考研数学高数所有知识点合集八
- 格式:doc
- 大小:370.00 KB
- 文档页数:5
考研数学:高数必考8 大基础知识点考研数学:高数必考8 大基础知识点,更多考研报考指南、考研英语复习指导、考研政治复习指导等信息,请及时关注经济类联考数学全程规划班掌握经济类联考数学的复习方法,制定全复习规划1李擂《考研经综数学导学讲义》无逻辑真题解析了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向2王晓东《经济类联考综合真题及其答案》高等数学基础班全面学习高等数学的基本知识点,理解基本概念,掌握基本运算方法,为强化提高打下基础。
16李擂《考研经综数学基础讲义》《经济类联考综合阅卷人核心教程》高等数学强化课程,依据考试大纲及历真题介绍分别高等数学、线性代数、概率论主要知识点,归纳总结命题方向和常见的解题思想,结合强化课,帮助考生进一步强化解题思路。
24李擂《经济类联考综合阅卷人核心笔记·数学》《经济类联考综合阅卷人核心笔记·数学》逻辑强化熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑方法解题16饶思中《考研管综逻辑强化讲义》《经济类联考综合阅卷人核心笔记·逻辑》写作强化通过课程学习巩固考研写作的要点重点难点,并掌握写作的大体思路12王诚《经济类联考综合阅卷人核心笔记·写作》《经济类联考综合阅卷人核心笔记·写作》冲刺串讲各科冲刺串讲,系统串讲各科知识体系,指导考生针对核心考点进行深度学习。
8李擂《考研经综数学冲刺讲义》《经济类联考综合阅卷人核心预测4 套卷》逻辑冲刺提高运用各种知识点和逻辑方法解答各种类型的逻辑题的综合能力;消灭逻辑理解中的盲点和误区;提高解题的速度和正确率4饶思中《考研经综逻辑冲刺讲义》《经济类联考综合阅卷人考前8 天写作大预测》写作冲刺掌握写作大小作文的模版,能利用模版衍生解决应试模版的能力,规范写作8王诚《考研经综写作冲刺讲义》写作模考通过应试技巧的学习,提供写作的速度,发现考试中的问题,及时解决,提高考试分值4王诚《考研管综写作4 套卷》逻辑真题解析了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向2王晓东《考研管综真题》数学基础通过学习管理类联考数学的基本概念、基本理论、基本方法,为强化提高打基础20刘京环《考研管综初数基础讲义-刘京环》《管理类联考数学阅卷人核心教程》数学强化依据考试大纲及历真题介绍管理数学数学主要知识点,归纳总结命题方向和常见的解题思想。
考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。
考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。
(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。
考研高等数学知识点整理(附思维导图)被考研高数折磨过的小伙伴一定都知道那种痛苦:泰勒展开、麦克劳林展开、夹逼定理、定积分不定积分、微分多元微分......作为成功登陆的一员,我觉得有义务帮对岸的朋友考研一把。
下面这张考研高数知识图我之前用过,希望能给你带来好运。
我不多说了。
一、函数先明确一些基本概念,比如函数的定义,函数的性质,什么是复合函数,反函数,隐函数。
理解概念很重要!理解概念很重要!理解概念很重要!重要的事情说三遍~很多问题我们不会做。
其实不是我们解决问题的能力不好,而是我们连基本概念都没搞清楚,自然无从下手,或者说解决问题的方向是偏了!这是我十几年应试的血泪教训!熟悉基本初等函数,包括幂函数、指数函数、对称函数、三角函数、反三角函数,要把公式和参数适用范围记住;常用的函数有绝对值函数、符号函数、整数函数、狄利克雷函数、极大值函数、可变积分上限函数(我认为是最变态的)和双曲函数。
二、极限同样的,先厘清极限的定义了解数列极限的基本性质:极限的唯一性,收敛数列的有界性和保号性,收敛数列与子数列间的关系了解函数极限(区别于数列极限)的基本性质:极限的唯一性,局部有界性和局部保号性(这是和数列极限很大的不同)无穷小量和无穷大量极限的四则运算极限存在的判别方法:单调有界定律和夹迫定律(也有叫夹逼定理的,说的都是一个意思),这两个定律很常见,注意熟练使用三、函数的连续性四、导数与微分基本初等函数的导数公式都得背下来五、中值定理这部分很难(可能只是对我来说,我是个坏学生),也是常规考试的重点。
六、函数单调性与凹凸性这部分也是重点。
七、渐近线与曲率八、不定积分和微分一样,基本积分公式也得去记九、定积分重点理解定积分的定义和性质(再次强调)然后去记重要的定理、公式和关系十、无穷级数功能扩展很烦人,但是很重要。
大家可能都看过这些表情包。
十一、常微分方程与差分方程要记公式十二、空间解析几何与向量代数理解向量运算,后面的平面方程也就很容易理解了十三、多元函数微分学条件极值经常考十四、重积分这部分主要注意一点:从里层到外层展开的过程要细心,不然展开到最后发现错了又得重新开始十五、曲线积分与曲面积分我当年没考这个,没什么发言权。
高数上知识点总结(zǒngjié)高数上知识点总结(zǒngjié)高等数学(shùxué)是考研数学的重中之重,所占分值较大,需要复习的内容也比拟(bǐnǐ)多。
主要包括8方面(fāngmiàn)内容。
1、函数、极限与连续。
主要考查分段函数极限或极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比拟;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2、一元函数微分学。
主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法那么求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。
3、一元函数积分学。
主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4、向量代数和空间解析几何。
主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。
5、多元函数微分学。
主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
6、多元函数的积分学。
这局部是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7、无穷级数。
考研用到的高数基础知识高等数学是考研数学的重要部分,那些重点难点在下文中均有讲述,复习要掌握好一些基础知识. 考研必备高数基础知识在下文列出.第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)3、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解.2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)考研高数怎样学?考研数学考三个科目,分别为高等数学、线性代数、概率论与数理统计. 但是备考数学的考生们总喜欢从高数开始复习,这是为什么呢?原因有二:其一,高等数学在试卷中所占分值最高,达整张卷面分值的百分之五十六,而且难度也居三科之首. 其二,科目之间的先后联系导致先复习高数.线性代数和概率论与数理统计,尤其是概率论与数理统计是以高数为基础的学科,不学高数难以很明白的学习后继学科,大学数学在课程设置上也是按次顺序进行,可见其科学性.为了更好的了解考研高等数学这一科目,在复习它之前我们应该了解一下它的知识体系是很有必要的. 这样我们可以有一个全局观,能清晰的知道每一章节之间的联系和侧重点.高等数学从大的方面分为一元函数微积分和多元函数微积分.一元微积分中包括极限、导数、不定积分、定积分;多元函数微积分包括多元函数微分学(主要是二元函数)和多元函数积分学. 另外还有微分方程和级数,这两章内容可看成是微积分的应用.除此之外还有向量代数与空间解析几何. 其中数一单独考查的内容为向量代数与空间解析几何和多元函数积分学中的三重积分、曲线积分、曲面积分,另外是数一数二数三公共部分,公共部分中也有一些细微差别,下面我们分章去介绍.一、一元微积分1.极限极限是高等数学中非常重要的一章,此概念贯穿整个高等数学始末,导数、定积分、偏导数、多元函数积分、级数等概念都是用极限来定义的.正是有了极限的概念数学才从有限升华到无限,这也是高等数学与初等数学的分水岭. 在考研数学中极限也是每年必考的内容,直接考查的分值高达14-18分.2.倒数有了极限的概念,那么导数的概念就有了理论根基,导数是一元函数微分学的灵魂,在考研中这章是重点,每年必考,而且灵活性和综合性较强. 这一章可从导数微分概念、计算、应用、中值定理三方面学复习.3.不定时积分不定积分本质上是求导的逆运算,本章重点是计算,其重要性怎样描述都不为过. 因为积分是决定高数学习成败的一个关键章节,后继章节如定积分、二重积分、三重积分、曲线曲面积分、微分方程中都会用到.4.定积分定积分是微积分所说的积分,除了掌握基本概念,还要掌握其计算相关内容及定积分的应用,每年必考. 微分方程本质上还是不定积分的计算. 二、多元微积分多元函数的微积分体系上与一元类似,微分学包括基本概念(二重极限、偏导数、可微)、偏导数计算、偏导数应用.多元函数积分学包括二重积分、三重积分、曲线曲面积分,考试重点在计算,属于每年必考题目. 最后一章级数包括三部分常数项级数(主要考查敛散性判别),幂级数(主要考查展开与求和)、傅里叶级数(数一单独考查),本章也属必考内容.►高数该怎样学?虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢.由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸. 同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.考研数学怎样自学成功?(一)抓住主干,突破重点,注重综合虽然考研数学考查的知识点比较多,但是考查各个学科的内容层次却很清晰,想要在有限的时间内快速的掌握各学科知识,就必须要抓住主干知识,突出考试重点,注重知识点之间的联系和综合,做到有的放矢. 以高等数学为例,由于高等数学的主干知识是微分学和积分学,所以一元函数微积分和多元函数微积分就是我们考试考查的重点知识,在复习备考的过程中必须对该部分知识点做到熟练自如,了然于胸.同时极限作为微积分的理论基础,贯穿于整个高等数学知识体系中,因此极限的计算就显得尤为重要了. 最后研究生入学考试毕竟是为国家选拔人才而设置的,为了考查大家对知识的综合运用能力,知识点间的联系必须非常清楚,尤其是要掌握微分、积分与微分方程,无穷级数的内在联系,这样才能预测哪些知识可以结合起来来命制大题,做到心中有数.(二)注重联想记忆,筑起框架体系由于考试时间紧,复习任务重,知识点零散,很多知识都是会了但过了一段时间又忘了,想要做到长效记忆,就必须注重联想记忆,建立知识框架体系. 