确定解析式
- 格式:ppt
- 大小:229.00 KB
- 文档页数:9
初中数学如何通过两个点的坐标确定一个一次函数的解析式
通过两个点的坐标确定一个一次函数的解析式是初中数学中的一个重要概念。
在本文中,我们将详细讨论如何通过两个点的坐标确定一个一次函数的解析式。
要通过两个点的坐标确定一个一次函数的解析式,我们可以按照以下步骤进行:
1. 确定两个点的坐标:首先,我们需要确定两个点的坐标。
假设这两个点分别为P(x1, y1)和Q(x2, y2)。
2. 计算斜率:通过这两个点的坐标,我们可以计算出函数的斜率。
一次函数的斜率可以通过公式:斜率= (y2 - y1) / (x2 - x1) 来计算。
3. 确定截距:通过已知的两个点和计算出的斜率,我们可以使用任意一个点和斜率来确定一次函数的截距。
截距可以通过公式:截距= y -斜率* x 来计算,其中y为已知点的纵坐标,x为已知点的横坐标。
4. 构建解析式:通过已知的斜率和截距,我们可以构建一次函数的解析式。
一次函数的解析式一般为:y = 斜率* x + 截距。
通过了解如何通过两个点的坐标确定一个一次函数的解析式,你可以更好地理解函数的性质和变化。
这对于解决实际问题和进一步深入学习数学非常重要。
希望本文能够帮助你更好地理解和应用这一概念。
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
第一、求二次函数解析式的问题一.知识要点:1.已知抛物线的顶点(m,n )及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-a)2+b.,式中只有一个待定系数k,把(m,n )代入即可求出k ,从而求出抛物线的解析式。
2. 已知抛物线与x 轴的交点(x 1,0)和(x 2,0)及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-x 1 )(x-x 2 ) 式中只有一个待定系数k,把(a,b )代入即可求出k ,从而求出抛物线的解析式。
3. 已知抛物线上任意三点(x 1,y 1)(x 2,y 2)(x 3,y 3)这时可以设抛物线的解析式为:y=ax 2+bx+c,式中含有三个待定系数a 、b 、c 把(x 1,y 1)(x 2,y 2)(x 3,y 3)代入,得到含a , b, c 的方程组,即可求出k ,从而求出抛物线的解析式。
二. 重点、难点:重点:求二次函数的函数关系式难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。
三. 教学建议:求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。
典型例题例1.已知某二次函数的图象经过点A (-1,-6),B (2,3),C (0,-5)三点,求其函数关系式。
例2. 已知二次函数y ax bx c =++2的图象的顶点为(1,-92),且经过点(-2,0),求该二次函数的函数关系式。
例3. 已知二次函数图象的对称轴是x =-3,且函数有最大值为2,图象与x 轴的一个交点是(-1,0),求这个二次函数的解析式。
例4. 已知二次函数y ax bx c =++2的图象如图1所示,则这个二次函数的关系式是__________________。
图1例5. 已知:抛物线在x 轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式例6. 已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式。
初中数学如何通过函数的图像确定其解析式通过函数的图像确定其解析式是一个常见且重要的数学问题。
在本文中,我们将详细讨论如何通过函数的图像确定其解析式。
要通过函数的图像确定其解析式,我们可以按照以下步骤进行:1. 观察图像的形状和特点:首先,仔细观察函数图像的形状和特点。
注意函数图像的曲线、拐点、交点等信息。
通过观察图像,我们可以猜测函数的类型和形式。
2. 确定函数的类型:根据图像的形状和特点,我们可以初步确定函数的类型。
常见的函数类型包括线性函数、二次函数、指数函数、对数函数等。
根据函数的类型,我们可以有针对性地进行后续的分析和确定。
3. 确定函数的一般形式:根据函数的类型,我们可以猜测函数的一般形式。
例如,如果函数图像是一条直线,我们可以猜测函数的一般形式为f(x) = ax + b,其中a 和 b 是常数。
