的性质定理有:,,.答案:两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补2.如下图,∠4=∠C,∠1=∠2,求证BD平分∠ABC.证明:∵∠4=∠C,∴AD∥BC,∴∠2=∠3.又∵∠1=∠2,∴∠1=∠3,即BD平分∠ABC.3.如下图,CD∥OB,EF∥AO,求证∠1=∠O.证明:∵CD∥OB,∴∠1=∠2,又∵EF∥AO,∴∠2=∠O,∴∠1=∠O.五、板书设计4平行线的性质探索1两直线平行,同位角相等探索2两直线平行,内错角相等探索3两直线平行,同旁内角互补探索4平行于同一条直线的两条直线平行六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.5第4题.(2)、课后作业【根底稳固】1.如下图,由AB∥CD能得到∠1=∠2的是()2.如下图,AB∥CD,E是AB上一点,ED平分∠BEC交CD于D,∠BEC=100°,那么∠D的度数是()A.100°B.80°C.60°D.50°3.如下图,AB∥CD,DB⊥BC于B,∠2=50°,那么∠1的度数()A.40°B.50°C.60°D.140°4.如下图,AB∥CD,EF分别交AB,CD于M,N,∠EMB=50°,MG平分∠BMF,MG交CD于G,那么∠1等于()A.65°B.50°C.115°D.120°5.如下图,AB∥EF∥DC,EG∥BD,那么图中与∠1相等的角(∠1除外)有()A.6个B.5个C.4个D.2个【能力提升】6.如下图,∠1与∠2互补,∠3=100°,求∠4的度数.7.如下图,直线AB∥CD,直线EF分别交AB,CD于E,F,∠BEF的平分线与∠DFE的平分线交于P.求证∠P=90°.8.如下图,C,P,D在一条直线上,∠BAP与∠APD互补,∠1=∠2.求证∠E=∠F.【拓展探究】9.如下图,AB∥ED,∠CAB=135°,∠ACD=80°.求∠CDE的度数.【答案与解析】1.B2.D(解析:根据角平分线的定义可得∠BED=50°,再根据平行线的性质可得∠D=∠BED=50°.)3.A4.A(解析:综合运用平行线的性质和三角形内角和定理求出∠1的度数.)5.B6.解:∵∠1+∠2=180°,∠2=∠5,∴∠1+∠5=180°,∴a∥b,∴∠3=∠4,∴∠4=100°.7.证明:∵AB∥CD,∴∠BEF+∠DFE=180°.又∵EP,FP分别平分∠BEF,∠DFE,∴∠BEF=2∠PEF,∠DFE=2∠PFE.∴∠PEF+∠PFE=90°,∴∠P=90°.8.证明:∵∠BAP+∠APD=180°,∴AB∥CD.∴∠BAP=∠CPA.∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥FP,∴∠E=∠F.9.解:如下图,过点C作CF∥AB,∵CF∥AB,∴∠A+∠ACF=180°(两直线平行,同旁内角互补).而∠A=135°,那么∠ACF=45°,∴∠FCD=∠ACD-∠ACF=80°-45°=35°.又∵CF∥AB,AB∥ED,∴CF∥DE,∴∠FCD=∠CDE(两直线平行,内错角相等),∴∠CDE=35°.。
《平行线的性质》教案一、教学目标:知识与技能:1. 学生能够理解平行线的定义和性质;2. 学生能够运用平行线的性质解决实际问题。
过程与方法:1. 学生通过观察、实验和推理,探索平行线的性质;2. 学生能够运用归纳和演绎的方法,证明平行线的性质。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心;2. 学生培养合作和交流的能力。
二、教学重点:平行线的性质三、教学难点:平行线的性质的证明和应用四、教学准备:课件、黑板、粉笔、直线模型、平行线模型五、教学过程:1. 导入:教师通过展示直线和平行线的模型,引导学生回顾直线的定义和平行线的定义。
2. 探索平行线的性质:教师引导学生观察平行线模型,让学生自己发现平行线的性质。
学生可以分组讨论,分享自己的发现。
3. 证明平行线的性质:教师引导学生运用归纳和演绎的方法,证明平行线的性质。
学生可以分组讨论,共同完成证明过程。
4. 应用平行线的性质:教师给出实际问题,让学生运用平行线的性质解决问题。
学生可以独立思考,也可以分组讨论。