以线性代数为例,线性代数作为一门全新的学科,知识点分散,概念抽象,性质定理众多,如何快速的掌握所有考试要求的知识,这就需要我们先筑起知识框架,建立知识点间的联系,看到任何一个概念的时候都要多去发散,联想出跟它相关的所有知识点.比如当我们看到实对称矩阵的时候,我们就要想到实对称矩阵的三条重要性质:①实对称矩阵的特征值为实数,它主要应用于已知一个关于方阵A的矩阵方程去求矩阵A的特征值;②实对称矩阵不同特征值对应的特征向量相互正交,它在考试中应用的非常频繁,基本题目出现实对称矩阵八九不离十就是要利用这条性质;③实对称矩阵必能相似对角化,它主要用来判断一个矩阵是否可以相似对角化的问题. 只要这样重复的联想记忆,你就会对所有的知识点形成条件反射,运用起来才会毫无障碍.(三)突出核心考点,加强题型训练根据考研数学考试历年命题规律,有些知识点考查的相当频繁,甚至于每年都考,对于这样的知识点我们应该予以重视,作为我们最后冲刺阶段主攻的地方,通过加强该部分知识点大量题型训练,总结对应的解题技巧和方法,从而实现对该知识点的突破.以概率论与数理统计为例,二维连续型随机变量是历年考试的重点,因此与该知识点相关的所有题型都要掌握,相关题型主要有:①已知联合概率密度求边缘概率密度、条件概率密度,进而求随机变量的数字特征;②已知联合概率密度求二维随机变量落在区域D内的概率;③判断两个随机变量是否独立等,通过对相关题型的大量训练,总结解题套路,我们就能攻克该知识点.考研数学总体复习计划基础阶段基础阶段的主要任务是复习基础知识,掌握基本解题能力. 主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻. 复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点.【切忌】1.先做题再看书.2.做难题. 这一阶段不易做难题. 难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果.【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目. 做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题.2.在考研大纲出来之前,不要轻易放弃任何一个知识点. 在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补.3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点. 弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错.4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题. 所以不能仅仅停留在“看懂了”的层次上. 对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写. 这些基本功都很重要,到临场考试时就可以发挥作用了.PS:复习不下去的时候建议看看数学视频.【基础阶段复习教材】高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是当前高校中采用比较广泛的教材,配套的辅导教材也很多.线代:同济版,轻薄短小,简明易懂,适合基础不好的学生;清华版,适合基础比较好的学生.概率论与数理统计:浙大版,基本的题型课后习题都有覆盖.强化阶段强化阶段的主要任务是建立完整的知识体系,提高综合解题能力.强化阶段的复习是提高考试成绩的关键,但是,如果没有基础阶段的知识储备,强化阶段的复习是很难取得良好效果的. 所以小伙伴们一定要注意,数学复习是环环相扣、步步承接的. 【强化阶段复习资料】以数学复习全书和历年考研数学真题为主. 要把考研中的题型归类练习,熟练掌握每一类题型的解题方法.(一)强化训练第一轮以题型与常考知识模块复习为主,通过练习测试巩固所学知识.【学习方法】1.使用教材配套的复习指导或习题集,通过做题巩固知识,遇到不会或似懂非懂的题目不要直接看参考答案,应当先温习教材相关章节,弄懂基本知识.2.按要求完成练习测试后,要留有一些时间对教材的内容进行梳理,对重点、难点做好笔记,以便之后的复习. 对于典型性、灵活性、启发性和综合性的题目要特别注重理解思路和技巧的培养.3.试题虽千变万化,知识结构却基本相同,题型也相对固定. 归纳题型与常考知识模块以便提高解题的针对性,进而提高解题速度和准确性.(二)强化训练第二轮通过综合基础题及考研真题来查漏补缺,训练解题速度.【需要做到】1.加大对综合题和应用题解题能力的训练,力求在解题思路上有所突破. 在综合题的解答中,迅速找到解题的切入点是关键,为此需要熟悉规范的解题思路,以便能够对做过的题目进行归纳分类、延伸拓展.2.在复习备考时对所学知识进行重组,搞清有关知识的纵向和横向联系,转化为自己掌握的东西. 应用题的解题步骤是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其转化为某个数学问题求解.【注】基础阶段与强化阶段的终极目标是对考研数学内容建立一个知识网,熟练掌握考研各常见考试题型与解题方法.冲刺阶段强化阶段完成后,实际上考研数学的复习已经基本完成. 这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力. 因此抽时间要做真题、模拟题培养考试状态,进入冲刺阶段的复习.【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥. 这一阶段要做到:1.要记忆,不要脱离教材. 对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆.2.要总结、思考. 这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)3.要练习考研数学的套题. 坚持练套题到最后,手不能生. 最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题.【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态. 所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题.。
高等数学第八章知识点总结第八章是高等数学中的重要章节,主要涉及到数列和级数的概念和性质。
本文将对数列和级数的基本概念、极限、收敛性以及常见的数列和级数进行总结和归纳。
1. 数列的概念和性质数列是按照一定规律排列的一系列数的集合。
数列可以有界,也可以无界。
数列的性质包括有界性、单调性和有界单调性。
1.1 有界性:如果存在一个正数M,对于数列的每一项a_n,都有|a_n|≤M,那么称数列是有界的。
1.2 单调性:如果对于数列的每一项a_n,都有a_n≤a_(n+1)(或a_n≥a_(n+1)),那么称数列是递增的(或递减的)。
1.3 有界单调性:如果数列既是递增的又是有界的,那么称数列是有界递增的;如果数列既是递减的又是有界的,那么称数列是有界递减的。
2. 数列的极限数列的极限是数列中的数值趋于无穷时的极限值。
数列的极限可以是有限的,也可以是无限的。
2.1 数列的收敛性:如果存在一个实数a,对于任意给定的正数ε,都存在正整数N,使得当n>N时,有|a_n-a|<ε,那么称数列{a_n}收敛于a。
反之,如果不存在这样的实数a,则称数列{a_n}发散。
2.2 数列的极限存在唯一性:如果数列{a_n}收敛于a,并且又收敛于b,那么a=b。
3. 数列的运算数列的运算包括数列的加法、数列的乘法和数列的数乘。
3.1 数列的加法:若{a_n}和{b_n}是两个数列,定义数列{c_n} = {a_n + b_n},则称{c_n}为{a_n}和{b_n}的和。
3.2 数列的乘法:若{a_n}和{b_n}是两个数列,定义数列{c_n} = {a_n * b_n},则称{c_n}为{a_n}和{b_n}的乘积。
3.3 数列的数乘:若{a_n}是一个数列,k是一个实数,定义数列{b_n} = {k * a_n},则称{b_n}为{a_n}的数乘。
4. 级数的概念和性质级数是数列的和,级数的性质包括收敛性、发散性和级数的收敛域。
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
考研数学的学科知识点总结一、高等数学1.极限与连续(1)函数极限的定义及其性质(2)无穷大量与无穷小量(3)函数的连续性(4)洛必达法则2.微分学(1)导数的概念及性质(2)高阶导数及其应用(3)隐函数及参数方程的微分(4)微分中值定理及其应用3.积分学(1)不定积分的性质及计算方法(2)定积分的定义及性质(3)换元积分法(4)分部积分法(5)定积分的应用4.级数(1)级数的收敛性(2)常数项级数(3)幂级数(4)级数的性质5.微分方程(1)常微分方程的解法(2)一阶线性微分方程(3)高阶微分方程的解法(4)常系数齐次线性微分方程6.多元函数微积分(1)偏导数及其应用(2)多元函数的极值(3)多元函数的积分(4)梯度、散度和旋度二、线性代数1.向量空间(1)向量及其线性运算(2)向量组的线性相关性(3)向量空间及其性质2.矩阵及行列式(1)矩阵的概念及运算法则(2)矩阵的秩(3)行列式的概念及性质(4)行列式的应用3.线性方程组(1)线性方程组的解法(2)矩阵的秩与线性方程组的解的关系(3)特解和通解4.线性空间与线性变换(1)线性空间的定义及性质(2)线性变换的概念及性质(3)矩阵表示与特征值特征向量5.内积空间(1)内积的定义及其性质(2)正交性(3)正交矩阵(4)施密特正交化方法三、概率论与数理统计1.概率及其性质(1)事件与概率(2)概率的基本运算法则(3)条件概率与独立性(4)全概率公式与贝叶斯公式2.随机变量及其分布(1)随机变量的概念及其性质(2)离散型随机变量(3)连续型随机变量(4)常见分布的特征及应用3.数理统计(1)抽样及其样本统计量(2)点估计(3)区间估计(4)假设检验四、常微分方程1.一阶常微分方程(1)可分离变量的微分方程(2)一阶线性微分方程(3)恰当微分方程(4)常见微分方程的解法2.高阶常微分方程(1)有限阶、线性、常系数微分方程(2)拉普拉斯变换解法(3)常见高阶微分方程的解法(4)特解与通解五、离散数学1.命题逻辑(1)命题与命题的联结词(2)真值表及其等值演算(3)逻辑推理法则2.集合 theory(1)集合及其运算(2)集合的等价关系与划分(3)集合的运算律3.函数与关系(1)函数的概念及性质(2)函数的复合与反函数(3)关系及其性质4.图论(1)图的定义及运算(2)完全图和酷颠图(3)图的遍历与回路5.格 theory(1)格的定义及性质(2)分配格和布尔格(3)集合与乘积格以上是考研数学学科的知识点总结,希望对大家有所帮助!。
考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