如果函数图像是一个抛物线,我们可以猜测函数的一般形式为f(x) = ax^2 + bx + c,其中a、b 和c 是常数。
4. 使用已知点确定解析式:选择图像上的几个已知点,然后将这些点的坐标代入到猜测的一般形式中。
通过解方程组,我们可以求解出函数的解析式的具体参数值。
5. 确认结果:计算出函数的解析式后,我们需要确认结果是否合理。
可以通过将解析式代入其他已知点,然后观察函数图像是否经过这些点。
如果函数图像经过这些点并且满足其他已知条件,则我们可以确认所计算的解析式是正确的。
需要注意的是,通过图像确定函数的解析式是一个近似的过程,存在一定的不确定性。
因此,我们需要选择尽可能多的已知点,以提高计算结果的准确性。
通过以上步骤,我们可以通过函数的图像确定其解析式。
这种方法可以帮助我们更直观地理解函数的性质,并且可以应用于其他类型的函数。
了解函数的解析式对于解决实际问题以及进一步理解数学概念都非常重要。
求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。
以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。
函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。
明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。
二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。
例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。
又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。
三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。
在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。
例如,求解经济学中的需求函数、生长模型等。
四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。
例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。
又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。
五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。
通过列方程并求解,可以得到函数解析式中的一些未知系数。
例如,可以通过建立差分方程求解离散函数的解析式。
六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。
通过逐项求和,可以得到函数解析式的形式。
例如,可以利用幂级数展开来确定一些特殊函数的解析式。
函数解析式的确定方法张磊函数解析式是表示函数定义域与值域之间的一种关系,求函数解析式一般有以下几种情形方法一:待定系数法该方法主要用于已知函数的类型,求函数的解析式. 其步骤为:设出函数的解析式,该据已知条件确定待定系数.例1.已知f(f(x))=4x+3,且f(x)是一次函数,求f(x).解:设f(x)=kx+b,那么f(f(x))=kf(x)+b=k(kx+b)+b=x+(kb+b).又f(f(x))=4x+3.比较对应项系数可得,解得或∴所求函数的解析式为f(x)=2x+1或f(x)=-2x 3例2.(2005全国I文)已知二次函数f(x)的二次项的系数为a .且不等式f(x)> 2x的解集我(1 ,3) .⑴若方程f(x)+6a=0有两个相等的根,求f(x)的解析式.⑵若f(x)的最大值为正数.求a的取值范围.解: ⑴∵f(x)+2x>0的解集为(1 ,3),设f(x)+2x=a(x1)(x3),且a<0 ,∴f(x)=a(x1)(x3)2x=a(2+4a)x+3a .由方程f(x)+6a=0得a(2+4a)x+9a=0 ∵方程a(2+4a)x+9a=0有两个相等的根,∴∆ 4a∙9a=0 即54a1=0 .解得a=1或a=- ,由于a<0,舍去a=1 ,从而可得f(x)的解析式, f(x)=-x⑵略方法二换元法该方法主要用于已知f(g(x))=h(x)型,(这里g(x)是一一映射所确定的函数),求f(x).