5. 总结:教师引导学生总结平行线的性质,并强调其在几何学中的应用。
6. 作业布置:教师布置相关的练习题,让学生巩固所学知识。
7. 板书设计:平行线的性质同一平面内,不相交的两条直线叫做平行线。
平行线之间的距离相等。
平行线上的对应角相等。
平行线上的内错角相等。
平行线上的同位角相等。
六、教学反思:教师在课后进行教学反思,分析学生的学习情况,教学效果,以及可能需要改进的地方。
教师可以根据学生的作业完成情况和课堂表现来进行评估。
七、评价与反馈:教师对学生的学习情况进行评价,包括学生的理解程度、解决问题的能力、合作交流的能力等。
教师可以通过考试、作业、课堂表现等方式来进行评价。
教师需要给予学生及时的反馈,帮助学生提高。
八、拓展与延伸:教师可以给学生提供一些拓展和延伸的题目,帮助学生深入理解平行线的性质,并能够灵活运用。
这些题目可以包括证明题、应用题等,难度可以适当增加。
课题:7.4平行线的性质教学目标:1.掌握平行线的性质定理,会证明“两直线平行,内错角相等(或同旁内角互补)”;了解平行于同一条直线的两条直线平行.2.了解性质定理与判定定理的联系,初步感受互逆的思维过程.3.进一步理解证明的步骤、格式和方法,发展演绎推理能力.教学重难点 重点:平行线的性质的应用.难点:平行线的性质定理与判定定理的区别与联系.教法及学法指导:本节课通过情境引入、问题驱动的方法组织教学,不断的通过问题引导学生的思维活动,同时突出学生的“探索”,将观察、思考等活动贯穿于教学活动的始终,在教学过程中立足让学生自己去探索、分析归纳、合作交流.同时本节课借助多媒体演示,加强了教学的直观性,丰富学生的想象力,提高了学生主动参与的意识.课前准备:教师准备:制作教学课件.学生准备:准备练习本和预习课本内容.教学过程:一、创设情境,导入新课如果你住在立新嘉苑,要去十五中(只开东门)上学怎么走?如果解放路和建设路平行的,那么两次拐弯的大小一样吗? 处理方式:这是一个实际问题,要判断两次拐弯的大小是否一致,需要我们研究与判定 1010相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.由于学生对平行线的性质比较熟悉,因此,在学生回忆起这些知识后,能很快解决实际问题。
设计意图:通过对一个实际问题的解决,引出平行线的性质。
二、探究学习,获取新知活动内容1:我们前面学习过了“两条平行直线被第三条直线所截,同位角相等”,你能写出这个命题的条件和结论吗?你能证明这个结论吗?.处理方式:通过让学生写出已知,求证,进一步感受证明的主要步骤,对于证明的过程可能预习过以后会有部分同学明白,找同学讲解,要求学生能听明白即可,初步感受一下“反证法”.已知:如图,直线a∥b,∠1和∠2是直线 a,b被直线c截出的内错角.求证:∠1=∠2.设计意图:让学生初步感受一下“反证法”,并为下面的证明提供理论基础.活动内容2:两条平行直线被第三条直线所截,同位角是相等的,那么内错角有什么关系呢?你能利用已有的定理证明它吗?处理方式:同学们积极举手回答问题.教师根据学生叙述,给出板书:两直线平行,内错角相等.然后让学生自己动手尝试写出已知,求证,画出图形,尝试证明,然后再组内交流。
七年级数学《平行线的性质》教案一、教学目标:知识与技能:1. 理解平行线的性质,能熟练运用平行线的性质解决实际问题。
2. 掌握平行线的判定方法,能判断一条直线是否平行于另一条直线。
过程与方法:1. 通过观察、操作、交流等活动,培养学生直观思维和动手能力。
2. 学会用平行线的性质解释生活中的现象,提高学生解决实际问题的能力。
情感态度与价值观:1. 培养学生的团队协作精神,增强对数学学习的兴趣。
2. 体会数学与生活的密切联系,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点:重点:平行线的性质及其判定方法。
难点:如何运用平行线的性质解决实际问题。
三、教学准备:教师准备:1. 教学课件或黑板。
2. 平行线性质的图片或实物。
3. 判定平行线的工具(如直尺、三角板等)。
学生准备:1. 笔记本、笔。
2. 提前预习平行线的相关知识。
四、教学过程:环节一:导入新课1. 利用图片或实物展示平行线的现象,引导学生观察、思考。