高数八大基础知识点高数八大基础知识点数学也是一个重基础的学科,而高数在数学中的占比最大,考生一定要多方些精力研究。
下面小编给大家介绍高数八大基础知识点,赶紧来看看吧!高数八大基础知识点1.函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学重点考查导数与微分的`定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5.多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6.多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7.无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8.常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
考研高数高频知识点汇总一、函数极限连续1.正确理解函数的概念,函数的奇偶性、单调性、周期性和有界性,以及复合函数、逆函数和隐函数的概念。
2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。
掌握利用两个重要极限求极限的方法。
理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。
3.理解功能连续性的概念,判断功能不连续的类型。
了解初等函数的连续性和闭区间上连续函数的性质(最大值定理、最小值定理和中值定理),并能够应用这些性质。
重点是数列极限与函数极限的概念,两个重要的极限:lim(sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。
难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
2、单变量泛函微分1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
2.掌握导数的四种算法和一阶微分的形式不变性。
了解高阶导数的概念,能求简单函数的n阶导数和分段函数的一阶导数和二阶导数。
能够求隐函数和由参数方程确定的函数的一阶导数和二阶导数,以及反函数的导数。
3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
4.理解函数极值的概念,掌握最重要的函数——大值和极小值的计算方法和简单应用,能用导数判断函数的凹凸和拐点,能计算函数图的水平、垂直和斜渐近线。
5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
6.掌握利用Robita定律求不定形式极限的方法,重点讲解导数和微分的概念,平面曲线切线方程和法线方程的可微性和连续性之间的关系,一阶微分形式的不变性,分段函数的导数。
罗必塔法则函数的极值和最.大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。
难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。
3、单变量函数积分1、理解原函数和不定积分和定积分的概念。
第八讲:多元函数的微分学多元函数概念定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D )其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为u =f (x 1, x 2, ⋅ ⋅ ⋅ , x n ), (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域);函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.例如 z =ax +by +c 是一张平面, 而函数z =x 2+y 2的图形是旋转抛物面.多元函数的极限 定义2 若A y x f y x y x =→),(lim ),(),(00, 或f (x , y )→A ((x , y )→(x 0, y 0)), 则称常数A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限,上述定义的极限也称为二重极限.例:设22221sin)(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x .必须注意:(1)二重极限存在, 是指P 以任何方式趋于P 0时, 函数都无限接近于A .(2)如果当P 以两种不同方式趋于P 0时, 函数趋于不同的值, 则函数的极限不存在. 讨论:函数⎪⎩⎪⎨⎧=+≠++=000 ),(2222y x y x y x xy y x f 在点(0, 0)有无极限?提示: 当点P (x , y )沿x 轴趋于点(0, 0)时,00lim )0 ,(lim ),(lim 0)0,0(),(===→→→x x y x x f y x f ;当点P (x , y )沿y 轴趋于点(0, 0)时,00lim ) ,0(lim ),(lim 0)0,0(),(===→→→y y y x y f y x f .当点P (x , y )沿直线y =kx 有22222022 )0,0(),(1lim lim k k x k x kx y x xy x kxy y x +=+=+→=→.因此, 函数f (x , y )在(0, 0)处无极限.例:求x xy y x )sin(lim )2,0(),(→. 解: y xy xy x xy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim →→⋅==1⨯2=2.偏导数偏导数的定义及其计算对于二元函数z =f (x , y ), 如果只有自变量x 变化, 而自变量y 固定, 这时它就是x 的一元函数, 这函数对x 的导数, 就称为二元函数z =f (x , y )对于x 的偏导数.定义 设函数z =f (x , y )在点(x 0, y 0)的某一邻域内有定义, 当y 固定在y 0而x 在x 0处有增量∆x 时, 相应地函数有增量f (x 0+∆x , y 0)-f (x 0, y 0).如果极限xy x f y x x f x ∆-∆+→∆),(),(lim00000存在, 则称此极限为函数z =f (x , y )在点(x 0, y 0)处对x 的偏导数, 记作00y y x x x z==∂∂, 00y y x x x f ==∂∂, 00y y x x xz ==, 或),(00y x f x .例如xy x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000.类似地, 函数z =f (x , y )在点(x 0, y 0)处对y 的偏导数定义为yy x f y y x f y ∆-∆+→∆),(),(lim00000,记作y y x x y z ==∂∂, 00y y x x y f ==∂∂,0y y x x yz ==, 或f y (x 0, y 0).偏导函数: 如果函数z =f (x , y )在区域D 内每一点(x , y )处对x 的偏导数都存在, 那么这个偏导数就是x 、y 的函数, 它就称为函数z =f (x , y )对自变量x 的偏导函数, 记作x z ∂∂, xf ∂∂, x z , 或),(y x f x.偏导函数的定义式: x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim ),(0.类似地, 可定义函数z =f (x , y )对y 的偏导函数, 记为y z ∂∂, yf ∂∂, z y , 或),(y x f y . 偏导函数的定义式: yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0.求x f ∂∂时, 只要把y 暂时看作常量而对x 求导数; 求yf ∂∂时, 只要把x 暂时看作常量而对y 求导数.偏导数的概念还可推广到二元以上的函数. 例如三元函数u =f (x , y , z )在点(x , y , z )处对x 的偏导数定义为 xz y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim ),,(0,例1 求z =x 2+3xy +y 2在点(1, 2)处的偏导数. 解y x xz 32+=∂∂, y x y z 23+=∂∂. 8231221=⋅+⋅=∂∂==y x x z,7221321=⋅+⋅=∂∂==y x yz .例2 求z =x 2sin 2y 的偏导数.解y x xz 2sin 2=∂∂, y x y z 2cos 22=∂∂.例3 设)1,0(≠>=x x x z y , 求证: zyz x x z y x 2ln 1=∂∂+∂∂.证1-=∂∂y yx xz , x x y z y ln =∂∂.zx x x x xyx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-.例4 求222z y x r ++=的偏导数. 解 r x z y x x x r =++=∂∂222; ry z y x y y r =++=∂∂222.二元函数z =f (x , y )在点(x 0, y 0)的偏导数的几何意义:f x (x 0, y 0)=[f (x , y 0)]x '是截线z =f (x , y 0)在点M 0处切线T x 对x 轴的斜率. f y (x 0, y 0) =[f (x 0, y )]y '是截线z =f (x 0, y )在点M 0处切线T y 对y 轴的斜率.偏导数与连续性: 对于多元函数来说, 即使各偏导数在某点都存在, 也不能保证函数在该点连续. 例如⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f在点(0, 0)有, f x (0, 0)=0, f y (0, 0)=0, 但函数在点(0, 0)并不连续. 提示:0)0 ,(=x f , 0) ,0(=y f ; 0)]0 ,([)0 ,0(==x f dxd f x , 0)] ,0([)0 ,0(==y f dy d f y.当点P (x , y )沿x 轴趋于点(0, 0)时, 有00lim )0 ,(lim ),(lim)0,0(),(===→→→x x y x x f y x f ;当点P (x , y )沿直线y =kx 趋于点(0, 0)时, 有20 )0,0(),(1lim lim k k x k x kx y x xy x kxy y x +=+=+→=→.因此, ),(lim )0,0(),(y x f y x →不存在, 故函数f (x , y )在(0, 0)处不连续.类似地, 可定义函数z =f (x , y )对y 的偏导函数, 记为y z ∂∂, yf ∂∂, z y , 或),(y x f y . 