其解法步骤为:可设g(x)=t,从中解出x=φ(t),代人f(g(x))=h(x)中,可求得关于t的函数式f(t),即求得f(x).例3 ⑴已知f(x+2)=2x 3 ,求f(x).⑵已知f()=x 2 ,求f(x) .解: ⑴令x+2=t ,则x=t 2 ,将x=t2代人f(x+2)=2x3中得f(t)=2 3 ,即f(t)=6t+5 ,∴f(x)=6x+5⑵令=t,解得x=,将x=代人f()=x 2 ,得f(t)= 2 ,∴f(x)= 2方法三配凑法该方法也主要用于已知f(g(x))=h(x)型,求f(x)解析式.其步骤是: h(x)配凑成关g(x)的代数式,再将f(g(x))=h(x)中g(x)替换为x,从而求得f(x).例4 ⑴已知f(x+2)=2x 3 ,求f(x).⑵f(x+)=+ 2 , 求f(x) .解: ⑴∵f(x+2)=2x3=6(x+2)+5 ,用x替换可得 , ∴f(x)=6x+5⑵∵f(x+)=+2= 4 , ∴f(x) = 4方法四动点转移法(相关点法)该方法主要用于两函数图像关于某点或某线对称,求函数的解析式问题. 其步骤是:设出所求函数图像上的点的坐标为(x ,y),再求该点(x ,y)关于某点或某直线的对称点(),这个对称点()必在已知函数的图像上,所以将这个对称点()代人已知图像对应的解析式,即可求得未知图像对应的解析式.例 5 ⑴设函数f(x)是定义在R上的奇函数,且x>0时f(x)=+2x1,则f(x)的解析式为_________⑵已知函数y=2x与y=g(x)的图像关于点(2 ,3)对称,则g(x)的解析式为______________解:⑴设点(x ,y)是x<0的图像上的点,则该点关于原点的对称点(-x ,-y)必在f(x)=+2x1上,所以y=f(x)=+2(x)1,因f(x)是定义在R上的奇函数,所以f(x) f(x),化简得, f(x)+2x+1.>∴f(x) =⑵因g(x)的图像的点(x ,y)关于点(2 ,3)的对称点(4x,6y)在函数y=2x的图像上,∴6y=2(4x) ,即y+6x 2.g(x)= +6x 2方法五消元法该方法主要用于同时含有f(x) , f(−x)或f(x) ,f( 的函数关系式,求解f(x)的解析式问题.其方法是将x用−x替换或将x用替换,再得到一个函数关系式,联立方程组,通过消元,即可求得f(x) 例6 ⑴已知f(x)+2 f(x)=,则f(x)=_______⑵已知f(x)+2 f( =3x ,则f(x)=________解:⑴用x代替f(x)+2 f(x)=中的x可得, f(x)+2 f(x)=,联立,解得f(x)=⑵用替换f(x)+2f( =3x中的x可得, f( +2f(x)=,联立可解得f(x)=专项练习1 若f(x)=+4x+3,f(ax+b)=+10x+24 ,则5a b=____2 已知f(x)为二次函数,其对称轴x=2 ,抛物线与x轴两交点之间距离为6 ,图像过点(3 ,4) ,则f(x)=____3 已知f(1)=x 则f(x) =____4已知f()=lgx ,则f(2) =____5 已知函数f(x)定义在( ∞ , ∞)上偶函数,当x∈( ∞ ,0)时f(x)==x,则当x∈(0 , ∞)时, f(x) =____方法六、奇偶性法该方法主要用于已知奇函数或偶函数在y轴某侧的解析式,求其对称区间的解析式问题.例7 已知f(x)是奇函数,且当x<0时,f(x)=+1,求x>0时的解析式.解:设x>0,则x<0,所以f(-x)=1,因f(x)是奇函数,即f(-x)=-f(x),所以-f(x) =1,即f(x) =-++1。
求函数解析式的6种方法一、待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数,指数函数,对数函数、幂函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 (1)已知二次函数()f x 满足(1)1f =,(1)5f -=,图象过原点,求()f x ;(2)已知二次函数()f x ,其图象的顶点是(1,2)-,且经过原点,()f x .(3)已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式 (4)已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:(1)由题意设 2()f x ax bx c =++, ∵(1)1f =,(1)5f -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32f x x x =-.