2. 提问:什么是平行线?平行线有哪些性质和判定方法?环节二:探究平行线的性质3. 师生共同得出平行线的性质:不相交、同方向、距离相等。
环节三:学习平行线的判定方法1. 教师演示判定两条直线平行的方法。
2. 学生动手实践,判断给出的直线是否平行。
3. 教师点评学生判断结果,讲解判定方法。
环节四:运用平行线的性质解决实际问题1. 出示例题,引导学生运用平行线的性质解决问题。
2. 学生独立解答,教师巡回指导。
环节五:课堂小结1. 教师引导学生回顾本节课所学内容。
五、课后作业:1. 完成课后练习题,巩固所学知识。
2. 观察生活中平行线的现象,下节课分享。
注意:教师在教学过程中要关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分的锻炼和提高。
六、教学反思:本节课结束后,教师应认真反思教学效果,思考学生在学习过程中遇到的困难和问题,以及自己的教学方法是否适合学生,是否需要改进。
要关注学生的学习兴趣和参与度,确保下一节课的教学能够更好地满足学生的学习需求。
7.4平行线的性质
教学目标
知识与技能
1、理解并掌握平行线的性质。
2、会用平行线的性质进行推理和计算。
过程与方法
通过平行线性质定理的推导与观察,在探究活动中学会学习。
情感态度与价值观
在探究中让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神,培养学生观察分析和进行简单的逻辑推理的能力。
教学重点
平行线的性质公理及平行线性质定理的推导。
教学难点
平行线性质与判定的区别及推导过程。
教学过程
一、创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1)。
1.如图1,
(1)∵(已知),∴().
(2)∵(已知),∴().
(3)∵(已知),∴().
2.如图2,(1)已知,则与有什么关系?为什么?
(2)已知,则与有什么关系?为什么?
图2 图3
3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?
学生活动:学生口答第1、2题。
师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质。
板书课题:
二、探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的
[板书]两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补。
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下。
[板书]∵(已知),∴(两条直线平行,同位角相等).
∵(对项角相等),∴(等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题。
教师根据学生叙述,板书:
[板书]两条平行经被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
[板书]∵(已知),∴(两直线平行,同位角相等).
∵(邻补角定义),
∴(等量代换).
即:两条平行线被第三条直线所截,同旁内角互补。
简单说成,两直线平行,同旁内角互补。
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:
∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴
(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)
三、练习(出示投影片4)
1、如图9,已知直线经过点,,,.
(1)等于多少度?为什么?
(2)等于多少度?为什么?
(3)、各等于多少度?
2、如图10,、、、在一条直线上,.
(1)时,、各等于多少度?为什么?
(2)时,、各等于多少度?为什么?
3、如图12,已知是上的一点,是上的一点,,,
.(1)和平行吗?为什么?
图12
(2)是多少度?为什么?
四小结:这节课你学习了什么知识?
五作业:
习题7.5 2、3题。