偏导函数的定义式: yy x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(0.高阶偏导数设函数z =f (x , y )在区域D 内具有偏导数),(y x f x z x=∂∂, ),(y x f y z y =∂∂,那么在D 内f x (x , y )、f y (x , y )都是x , y 的函数. 如果这两个函数的偏导数也存在, 则称它们是函数z =f (x , y )的二偏导数. 按照对变量求导次序的为同有下列四个二阶偏导数 如果函数z =f (x , y )在区域D 内的偏导数f x (x , y )、f y (x , y )也具有偏导数, 则它们的偏导数称为函数z =f (x , y )的二阶偏导数. 按照对变量求导次序的 不同有下列四个二阶偏导数),()(22y x f x z x z x xx =∂∂=∂∂∂∂, ),()(2y x f y x z x z y xy=∂∂∂=∂∂∂∂,),()(2y x f x y z y z x yx =∂∂∂=∂∂∂∂, ),()(22y x f y z y z y yy =∂∂=∂∂∂∂.其中),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂, ),()(2y x f xy z y z x yx =∂∂∂=∂∂∂∂称为混合偏导数. 22)(x z x z x ∂∂=∂∂∂∂, y x z x z y ∂∂∂=∂∂∂∂2)(,x y z y z x ∂∂∂=∂∂∂∂2)(, 22)(y z y z y ∂∂=∂∂∂∂.同样可得三阶、四阶、以及n 阶偏导数. 二阶及二阶以上的偏导数统称为高阶偏导数.例6 设z =x 3y 2-3xy 3-xy +1, 求22x z ∂∂、33xz ∂∂、x y z ∂∂∂2和y x z ∂∂∂2.解y y y x xz --=∂∂32233, x xy y x y z --=∂∂2392;2226xy x z =∂∂, 2336y x z =∂∂;196222--=∂∂∂y y x y x z , 196222--=∂∂∂y y x xy z .由例6观察到的问题:yx z x y z ∂∂∂=∂∂∂22 定理: 如果函数z =f (x , y )的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续, 那么在该区域内这两个二阶混合偏导数必相等.类似地可定义二元以上函数的高阶偏导数.例7 验证函数22ln y x z +=满足方程02222=∂∂+∂∂yz x z . 证 因为)ln(21ln 2222y x y x z +=+=, 所以y x x x z +=∂∂, 22y x y y z +=∂∂, 222222222222)()(2)(y x x y y x x x y x x z +-=+⋅-+=∂∂,222222222222)()(2)(y x y x y x y y y x y z +-=+⋅-+=∂∂. 因此 0)()(22222222222222=+-++-=∂∂+∂∂y x x y y x y x y z x z . 例8.证明函数r u 1=满足方程0222222=∂∂+∂∂+∂∂z u y u x u , 其中222z y x r ++=.证:32211r x r x r x r r x u -=⋅-=∂∂⋅-=∂∂,52343223131r x r x r r x r x u +-=∂∂⋅+-=∂∂.同理 5232231ry r y u +-=∂∂, 5232231r z r z u +-=∂∂. 因此)31()31()31(523523523222222r z r r y r r x r z u y u x u +-++-++-=∂∂+∂∂+∂∂033)(3352352223=+-=+++-=r r r r z y x r . 提示: 233323)()(rx r r x r r r x x r r x x x u ∂∂⋅--=∂∂⋅--=-∂∂=∂∂.全微分根据一元函数微分学中增量与微分的关系, 有 偏增量与偏微分:f (x +∆x , y )-f (x , y )≈f x (x , y )∆x ,f (x +∆x , y )-f (x , y )为函数对x 的偏增量, f x (x , y )∆x 为函数对x 的偏微分; f (x , y +∆y )-f (x , y )≈f y (x , y )∆y ,f (x , y +∆y )-f (x , y )为函数)对y 的偏增量, f y (x , y )∆y 为函数对y 的偏微分. 全增量: ∆z = f (x +∆x , y +∆y )-f (x , y ).计算全增量比较复杂, 我们希望用∆x 、∆y 的线性函数来近似代替之. 定义 如果函数z =f (x , y )在点(x , y )的全增量 ∆z = f (x +∆x , y +∆y )-f (x , y ) 可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ,其中A 、B 不依赖于∆x 、∆y 而仅与x 、y 有关, 则称函数z =f (x , y )在点(x , y )可微分, 而称A ∆x +B ∆y 为函数z =f (x , y )在点(x , y )的全微分, 记作dz , 即 dz =A ∆x +B ∆y .如果函数在区域D 内各点处都可微分, 那么称这函数在D 内可微分. 可微与连续: 可微必连续, 但偏导数存在不一定连续. 这是因为, 如果z =f (x , y )在点(x , y )可微, 则 ∆z = f (x +∆x , y +∆y )-f (x , y )=A ∆x +B ∆y +o (ρ), 于是 0lim 0=∆→z ρ,从而),(]),([lim ),(lim 0)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ.因此函数z =f (x , y )在点(x , y )处连续.可微条件:定理1(必要条件)如果函数z =f (x , y )在点(x , y )可微分, 则函数在该点的偏导数x z ∂∂、yz ∂∂必定存在, 且函数z =f (x , y )在点(x , y )的全微分为 y yz x x z dz ∆∂∂+∆∂∂=.例如,函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点(0, 0)处虽然有f x (0, 0)=0及f y (0, 0)=0, 但函数在(0, 0)不可微分, 即∆z -[f x (0, 0)∆x +f y (0, 0)∆y ]不是较ρ高阶的无穷小. 这是因为当(∆x , ∆y )沿直线y =x 趋于(0, 0)时, ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x yx .定理2(充分条件) 如果函数z =f (x , y )的偏导数x z ∂∂、yz ∂∂在点(x , y )连续, 则函数在该点可微分.例1 计算函数z =x 2y +y 2的全微分. 解 因为xy xz 2=∂∂, y x y z 22+=∂∂,所以dz =2xydx +(x 2+2y )dy .例2 计算函数z =e xy 在点(2, 1)处的全微分. 解 因为xy ye xz =∂∂, xy xe y z =∂∂,212e x z y x =∂∂==, 2122e y z y x =∂∂==, 所以 dz =e 2dx +2e 2dy . 例3 计算函数yze y x u ++=2sin 的全微分. 解 因为1=∂∂xu , yz ze y y u +=∂∂2cos 21, yz ye z u =∂∂,所以 dz ye dy ze y dx du yz yz +++=)2cos 21(.多元复合函数的求导法则设z =f (u , v ), 而u =ϕ(t ), v =ψ(t ), 如何求dtdz ? 设z =f (u , v ), 而u =ϕ(x , y ), v =ψ(x , y ), 如何求x z ∂∂和yz ∂∂?1. 复合函数的中间变量均为一元函数的情形定理1 如果函数u =ϕ(t )及v =ψ(t )都在点t 可导, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [ϕ(t ), ψ(t )]在点t 可导, 且有dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=. 简要证明: 因为z =f (u , v )具有连续的偏导数, 所以它是可微的, 即有 dv vz du u z dz ∂∂+∂∂=. 又因为u =ϕ(t )及v =ψ(t )都可导, 因而可微, 即有 dt dt du du =, dt dtdv dv =, 代入上式得dt dt dv v z dt dt du u z dz ⋅∂∂+⋅∂∂=dt dt dv v z dt du u z )(⋅∂∂+⋅∂∂=, 从而dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.推广: 设z =f (u , v , w ), u =ϕ(t), v =ψ(t ), w =ω(t ), 则z =f [ϕ(t), ψ(t ), ω(t )]对t 的导数为:dtdw w z dt dv v z dt du u z dt dz ∂∂+∂∂+∂∂=. 上述dtdz 称为全导数.2. 复合函数的中间变量均为多元函数的情形定理2 如果函数u =ϕ(x , y ), v =ψ(x , y )都在点(x , y )具有对x 及y 的偏导数, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [ϕ(x , y ), ψ(x , y )]在点(x , y )的两个偏导数存在, 且有x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 推广: 设z =f (u , v , w ), u =ϕ(x , y ), v =ψ(x , y ), w =ω(x , y ), 则x w w z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂, yw w z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂. 讨论:(1)设z =f (u , v ), u =ϕ(x , y ), v =ψ(y ), 则=∂∂xz ?=∂∂y z ?提示:x u u z x z ∂∂⋅∂∂=∂∂, dydv v z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂.(2)设z =f (u , x , y ), 且u =ϕ(x , y ), 则=∂∂xz ?=∂∂y z ?提示:x f x u u f x z ∂∂+∂∂∂∂=∂∂, yf y u u f y z ∂∂+∂∂∂∂=∂∂.