(2)由题意设 2()(1)2f x a x =++,又∵图象经过原点,∴(0)0f =,∴20a += 得2a =-, ∴2()24f x x x =--.(3)解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得 ax 2+(2a+b)x+a+b+c=ax 2+(b+1)x+c+1得 212211120011()22a ab b a bc c b c c f x x x⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+(4)解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 例2 (1)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
初中数学常考的知识点待定系数法待定系数法:先设出函数解析式,在根据条件确定解析式中的未知的系数,从而写出这个式子的方法,叫待定系数法。
用待定系数法确定解析式的步骤:①设函数表达式为:y=k某或y=k某+b②将已知点的坐标代入函数表达式,得到方程(组)③解方程或组,求出待定的系数的值。
④把的值代回所设表达式,从而写出需要的解析式。
注意;正比例函数y=k某只要有一个条件就可以。
而一次函数y=k某+b需要有两个条件。
初中数学知识点解析:构造方程构造方程是初中数学的基本方法之一在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。
1、一些题目根据条件、仔细观察其特点,构造一个"一元一次方程"求解,从而获得问题解决。
例1:如果关于某的方程a某+b=2(2某+7)+1有无数多个解,那么a、b的值分别是多少?解:原方程整理得(a-4)∵此方程有无数多解,∴a-4=0且分别解得a=42、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。
此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。
3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。
例3:已知3,5,2某,3y的平均数是4、20,18,5某,-6y的平均数是1、求的值。
分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出某、y的值,再求出的值。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
求函数解析式的方法和例题在数学学习中,我们经常会遇到需要求解函数解析式的问题。
函数解析式是描述函数规律的数学式子,它可以帮助我们更好地理解函数的性质和行为。
那么,如何求函数解析式呢?接下来,我将介绍一些常见的方法和例题,希望能帮助大家更好地掌握这一内容。
一、常见的求函数解析式的方法。
1. 根据函数图像求解析式,当已知函数的图像时,我们可以通过观察图像的性质来推导函数解析式。
例如,对于一元一次函数y=kx+b,我们可以根据函数的斜率k和截距b来确定函数解析式。
同样地,对于二次函数、指数函数、对数函数等,也可以通过观察图像的特点来求解析式。
2. 根据函数性质求解析式,有些函数具有特定的性质,我们可以利用这些性质来求解析式。
例如,对于奇偶函数、周期函数、对数函数等,我们可以根据其性质来确定函数解析式。
3. 根据已知条件求解析式,有时候,我们会遇到一些特定的条件,例如函数的零点、极值点、导数等,我们可以利用这些已知条件来求解析式。
通过建立方程组,我们可以求解未知的函数解析式。
二、求函数解析式的例题。
1. 已知一元一次函数的图像经过点(2,3),斜率为4,求函数解析式。
解,根据一元一次函数的一般形式y=kx+b,我们可以利用已知的斜率和点的坐标来求解析式。
首先,斜率为4,即k=4;其次,函数经过点(2,3),代入x=2,y=3,得到3=4×2+b,解得b=-5。
因此,函数解析式为y=4x-5。
2. 已知函数f(x)满足f(1)=2,f'(x)=3x^2,求函数f(x)的解析式。
解,根据已知条件f(1)=2,我们可以利用这一条件来求解析式。
由导数的定义可知,f'(x)=3x^2,对f(x)进行积分得到f(x)=x^3+C,其中C为积分常数。
代入f(1)=2,得到2=1+C,解得C=1。
因此,函数f(x)的解析式为f(x)=x^3+1。
通过以上例题,我们可以看到,求解函数解析式的关键在于利用已知条件和函数的性质来建立方程,进而求得未知的函数解析式。
怎样确定二次函数的解析式?确定二次函数的解析式一般采用待定系数法.应根据已知条件的不同特点,适当选取二次函数的一般式、顶点式或交点式,以使计算最简便为宜.(1)已知抛物线上三个点的坐标,最好选用一般式.例1 已知抛物线经过A (0,4),B (1,3)和C (2,6)三点,求二次函数的解析式..c bx ax y 2++=设二次函数的解析式为规范解法因A 、B 、C 三点在函数的图象上,所以它们的坐标满足函数的解析式.把A 、B 、C 三点的坐标代入所设解析式,⎪⎩⎪⎨⎧=++=++=.6c b 2a 4,3c b a ,4c 得方程组⎪⎩⎪⎨⎧=-==.4c ,3b ,2a 解得 .4x 3x 2y 2+-=故所求函数解析式为(2)若已知条件与抛物线的顶点有关,则用顶点式比较恰当.例2 已知二次函数的图象顶点为(2,3),且经过点(3,1),求这个二次函数的解析式..n )m x (a y 2++=式为设二次函数的解析规范解法.3)2x (a y ,)3,2(2+-=得的坐标代入把顶点.3)23(a 1,)1,3(2+-=得的坐标代入再把点解得a =-2..3)2x (2y 2+--=式为故所求二次函数的解析(3)已知抛物线与x 轴两个交点的坐标,选用交点式比较简便.例3 已知A (2,0),B (-1,0),C (1,-3)三个点在抛物线上,求二次函数的解析式.思路启迪由A 、B 两点的纵坐标为0知,这两点是抛物线与x 轴的交点.规范解法 设二次函数的解析式为),x x )(x x (a y 21--=).1x )(2x (a y ,1x ,2x 21+-=-==得代入把再把点C (1,-3)的坐标代入,得-3=a (1-2)(1+1),.23a =解得 ).1x )(2x (23y +-=故所求解析式为点评上述3个例题均可采用二次函数的一般式求解.如例2中的抛物线顶点坐标为(2,3),可以列出两个方程,即 顶点的横坐标22=-a b , ① 顶点的纵坐标3442=-a b ac , ②再把点(3,1)的坐标代入c bx ax y ++=2,得9a+3b+c=1③ 把方程①、②、③联立得方程组,解得 ⎪⎩⎪⎨⎧-==-=.5c ,8b ,2a.5x 8x 2y 2-+-=故所求解析式为显然,选用一般式解决例2的问题比用顶点式麻烦得多.因此,求二次函数的解析式,根据己知条件选取表达式是关键.例4 已知二次函数的图象经过点A (3,—2)和B (1,0),且对称轴是直线x =3.求这个二次函数的解析式.思路启迪一已知对称轴是直线x =3,因对称轴经过顶点,所以这是与顶点有关的问题..h 3)-a(x y 12+=设二次函数的解析式为规范解法把A (3,-2),b (1,0)两点的坐标代入,得⎪⎩⎪⎨⎧-==⎪⎩⎪⎨⎧=+--=+-.2h ,21a .0h )31(a ,2h )33(a 22解得 .2)3x (21y 2--=故所求解析式为思路启迪二由对称轴是直线x =3,且点A 的横坐标是3,知点A (3,—2)是抛物线的顶点,可设解析式为顶点式.23)-a(x y 22-=设二次函数的解析式为规范解法21a ,02)31(a ,)0,1(B 2==--解得得的坐标代入把点.2)3x (21y 2--=故所求解析式为思路启迪三由对称轴是直线x =3,可得关于a 、b 的一个方程.3a 2b =-又知图象经过两定点,可设解析式为一般式,.c bx ax y 32++=设二次函数的解析式为规范解法⎪⎪⎩⎪⎪⎨⎧=++-=++=-.0c b a 2c b 3a 9,3a 2b ,得根据题意 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧=-==.25,3,21c b a .25x 3x 21y 2+-=故所求析式为思路启迪四由点B (1,0)的纵坐标是0知,它是抛物线与x 轴的交点,若能求出抛物线与x 轴的另一个交点,即点B 关于对称轴x =3的对称点.则可设解析式为交点式..5m ,32m 1(m,0),B 3x B(1,0) 4==+'=解得则的对称点关于直线设点规范解法)0,5(B 的坐标为所以点' 设二次函数的解析式为y =a (x -1)(x -5).