这里x z ∂∂与x f ∂∂是不同的, x z ∂∂是把复合函数z =f [ϕ(x , y ), x , y ]中的y 看作不变而对x 的偏导数, xf ∂∂是把f (u , x , y )中的u 及y 看作不变而 对x 的偏导数. y z ∂∂与y f ∂∂也朋类似的区别.3.复合函数的中间变量既有一元函数, 又有多元函数的情形定理3 如果函数u =ϕ(x , y )在点(x , y )具有对x 及对y 的偏导数, 函数v =ψ(y )在点y 可导, 函数z =f (u , v )在对应点(u , v )具有连续偏导数, 则复合函数z =f [ϕ(x , y ), ψ(y )]在点(x , y )的两个偏导数存在, 且有 x u u z x z ∂∂⋅∂∂=∂∂, dydv v z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂.例1 设z =e u sin v , u =xy , v =x +y , 求x z ∂∂和yz ∂∂. 解xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ =e u sin v ⋅y +e u cos v ⋅1 =e x y [y sin(x +y )+cos(x +y )],yvv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=e u sin v ⋅x +e u cos v ⋅1 =e xy [x sin(x +y )+cos(x +y )]. 例2 设222),,(z y x e z y x f u ++==, 而y x z sin 2=. 求x u ∂∂和yu ∂∂. 解xzz f x f x u ∂∂⋅∂∂+∂∂=∂∂y x ze xe z y xz y xsin 222222222⋅+=++++yx y x e y x x 2422sin 22)sin 21(2++++=.yz z f y f y u ∂∂⋅∂∂+∂∂=∂∂ y x ze ye z y xz y xcos 222222222⋅+=++++y x y xe y y x y 2422sin 4)cos sin (2+++=.例3 设z =uv +sin t , 而u =e t , v =cos t . 求全导数dtdz . 解tz dt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂= =v ⋅e t +u ⋅(-sin t )+cos t =e t cos t -e t sin t +cos t =e t (cos t -sin t )+cos t .例4 设w =f (x +y +z , xyz ), f 具有二阶连续偏导数, 求x w ∂∂及zx w ∂∂∂2. 解 令u =x +y +z , v =xyz , 则w =f (u , v ).引入记号: u v u f f ∂∂='),(1, vu v u f f ∂∂∂='),(12; 同理有2f ',11f '',22f ''等. 21f yz f x v v f x u u f x w '+'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂, zf yz f y z f f yz f z z x w ∂'∂+'+∂'∂='+'∂∂=∂∂∂221212)( 2222121211f z xy f yz f y f xy f ''+''+'+''+''= 22221211)(f z xy f y f z x y f ''+'+''++''=. 注:1211111f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂, 2221222f xy f zv v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂. 例5 设u =f (x , y )的所有二阶偏导数连续, 把下列表达式转换成极坐标系中的形式:(1)22)()(y u x u ∂∂+∂∂; (2)2222yu x u ∂∂+∂∂.解 由直角坐标与极坐标间的关系式得 u =f (x , y )=f (ρcos θ, ρsin θ)=F (ρ, θ), 其中x =ρcos θ, y =ρsin θ,22y x +=ρ, xyarctan=θ. 应用复合函数求导法则, 得x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρy u x u ∂∂-∂∂=ρθθθρsin cos y u u ∂∂-∂∂=,y u y u y u ∂∂∂∂+∂∂∂∂=∂∂θθρρρx u y u ∂∂+∂∂=ρθθθρcos sin ∂∂+∂∂=u u .两式平方后相加, 得 22222)(1)()()(θρρ∂∂+∂∂=∂∂+∂∂u u y u x u .再求二阶偏导数, 得xx u x x u x u ∂∂⋅∂∂∂∂+∂∂⋅∂∂∂∂=∂∂θθρρ)()(22θρθθθρρcos )sin cos (⋅∂∂-∂∂∂∂=u u ρθρθθθρθsin )sin cos (⋅∂∂-∂∂∂∂-u u 22222222sin cos sin 2cos ρθθρθθθρθρ∂∂+∂∂∂-∂∂=u u uρθρρθθθ22sin cos sin 2∂∂+∂∂+u u .同理可得2222222222cos cos sin 2sin ρθθρθθθρθρ∂∂+∂∂∂+∂∂=∂∂u u u y uρθρρθθθ22cos cos sin 2∂∂+∂∂-u u .两式相加, 得22222222211θρρρρ∂∂++∂∂=∂∂+∂∂u u y u x u])([1222θρρρρρ∂∂+∂∂∂∂=u u .全微分形式不变性: 设z =f (u , v )具有连续偏导数, 则有全微分 dv vz du u z dz ∂∂+∂∂=. 如果z =f (u , v )具有连续偏导数, 而u =ϕ(x , y ), v =ψ(x , y )也具有连续偏导数, 则dyyz dx x z dz ∂∂+∂∂=dyyv v z y u u z dx x v v z x u u z )()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=)()(dy yv dx x v v z dy y u dx x u u z ∂∂+∂∂∂∂+∂∂+∂∂∂∂=dv vz du u z ∂∂+∂∂=. 由此可见, 无论z 是自变量u 、v 的函数或中间变量u 、v 的函数, 它的全微分形式是一样的. 这个性质叫做全微分形式不变性.例6 设z =e u sin v , u =x y , v =x +y , 利用全微分形式不变性求全微分. 解 dv vz du u z dz ∂∂+∂∂== e u sin vdu + e u cos v dv = e u sin v (y dx +x dy )+ e u cos v (dx +dy )=( ye u sin v + e u cos v )dx +(xe u sin v + e u cos v )dy=e xy [y sin(x +y )+cos(x +y )]dx + e xy [x sin(x +y )+cos(x +y )]dy .隐函数的求偏导一、一个方程的情形 隐函数存在定理1设函数F (x , y )在点P (x 0, y 0)的某一邻域内具有连续偏导数, F (x 0, y 0)=0, F y (x 0, y 0)≠0, 则方程F (x , y )=0在点(x 0, y 0)的某一邻域内恒能唯一确定一个连续且具有连续导数的函数y =f (x ), 它满足条件y 0=f (x 0), 并有yx F F dx dy-=.例1 验证方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ), 并求这函数的一阶与二阶导数在x =0的值.解 设F (x , y )=x 2+y 2-1, 则F x =2x , F y =2y , F (0, 1)=0, F y (0, 1)=2≠0. 因此由定理1可知, 方程x 2+y 2-1=0在点(0, 1)的某一邻域内能唯一确定一个有连续导数、当x =0时y =1的隐函数y =f (x ).y x F F dx dyy x -=-=, 00==x dx dy ;332222221)(yy x y y y x x y y y x y dx y d -=+-=---='--=,1022-==x dx yd . 隐函数存在定理还可以推广到多元函数. 一个二元方程F (x , y )=0可以确定一个一元隐函数, 一个三元方程F (x , y , z )=0可以确定一个二元隐函数.隐函数存在定理2设函数F (x , y , z )在点P (x 0, y 0, z 0)的某一邻域内具有连续的偏导数, 且F (x 0, y 0, z 0)=0, F z (x 0, y 0, z 0)≠0 , 则方程F (x , y , z )=0在点(x 0, y 0, z 0)的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数z =f (x , y ), 它满足条件z 0=f (x 0, y 0), 并有 z x F F x z -=∂∂, zy F F y z -=∂∂.例2. 设x 2+y 2+z 2-4z =0, 求22xz∂∂.解 设F (x , y , z )= x 2+y 2+z 2-4z , 则F x =2x , F y =2z -4,zx z x F F x z z x -=--=-=∂∂2422, 3222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂.多元函数微分学的几何应用(数一数二) 一、空间曲线的切线与法平面 设空间曲线Γ的参数方程为 x =ϕ(t ), y =ψ(t ), z =ω(t ) 这里假定ϕ(t ), ψ(t ), ω(t )都在[α, β]上可导.在曲线Γ上取对应于t =t 0的一点M 0(x 0, y 0, z 0)及对应于t =t 0+∆t 的邻近一点M (x 0+∆x , y 0+∆y , z 0+∆z ). 作曲线的割线MM 0, 其方程为zz z y y y x x x ∆-=∆-=∆-000, 当点M 沿着Γ趋于点M 0时割线MM 0的极限位置就是曲线在点M 0处的切线. 考虑t z z z ty y y t x x x ∆∆-=∆∆-=∆∆-000, 当M →M 0, 即∆t →0时, 得曲线在点M 0处的切线方程为)()()(000000t z z t y y t x x ωψϕ'-='-='-. 曲线的切向量: 切线的方向向量称为曲线的切向量. 向量 T =(ϕ'(t 0), ψ'(t 0), ω'(t 0)) 就是曲线Γ在点M 0处的一个切向量.法平面: 通过点M 0而与切线垂直的平面称为曲线Γ在点M 0 处的法平面, 其法平面方程为ϕ'(t 0)(x -x 0)+ψ'(t 0)(y -y 0)+ω'(t 0)(z -z 0)=0.