得代入的坐标把点,)2,3(A -a (3-1)(3-5)=-2,.21a =解得).5x )(1x (21y --=故所求解析式为思路启迪五同解法4得到B′(5,0),就具备了图象过三个定点,可设其解析式为一般式.规范解法5 同解法4,求得点B (1,0)关于对称轴x =3的对称点B '(5,0),设二次函数的解析式为.c bx ax y 2++=),2,3(A 0c bx ax 5x ,1x 2-=++==的两根及图象过点是一元二次方程由⎪⎪⎩⎪⎪⎨⎧=-==⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+++=+=-.25c ,3b ,21a .2c b 3a 9,51a c ,51a b 解得得.25x 3x 21y 2+-=故所求解析式为点评 例4各解法中以解法2最佳.它体现在对点A (3,—2)是所求抛物线的顶点这一隐含条件挖掘得好.因此,我们在解题过程中既要学会一题多思,一题多解,拓开思路;更要注意寻求合理的解题途径,选好突破口.注 本题还可直接把A 、B 、B′三点坐标代入所设一般式,求a 、b 、c 的值.29.如何利用“抛物线x 轴交点间的距离”求二次函数的解析式?已知抛物线与x 轴两交点间的距离,求二次函数的解析式,一般有下列两种情况:例1 已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4.求二次函数的解析式.思路启迪在已知抛物线与x 轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x =3,再利用抛物线的对称性,可知图象与x 轴两交点的坐标分别为(1,0)和(5,0). 此时,可随意使用二次函数的一般式或交点式,得二次函数的解析式为.25x 3x 21y 2+-=点评 同一个题目使用不同的方法求解后,应进一步比较分析它们的优缺点,才能不断提高解题水平,求得最简捷的解法.例2 已知二次函数的图象经过⎪⎭⎫ ⎝⎛-25,0A 和)6,1(--B 两点,且图象与x 轴的两个交点间的距离为4.求二次函数的解析式.思路启迪已知抛物线与x 轴的两个交点间的距离,不知道它的对称轴,情况就比上述问题要复杂得多.利用A 、B 两点的坐标可以确定两个方程,即.6c b a 25c -=+--=和根据待定系数法的要求,必须设法找到第三个方程,才能利用二次函数的一般式求得a 、b 、c 的值.确定第三个方程的思路有二. 规范解法1 因为抛物线与x 轴交点的横坐标是一元二次方程0c bx ax2=++的两个根.x ,x 21方程的求根公式为 ,a 2ac 4b b x 22,1-±-=.4|x x |21=-可列方程即.4a 2ac 4b b a 2ac 4b b 22=-----+-.4a ac 4b 2=-化简得 两边平方,得.16422=-a ac b.a 16ac 4b 22=-∴.,0c b a 25c 得方程组即可求解联立和把这个方程与程=+--=规范解法2 根据一元二次方程根与系数的关系,,16x x ,a b x x 2121=-=+,16)x x (,,4|x x |22121=-=-得两边平方把.16x x 4)x x (21221=-+即.a 16ac 4b ,a c x x ,a b x x 222121=-=-=+得代入并整理把点评以上两种变形方法都应熟练掌握,它们对解决“已知抛物线与x 轴的两个交点间的距离,求二次函数解析式”的问题大有益处.30.怎样求二次函数的最大(小)值?求二次函数的最大值和最小值的问题,有着广泛的应用.求二次函数c bx ax y 2++=的最值,有下面三种方法: (1)公式法.由二次函数c bx ax y 2++=的图象看出,当a>0时,抛物线的开口向上,它的顶点⎪⎪⎭⎫ ⎝⎛--a 4b ac 4,a 2b 2在最低处.由此可得:当a>0且a 2b x -=时,函数达到最小值,这个最小值就是抛物线顶点的纵坐标,即.a 4b ac 4y 2-=最小当a<0且a 2b x -=时,函数达到最大值,这个最大值就是抛物线顶点的纵坐标,即.a 4b ac 4y 2-=最大 例1 求函数322--=x x y 的最大值或最小值.规范解法 由a=1>0知抛物线开口向上 故当,122a 2b x 时=--=-= .44412a 4b ac 4y 2-=--=-=最小(2)配方法.变形为利用配方法把二次函数c bx ax y 2++=.a 4b ac 4a 2b x a y 22-+⎪⎭⎫ ⎝⎛+=.0a 2b x ,x 2≥⎪⎭⎫ ⎝⎛+则有对任意实数 ,a 4b ac 4y ,a 2b x 0a 2-=-=>最小时当若.a 4b ac 4y ,a 2b x 0a 2-=-=<最大时当若例2 求二次函数25-2x y 2-+=x 的最大值或最小值.