例1 求曲线x =t , y =t 2, z =t 3在点(1, 1, 1)处的切线及法平面方程. 解 因为x t '=1, y t '=2t , z t '=3t 2, 而点(1, 1, 1)所对应的参数t =1, 所以 T =(1, 2, 3). 于是, 切线方程为 312111-=-=-z y x ,法平面方程为(x -1)+2(y -1)+3(z -1)=0, 即x +2y +3z =6.讨论:1. 若曲线Γ的方程为 y =ϕ(x ), z =ψ(x ). 问其切线和法平面方程是什么形式?提示: 曲线方程可看作参数方程: x =x , y =ϕ(x ), z =ψ(x ), 切向量为T =(1, ϕ'(x ), ψ'(x )). 2. 若曲线Γ的方程为F (x , y , z )=0,G (x , y , z )=0. 问其切线和法平面方程又是什么形式?提示: 两方程确定了两个隐函数: y =ϕ(x ), z =ψ(x ), 曲线的参数方程为 x =x , y =ϕ(x ), z =ψ(x ),由方程组⎪⎩⎪⎨⎧=++=++00dx dz G dx dy G G dx dz F dx dy F F z y x z y x 可解得dx dy 和dx dz.切向量为) ,,1(dxdz dx dy =T . 例2 求曲线x 2+y 2+z 2=6, x +y +z =0在点(1, -2, 1)处的切线及法平面方程. 解 为求切向量, 将所给方程的两边对x 求导数, 得⎪⎩⎪⎨⎧=++=++010222dxdz dx dydx dz z dx dy y x , 解方程组得z y x z dx dy --=, zy y x dx dz --=. 在点(1, -2, 1)处,0=dx dy, 1-=dxdz . 从而T =(1, 0, -1). 所求切线方程为 110211--=+=-z y x ,法平面方程为(x -1)+0⋅(y +2)-(z -1)=0, 即x -z =0. 解 为求切向量, 将所给方程的两边对x 求导数, 得⎪⎩⎪⎨⎧=++=++010222dxdz dx dydx dz z dx dy y x . 方程组在点(1, -2, 1)处化为⎪⎩⎪⎨⎧-=+=-112dxdz dx dy dx dz dx dy ,解方程组得0=dx dy, 1-=dxdz . 从而T =(1, 0, -1). 所求切线方程为 110211--=+=-z y x ,法平面方程为(x -1)+0⋅(y +2)-(z -1)=0, 即x -z =0.二. 曲面的切平面与法线 设曲面∑的方程为 F (x , y , z )=0,M 0(x 0, y 0, z 0)是曲面∑上的一点, 并设函数F (x , y , z )的偏导数在该点连续且不同时为零. 在曲面∑上, 通过点M 0任意引一条曲线Γ, 假定曲线Γ的参数方程式为 x =ϕ(t ), y =ψ(t ), z =ω(t ) ,t =t 0对应于点M 0(x 0, y 0, z 0), 且ϕ'(t 0), ψ'(t 0), ω'(t 0)不全为零. 曲线在点的切向量为 T =(ϕ'(t 0), ψ'(t 0), ω'(t 0)). 考虑曲面方程F (x , y , z )=0两端在t =t 0的全导数:F x (x 0, y 0, z 0)ϕ'(t 0)+F y (x 0, y 0, z 0)ψ'(t 0)+F z (x 0, y 0, z 0)ω'(t 0)=0. 引入向量n =(F x (x 0, y 0, z 0), F y (x 0, y 0, z 0), F z (x 0, y 0, z 0)),易见T 与n 是垂直的. 因为曲线Γ是曲面∑上通过点M 0的任意一条曲线, 它们在点M 0的切线都与同一向量n 垂直, 所以曲面上通过点M 0的一切曲线在点M 0的切线都在同一个平面上. 这个平面称为曲面∑在点M 0的切平面. 这切平面的方程式是F x (x 0, y 0, z 0)(x -x 0)+F y (x 0, y 0, z 0)(y -y 0)+F z (x 0, y 0, z 0)(z -z 0)=0.曲面的法线: 通过点M 0(x 0, y 0, z 0)而垂直于切平面的直线称为曲面在该点的法线. 法线方程为), ,() , ,() , ,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-. 曲面的法向量: 垂直于曲面上切平面的向量称为曲面的法向量. 向量 n =(F x (x 0, y 0, z 0), F y (x 0, y 0, z 0), F z (x 0, y 0, z 0)) 就是曲面∑在点M 0处的一个法向量.例3 求球面x 2+y 2+z 2=14在点(1, 2, 3)处的切平面及法线方程式. 解 F (x , y , z )= x 2+y 2+z 2-14, F x =2x , F y =2y , F z =2z ,F x (1, 2, 3)=2, F y (1, 2, 3)=4, F z (1, 2, 3)=6. 法向量为n =(2, 4, 6), 或n =(1, 2, 3). 所求切平面方程为2(x -1)+4(y -2)+6(z -3)=0, 即x +2y +3z -14=0. 法线方程为332211-=-=-z y x .讨论: 若曲面方程为z =f (x , y ) , 问曲面的切平面及法线方程式是什么形式? 提示: 此时F (x , y , z )=f (x , y )-z . n =(f x (x 0, y 0), f y (x 0, y 0), -1) 例4 求旋转抛物面z =x 2+y 2-1在点(2, 1, 4)处的切平面及法线方程. 解 f (x , y )=x 2+y 2-1,n =(f x , f y , -1)=(2x , 2y , -1), n |(2, 1, 4)=(4, 2, -1). 所以在点(2, 1, 4)处的切平面方程为4(x -2)+2(y -1)-(z -4)=0, 即4x +2y -z -6=0. 法线方程为 142142--=-=-z y x .方向导数与梯度(数一数二) 一、方向导数定理 如果函数z =f (x , y )在点P 0(x 0, y 0)可微分, 那么函数在该点沿任一方向l 的方向导数都存在, 且有),(00y x lf∂∂βαcos ),(cos ),(0000y x f y x f y x +=,其中cos α, cos β是方向l 的方向余弦.例1 求函数z =xe 2y 在点P (1, 0)沿从点P (1, 0)到点Q (2, -1)的方向的方向导数. 解 这里方向l 即向量→)1 ,1(-=PQ 的方向, 与l 同向的单位向量为)21 ,21(-=l e .因为函数可微分, 且1)0,1(2)0,1(==∂∂ye xz, 22)0,1(2)0,1(==∂∂yxe yz ,所以所求方向导数为22)21(2211)0,1(-=-⋅+⋅=∂∂l z .对于三元函数f (x , y , z )来说, 它在空间一点P 0(x 0, y 0, z 0)沿e l =(cos α , cos β , cos γ)的方向导数为),,(000z y x lf ∂∂tz y x f t z t y t x f t ),,()cos ,cos ,cos (lim 0000000-+++=+→γβα.如果函数f (x , y , z )在点(x 0, y 0, z 0)可微分, 则函数在该点沿着方向e l =(cos α , cos β , cos γ)的方向导数为),,(000z y x lf ∂∂=f x (x 0, y 0, z 0)cos α+f y (x 0, y 0, z 0)cos β+f z (x 0, y 0, z 0)cos γ.例2求f (x , y , z )=xy +yz +zx 在点(1, 1, 2)沿方向l 的方向导数, 其中l 的方向角分别为60︒, 45︒, 60︒.解 与l 同向的单位向量为e l =(cos60︒, cos 45︒, cos60︒))21 ,22 ,21(=. 因为函数可微分, 且f x (1, 1, 2)=(y +z )|(1, 1, 2)=3, f y (1, 1, 2)=(x +z )|(1, 1, 2)=3, f z (1, 1, 2)=(y +x )|(1, 1, 2)=2, 所以 )235(21212223213)2,1,1(+=⋅+⋅+⋅=∂∂lf .二. 梯度设函数z =f (x , y )在平面区域D 内具有一阶连续偏导数, 则对于每一点P 0(x 0, y 0)∈D , 都可确定一个向量f x (x 0, y 0)i +f y (x 0, y 0)j ,这向量称为函数f (x , y )在点P 0(x 0, y 0)的梯度, 记作grad f (x 0, y 0), 即 grad f (x 0, y 0)= f x (x 0, y 0)i +f y (x 0, y 0)j . 梯度与方向导数:如果函数f (x , y )在点P 0(x 0, y 0)可微分, e l =(cos α , cos β )是与方向l 同方向的单位向量, 则),(00y x lf∂∂βαcos ),(cos ),(0000y x f y x f y x +=,= grad f (x 0, y 0)⋅e l=| grad f (x 0, y 0)|⋅cos(grad f (x 0, y 0),^ e l ).这一关系式表明了函数在一点的梯度与函数在这点的方向导数间的关系. 特别, 当向量e l 与grad f (x 0, y 0)的夹角θ=0, 即沿梯度方向时, 方向导数),(00y x lf ∂∂取得最大值, 这个最大值就是梯度的模|grad f (x 0, y 0)|. 这就是说: 函数在一点的梯度是个向量, 它的方向是函数在这点的方向导数取得最大值的方向, 它的模就等于方向导数的最大值. 讨论:lf∂∂的最大值; 结论: 函数在某点的梯度是这样一个向量, 它的方向与取得最大方向导数的方向一致, 而它的模为方向导数的最大值.我们知道, 一般说来二元函数z =f (x , y )在几何上表示一个曲面, 这曲面被平面z =c (c 是常数)所截得的曲线L 的方程为 ⎩⎨⎧==cz y x f z ),(. 这条曲线L 在xOy 面上的投影是一条平面曲线L *, 它在xOy 平面上的方程为 f (x , y )=c .对于曲线L *上的一切点, 已给函数的函数值都是c , 所以我们称平面曲线L *为函数z =f (x , y )的等值线.若f x , f y 不同时为零, 则等值线f (x , y )=c 上任一点P 0(x 0, y 0)处的一个单位法向量为 )),(),,((),(),(10000002002y x f y x f y x f y x f y x y x +=n .这表明梯度grad f (x 0, y 0)的方向与等值线上这点的一个法线方向相同, 而沿这个方向的方向导数nf∂∂就等于|grad f (x 0, y 0)|, 于是 n nfy x f ∂∂=),(00grad .这一关系式表明了函数在一点的梯度与过这点的等值线、方向导数间的关系. 这说是说: 函数在一点的梯度方向与等值线在这点的一个法线方向相同, 它的指向为从数值较低的等值线指向数值较高的等值线, 梯度的模就等于函数在这个法线方向的方向导数.梯度概念可以推广到三元函数的情形. 设函数f (x , y , z )在空间区域G 内具有一阶连续偏导数, 则对于每一点P 0(x 0, y 0, z 0)∈G , 都可定出一个向量 f x (x 0, y 0, z 0)i +f y (x 0, y 0, z 0)j +f z (x 0, y 0, z 0)k ,这向量称为函数f (x , y , z )在点P 0(x 0, y 0, z 0)的梯度, 记为grad f (x 0, y 0, z 0), 即 grad f (x 0, y 0, z 0)=f x (x 0, y 0, z 0)i +f y (x 0, y 0, z 0)j +f z (x 0, y 0, z 0)k .例3 求221y x +grad . 解 这里221),(y x y x f +=.因为222)(2y x x x f +-=∂∂, 222)(2y x y y f +-=∂∂, 所以 221y x +grad j i 222222)(2)(2y x y y x x +-+-=.例4 设f (x , y , z )=x 2+y 2+z 2, 求grad f (1, -1, 2). 解 grad f =(f x , f y , f z )=(2x , 2y , 2z ), 于是 grad f (1, -1, 2)=(2, -2, 4).多元函数的极值及其求法 无条件极值定理1(必要条件) 设函数z =f (x , y )在点(x 0, y 0)具有偏导数, 且在点(x 0, y 0)处有极值, 则有f x (x 0, y 0)=0, f y (x 0, y 0)=0.定理2(充分条件) 设函数z =f (x , y )在点(x 0, y 0)的某邻域内连续且有一阶及二阶连续偏导数, 又f x (x 0, y 0)=0, f y (x 0, y 0)=0, 令f xx (x 0, y 0)=A , f xy (x 0, y 0)=B , f yy (x 0, y 0)=C ,则f (x , y )在(x 0, y 0)处是否取得极值的条件如下:(1) AC -B 2>0时具有极值, 且当A <0时有极大值, 当A >0时有极小值; (2) AC -B 2<0时没有极值;(3) AC -B 2=0时可能有极值, 也可能没有极值.在函数f (x , y )的驻点处如果 f xx ⋅ f yy -f xy 2>0, 则函数具有极值, 且当f xx <0时有极大值, 当f xx >0时有极小值.极值的求法: 第一步 解方程组f x (x , y )=0, f y (x , y )=0,求得一切实数解, 即可得一切驻点.第二步 对于每一个驻点(x 0, y 0), 求出二阶偏导数的值A 、B 和C .第三步 定出AC -B 2的符号, 按定理2的结论判定f (x 0, y 0)是否是极值、是极大值 还是极小值.例: 求函数f (x , y )=x 3-y 3+3x 2+3y 2-9x 的极值.解 解方程组⎩⎨⎧=+-==-+=063),(0963),(22y y y x f x x y x f y x , 求得x =1, -3; y =0, 2. 于是得驻点为(1, 0)、(1, 2)、(-3, 0)、(-3, 2). 再求出二阶偏导数f xx (x , y )=6x +6, f xy (x , y )=0, f yy (x , y )=-6y +6.在点(1, 0)处, AC -B 2=12⋅6>0, 又A >0, 所以函数在(1, 0)处有极小值f (1, 0)=-5; 在点(1, 2)处, AC -B 2=12⋅(-6)<0, 所以f (1, 2)不是极值; 在点(-3, 0)处, AC -B 2=-12⋅6<0, 所以f (-3, 0)不是极值;在点(-3, 2)处, AC -B 2=-12⋅(-6)>0, 又A <0, 所以函数的(-3, 2)处有极大值f (-3, 2)=31. 应注意的问题:不是驻点也可能是极值点,例如,函数22y x z +-=在点(0, 0)处有极大值, 但(0, 0)不是函数的驻点. 因此, 在考虑函数的极值问题时, 除了考虑函数的驻点外, 如果有偏导数不存在的点, 那么对这些点也应当考虑.例5 某厂要用铁板做成一个体积为8m 3的有盖长方体水箱. 问当长、宽、高各取多少时, 才能使用料最省.解 设水箱的长为x m , 宽为y m , 则其高应为xy8m . 此水箱所用材料的面积为 )0 ,0( )88(2)88(2>>++=⋅+⋅+=y x yx xy xy x xy y xy A . 令0)8(22=-=x y A x , 0)8(22=-=y x A y , 得x =2, y =2. 根据题意可知, 水箱所用材料面积的最小值一定存在, 并在开区域D ={(x , y )|x >0, y >0}内取得. 因为函数A 在D 内只有一个驻点, 所以 此驻点一定是A 的最小值点, 即当水箱的长为2m 、宽为2m 、高为2228=⋅m 时, 水箱所用的材料最省.因此A 在D 内的唯一驻点(2, 2)处取得最小值,即长为2m 、宽为2m 、高为2228=⋅m 时, 所用材料最省.条件极值 拉格朗日乘数法对自变量有附加条件的极值称为条件极值. 例如, 求表面积为a 2而体积为最大的长方体的体积问题. 设长方体的三棱的长为x , y , z , 则体积V =xyz . 又因假定表面积为a 2, 所以自变量x , y , z 还必须满足附加条件2(xy +yz +xz )=a 2.这个问题就是求函数V =xyz 在条件2(xy +yz +xz )=a 2下的最大值问题, 这是一个条件极值问题.对于有些实际问题, 可以把条件极值问题化为无条件极值问题.例如上述问题,由条件2)(2a xz yz xy =++, 解得)(222y x xy a z +-=, 于是得 V ))(2(22y x xy a xy +-=. 只需求V 的无条件极值问题.在很多情形下, 将条件极值化为无条件极值并不容易. 需要另一种求条件极值的专用方法, 这就是拉格朗日乘数法.现在我们来寻求函数z =f (x , y )在条件ϕ(x , y )=0下取得极值的必要条件.如果函数z =f (x , y )在(x 0, y 0)取得所求的极值, 那么有ϕ(x 0, y 0)=0.假定在(x 0, y 0)的某一邻域内f (x , y )与ϕ(x , y )均有连续的一阶偏导数, 而ϕy (x 0, y 0)≠0. 由隐函数存在定理, 由方程ϕ(x , y )=0确定一个连续且具有连续导数的函数y =ψ(x ), 将其代入目标函数z =f (x , y ), 得一元函数z =f [x , ψ(x )].于是x =x 0是一元函数z =f [x , ψ(x )]的极值点, 由取得极值的必要条件, 有0),(),(000000=+===x x y x x x dx dyy x f y x f dx dz,即 0),(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ. 从而函数z =f (x , y )在条件ϕ(x , y )=0下在(x 0, y 0)取得极值的必要条件是0),(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ与ϕ(x 0, y 0)=0同时成立. 设λϕ-=),(),(0000y x y x f y y , 上述必要条件变为 ⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(0000000000y x y x y x f y x y x f y y x x ϕλϕλϕ.拉格朗日乘数法: 要找函数z =f (x , y )在条件ϕ(x , y )=0下的可能极值点, 可以先构成辅助函数F (x , y )=f (x , y )+λϕ(x , y ) ,其中λ为某一常数. 然后解方程组⎪⎩⎪⎨⎧==+==+=0),(0),(),(),(0),(),(),(y x y x y x f y x F y x y x f y x F y y y x x x ϕλϕλϕ.由这方程组解出x , y 及λ, 则其中(x , y )就是所要求的可能的极值点.这种方法可以推广到自变量多于两个而条件多于一个的情形.至于如何确定所求的点是否是极值点, 在实际问题中往往可根据问题本身的性质来判定.例7 求表面积为a 2而体积为最大的长方体的体积.解 设长方体的三棱的长为x , y , z , 则问题就是在条件2(xy +yz +xz )=a 2下求函数V =xyz 的最大值.构成辅助函数F (x , y , z )=xyz +λ(2xy +2yz +2xz -a 2),解方程组⎪⎪⎩⎪⎪⎨⎧=++=++==++==++=22220)(2),,(0)(2),,(0)(2),,(axz yz xy x y xy z y x F z x xz z y x F z y yz z y x F z y x λλλ, 得a z y x 66===, 这是唯一可能的极值点. 因为由问题本身可知最大值一定存在, 所以最大值就在这个可能的值点处取得. 此时3366a V =.。
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
高等数学知识点总结导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学高数所有知识点合集八
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
凯程考研:
凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;
凯程考研的价值观:凯旋归来,前程万里;
信念:让每个学员都有好最好的归宿;
使命:完善全新的教育模式,做中国最专业的考研辅导机构;
激情:永不言弃,乐观向上;
敬业:以专业的态度做非凡的事业;
服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。
扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。
如何选择考研辅导班:
在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。
师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。
判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。
还要深入了解教师的学术背景、资料著述成就、辅导成就等。
凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。
而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。
凯程考研历年战绩辉煌,成就显著!