规范解法.8945x 2 1x 25x 22x 5x 2y 222+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+--=-+-= ∵,045,022≥⎪⎭⎫ ⎝⎛-<-=x a.89y ,45x ==∴最大时当点评利用公式法与配方法求二次函数的最值时,应根据具体情况,选用恰当的方法.(3)判别式法.所谓“判别式法”就是利用一元二次方程根的判别式ac 4b 2-来求二次函数的最值的方法.例3 求函数232--=x x y 的最大值或最小值. .0)2y (x 32x 2=+--把解析式变形为规范解法.0)2y (24)3(,0ac 4b ,x 22≥+⨯+-≥-即必有判别式为实数因.825y ,-≥得解这个不等式.8252x 3x 2y 2---=的最小值为故函数 点评用“判别式法”求二次函数的最大值或最小值,有时比公式法和配方法更为简便,它不仅可用来求二次函数的最值,还可求更为广泛的一类函数的最值.31.怎样利用二次函数的最值求得其他函数的最值?利用二次函数的最值,可以进一步研究其他一些函数的最值问题.举例如下.例1 求函数22122+--=x x y 的最大值或最小值.思路启迪在函数的解析式中,含有二次三项式,2x 2x 2+-故可构造关于x 的二次函数,2x 2x t 2+-=,先求出其最值,再通过不等式运算求出函数2x 2x 12y 2+--=的最值. .2x 2x t 2+-=令规范解法.11)-(x t ,2+=得配方得两边同加上,2,0t 11<-≤-22x 2x 12y 1,2t 1212<+--=≤<-≤即.2x 2x 12y 2只有最小值显然函数+--=.1y ,1x ==最小时故当例2 求函数322+--=x x y 的最大值或最小值. 思路启迪在函数解析式中,含有关于x 的二次三项式,3x 2x 2+--可构造二次函数2x t -=,3x 2+-通过求二次函数的最值,求得3x 2x y 2+--=的最值..4)1x (t ,,3x 2-x t 22++-=+-=得配方令规范解法.1x 3x ,03x 2x 2≤≤-≥++-的取值范围是得由当x =-1时,∵a=-1<0, ∴t 有最大值4,即t≤4,从而y≤2. 又∵,0322≥+--x x 当x=1时取“=”号,∴y≥0,综上0≤y≤2. 故函数3x 2x y 2+--=既有最大值,又有最小值.当x =-1时,;2y =最大当x =1时,.0y =最小注 ①以上两例,都是根据已知函数的特征,构造出一个二次函数,先求出二次函数的最值,再通过不等式的运算求得已知函数的最值.②求函数的最值应先考虑自变量的取值范围.如二次函数c bx ax y 2++=的自变量取值范围是全体实数.再如例1中,因2x 2x 12y ,01)1x (2x 2x 222+--=≠+-=+-故的自变量取值范围也是全体实数,在解题过程中可以不作叙述.但例2中,应限制被开方数,03x 2x 2≥+--所得自变量的取值范围不再是全体实数,而是-3≤x≤1,必须加以明确.因为函数的最值一定是自变量取某一确定值时函数的对应值,如果你所求的函数最值,在自变量的取值范围内找不到确定的值,使它对应的函数值就是这个“最值”,那么表明你所求的连函数值都不是,更谈不上是函数的最值了.所以,求自变量的取值范围是求函数最值不可缺少的步骤.例3 已知x 、y 为实数,且x+y=2,求22xy +的最小值.思路启迪在x 、y 满足一定条件的前提下,求函数22y x +的最值,叫做求函数的条件最值.求条件最值最基本的方法是通过代入消元,把表达式转化为只含有一个自变量的一元二次函数的形式,再利用二次函数的最值求解..x 2y 2y x -==+解出由代入①,得.442)2(222+-=-+=x x x x t .2)1x (2t ,2+-=得配平方.2y x 22的最小值是故+例4 设,|x -y|=2求xy 的最小值.思路启迪要想把式子xy 转化为只含有一个未知数,比如只含有x 的式子,就需对,|x -y|=2分类讨论去绝对值符号,从中解出y ,再代入消元.规范解法 由|x -y|=2知x≠y,有以下两种情况:①当x>y 时,x -y =2,解得y =x -2..1)1x (x 2x )2x (x xy 22--=-=-=∴.1xy ,1x -=有最小值时当.1)1x (x 2x )2x (x xy 22-+=+=+=∴.1xy ,1x --=有最小值时当再从①、②中比较出最小值,才是所求的最小值.