在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下国内最高学府清华大学五道口金融学院金融硕士29人,占五道口金融学院录取总人数的约50%,五道口金融学院历年状元均出自凯程.例如,2014年状元武玄宇,2013年状元李少华,2012年状元马佳伟,2011年状元陈玉倩;考入北大经院、人大、中财、外经贸、复旦、上财、上交、社科院、中科院金融硕士的同学更是喜报连连,总计达到150人以上,此外,还有考入北大清华人大法硕的张博等10人,北大法学考研王少棠,北大法学经济法状元王yuheng等5人成功考入北大法学院,另外有数10人考入人大贸大政法公安大学等名校法学院。
北师大教育学和全日制教育硕士辅导班学员考入15人,创造了历年最高成绩。
会计硕士保录班考取30多人,中传郑家威勇夺中传新闻传播硕士状元,王园璐勇夺中传全日制艺术硕士状元,(他们的经验谈视频在凯程官方网站有公布,随时可以查看播放。
)对于如此优异的成绩,凯程辅导班班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
考研路上,拼搏和坚持,是我们成功的必备要素。
王少棠
本科学校:南开大学法学
录取学校:北大法学国际经济法方向第一名
总分:380+
在来到凯程辅导之前,王少棠已经决定了要拼搏北大法学院,他有自己的理想,对法学的痴迷的追求,决定到最高学府北大进行深造,他的北大的梦想一直激励着他前进,在凯程辅导班的每一刻,他都认真听课、与老师沟通,每一个重点知识点都不放过,对于少棠来说,无疑是无比高兴的是,圆梦北大法学院。
在复试之后,王少棠与凯程老师进行了深入沟通,讲解了自己的考研经验,与广大考北大法学,人大法学、贸大法学等同学们进行了交流,录制为经验谈,在凯程官方网站能够看到。
王少棠参加的是凯程考研辅导班,回忆自己的辅导班的经历,他说:“这是我一辈子也许学习最投入、最踏实的地方,我有明确的复习目标,有老师制定的学习计划、有生活老师、班主任、授课老师的管理,每天6点半就起床了,然后是吃早餐,进教室里早读,8点开始单词与长难句测试,9点开始上课,中午半小时吃饭,然后又回到教室里学习了,夏天比较
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
困了就在桌子上睡一会,下午接着上课,晚上自习、测试、答疑之类,晚上11点30熄灯睡觉。
”
这样的生活,贯穿了我在辅导班的整个过程,王少棠对他的北大梦想是如此的坚持,无疑,让他忘记了在考研路上的辛苦,只有坚持的信念,只有对梦想的勇敢追求。
龚辉堂
本科西北工业大学物理
考入:五道口金融学院金融硕士(原中国人民银行研究生部)
作为跨地区跨校跨专业的三跨考生,在凯程辅导班里经常遇到的,五道口金融学院本身公平的的传统,让他对五道口充满了向往,所以他来到了凯程辅导班,在这里严格的训练,近乎严苛的要求,使他一个跨专业的学生,成功考入金融界的黄埔军校,成为五道口金融学院一名优秀的学生,实现了人生的重大转折。
在凯程考研辅导班,虽然学习很辛苦,但是每天他都能感觉到自己在进步,改变了自己以往在大学期间散漫的学习状态,进入了高强度学习状态。
在这里很多课程让他收获巨大,例如公司理财老师,推理演算,非常纯熟到位,也是每个学生学习的榜样,公司理财老师带过很多学生,考的非常好。
在学习过程中,拿下了这块知识,去食堂午餐时候加一块鸡翅,经常用小小的奖励激励自己,寻找学习的乐趣。
在辅导班里,学习成绩显著上升。
在暑期,辅导班的课程排得非常满,公共课、专业课、晚自习、答疑、测试,一天至少12个小时及以上。
但是他们仍然特别认真,在这个没有任何干扰的考研氛围里,充实地学习。
在经过暑期严格的训练之后,龚对自己考入五道口更有信心了。
在与老师沟通之后,最终确定了五道口金融学院作为自己最后的抉择,决定之后,让他更加发奋努力。
五道口成绩公布,龚辉堂成功了。
这个封闭的考研集训,优秀的学习氛围,让他感觉有质的飞跃,成功的喜悦四处飞扬。
另外,在去年,石继华,本科安徽大学,成功考入五道口金融学院,也就是说,我们只要努力,方向正确,就能取得优异的成绩。
师弟师妹们加油,五道口、人大、中财、贸大这些名校等着你来。
黄同学(女生)
本科院校:中国青年政治学院
报考院校:中国人民大学金融硕士
总分:跨专业380+
初试成绩非常理想,离不开老师的辛勤辅导,离不开班主任的鼓励,离不开她的努力,离不开所有关心她的人,圆梦人大金融硕士,实现了跨专业跨校的金融梦。
黄同学是一个非常腼腆的女孩子,英语基础算是中等,专业课是0基础开始复习,刚刚开始有点吃力,但是随着课程的展开,完全能够跟上了节奏。
初试成绩公布下来,虽然考的不错,班主任老师没有放松对复试的辅导,确保万无一失,拿到录取通知书才是最终的尘埃落地,开始了紧张的复试指导,反复的模拟训练,常见问题、礼仪训练,专业知识训练,每一个细节都训练好之后,班主任终于放心地让她去复试,果然,
凯程考研
历史悠久,专注考研,科学应试,严格管理,成就学员!
她以高分顺利通过复试,拿到了录取通知书。
这是所有凯程辅导班班主任、授课老师、生活老师的成功。
张博,从山东理工大学考入北京大学法律硕士,我复习的比较晚,很庆幸选择了凯程,法硕老师讲的很到位,我复习起来减轻了不少负担。
愿大家在考研中马到成功,也祝愿凯程越办越好。
张亚婷,海南师范大学小学数学专业,考入了北京师范大学教育学部课程与教学论方向,成功实现了自己的北师大梦想。
特别感谢凯程的徐影老师全方面的指导。
孙川川,西南大学考入中国传媒大学艺术硕士,播音主持专业。
在考研辅导班,进步飞快,不受其他打扰,能够全心全意投入到学习中。
凯程老师也很负责,真的很感谢他们。
在凯程考研辅导班,他们在一起创造了一个又一个奇迹。
从河南理工大学考入人大会计硕士的李梦说:考取人大,是我的梦想,我一直努力,肯定能够成功的,只要我们不放弃,不抛弃,并且一直在努力前进创造成功的条件,每个人都能够成功。
正确的方法+不懈的努力+良好的环境+严格的管理=成功。
我相信,每个人都能够成功。