由于两种情况下的最小值都是-1,故当x =±1时,xy 达到最小值-1.32.解二次函数最值的应用题的方法步骤是什么?解二次函数最值应用题的基本方法,是设法把关于最值的实际问题,转化为二次函数的最值问题,然后按求二次函数最值的方法求解.其一般步骤是:(1)利用题目中的已知条件和学过的有关数学公式列出关系式;(2)把关系式转化为二次函数的解析式;(3)求二次函数的最大值或最小值.例1 用12米长的木料做成如图13—20所示的矩形窗框(包括中间的十字形),问当长、宽各是多少时,矩形窗框的面积最大?最大的面积是多少?规范解法 设窗框长为x 米,.3x 312米则窗框的宽为-.x 4x 3x 312x y 2+-=⎪⎭⎫ ⎝⎛-=矩形窑框的面积为.4)2x (y ,2+--=得配平方).(4y ,)(2x 平方米时米当最大==).(2243x 312,米此时=-=-答:当窗框的长、宽各为2米时,窗框的面积最大,最大的面积是4平方米.例2 已知三角形的两边和为20cm ,这两边的夹角为120°(图13—21).求它的面积的最大值;当面积最大时,这两边的长各是多少?思路启迪已知三角形两边之和为20cm ,应设其中一边为x cm ,并将这条边上的高用x 表示,即可把该三角形的面积表示为x 的函数.规范解法 在如图13—21所示的△AB C 中,设BC 边的长为xcm ,则AB =(20-x )cm .过A 作BC 边上的高AD ,与CB 的延长线交于点D .∵∠ABD=180°-120°=60°,.cm )x 20(23AD -=∴).x 20(23x 21y ABC -⋅=∆∴的面积为 .043a .x 35x 43y 2<-=+-=这里即).cm (325434)35(y ,)cm (1043235x 22=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=有最大值时当 此时20-x =10(cm )..cm 10,;cm 325:2三角形两边的长各为当面积最大时是这个三角形的最大面积答 例3 快艇和轮船分别从A 地和C 地同时开出,航行路线互相垂直.如图13—22.快艇的速度为40千米/小时,轮船的速度是15千米/小时,A 、C 两地间的距离是120千米.问经过多少时间,快艇和轮船的距离最小?(精确到0.1小时)思路启迪设经过t 小时后,快艇和轮船间的距离最小,此时快艇在图13—22所示的B 点位置,轮船在D 点位置.因连结两点以线段最短,故快艇和轮船间的最短距离,就是线段BD 的长.∵快艇速度为40千米/小时,轮船速度为15千米/小时,AC =120千米,∴BC=120-40t ;CD =15t .在Rt△BCD 中,由勾股定理,得即大约经过2.6小时,快艇和轮船间的距离最小.例4某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销路,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)某商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?思路启迪商场所获的利润是由售出的商品数量和这件商品的利润相乘而得到的.如果每件衬衫降价x元,则盈利为(40-x)元,则可多售出2x件衬衫,即每天可售出(20+2x)件衬衫,从而可求出每天的利润.由于这个关系式是一个二次项系数为负数的二次函数,所以可求出盈利的最大值,规范解法(1)设每件衬衫应降价x元,根据题意,得(40-x)(20+2x)=1200.整理,得.0200302=+-xx20x,10x,21==解这个方程即当降价10元或20元时,由于销售量不同,都可获利1200元.但“为了扩大销售”,“尽快减少库存”可降价20元,每天销售量将增加,符合题中要求.(2)设商场平均每天盈利y元,则.1250)15x(2)x220)(x40(y2+--=+-=即每件衬衫降价15元时,商场平均每天盈利最多,达到1250元.答:若商场平均每天盈利1200元时,每件衬衫应降价10元或20元;每件衬衫降价15元时,商场平均每天盈利最多,达到1250元.点评通过解答上述的几个实际问题,会使我们感觉到数学的美在于它源于实践,用于实践.我们从生产、生活的实践中发现和总结规律,进而能根据客观规律指导实践,解决生产、生活中的一些实际问题.初中数学中的一次函数、二次函数问题是与实际问题联。