大一下学期高等数学期中考试试卷及答案教学内容
- 格式:doc
- 大小:366.00 KB
- 文档页数:9
一、单选题1.已知,则的虚部为( )()3i 2i z =⋅+z A . B . C . D .12-2i 2i -【答案】B【分析】利用复数的乘方及乘法运算化简复数,即可确定其虚部.【详解】,虚部为.()()32i 2i i 2i 2i i 12i z =⋅+=-⋅+=--=-2-故选:B2.如图,已知等腰直角三角形是一个平面图形的直观图,,斜边,则这个O A B '''O A A B ''''=2O B ''=平面图形的面积是( )A .B .1CD 【答案】A【分析】根据斜二测画法的定义,画出平面图形,求得原三角形的直角边,从而面积可得. 【详解】由题意,利用斜二测画法的定义,画出原图形,∵是等腰直角三角形,,斜边, Rt O A B '''△O A A B ''''=2O B ''=∴ O A B ''''==∴,2,2OB O B OA O A ''''====∴原平面图形的面积是.122⨯⨯=故选:A .3.,,是两两不同的三条直线,下面四个命题中,真命题是( )a b cA .若直线,异面,,异面,则,异面 a b b c a cB .若直线,相交,,相交,则,相交 a b b c a cC .若,则,与所成的角相等a b A a b c D .若,,则a b ⊥r rb c ⊥a c A 【答案】C【分析】由空间中直线与直线的位置关系进行分析判断即可.【详解】对于A ,若直线,异面,,异面,则,可能是平行、相交、异面的任意一种, a b b c a c 如在正方体中,与异面,与异面,, 1111ABCD A B C D -AD 1BD 1BD 11B C 11AD B C ∥或与异面,与异面,与相交于点,AD 1BD 1BD CD AD CD D 或与异面,与异面,与异面,故选项A 错误;AD 1BD 1BD 11A B AD 11A B 对于B ,若直线,相交,,相交,则,可能是平行、相交、异面的任意一种, a b b c a c 如在正方体中,与相交于点,与相交于点,, 1111ABCD A B C D -AB 1BD B 1BD 11D C 1D 11AB D C ∥或与相交于点,与相交于点,与相交于点,AB 1BD B 1BD 1AD 1D AB 1AD A 或与相交于点,与相交于点,与异面,故选项B 错误; AB 1BD B 1BD 11A D 1D AB 11A D 对于C ,由异面直线所成角的定义,选项C 正确;对于D ,若,,则与可能是平行、相交、异面的任意一种,a b ⊥r rb c ⊥a c 如在正方体中,,,, 1111ABCD A B C D -1AB AA ⊥111AA A B ⊥11AB A B ∥或 ,,与相交于点,1AB AA ⊥1AA BC ⊥AB BC B 或 ,,与异面,故选项D 错误. 1AB AA ⊥111AA A D ⊥AB 11A D 故选:C.4.已知平面向量与的夹角为,则实数的值为( ) ,a b a b ()30,b a a λ-⊥λA .B .2C .D .2-12-12【答案】B【分析】根据向量垂直时数量积等于0,结合数量积运算律以及数量积的定义,展开计算,即得答案.【详解】因为,所以,()b a a λ-⊥()0b a a λ-⋅= 即,故,20a b a λ⋅-=130,2λλ=∴=故选:B5.平行四边形ABCD ,点E 满足,,则( ) 4AC AE = ()2,R 2DE AB AD λμλμ=+∈λμ+=A .B .C .D .1181412【答案】A【分析】先根据平面向量的线性运算将用表示,再根据平面向量基本定理即可得解.DE ,AB AD【详解】, ()11134444DE AE AD AC AD AB AD AD AB AD =-=-=+-=- 又因为,22DE AB AD λμ=+所以,所以,124324λμ⎧=⎪⎪⎨⎪=-⎪⎩1238λμ⎧=⎪⎪⎨⎪=-⎪⎩所以. 131288λμ+=-=故选:A.6.“阿基米德多面体”这称为半正多面体(semi-regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知 ) AB =A .18πB .16πC .14πD .12π【答案】A【分析】根据正方体的对称性可知:该半正多面体外接球的球心为正方体的中心,进而可求球的O 半径和表面积.【详解】如图,在正方体中,取正方体、正方形的中心、,连接1111F EFG E G H H -1111E F G H O 1O ,1111,,,E G OO OA O A∵分别为的中点,则 ,A B 1111,E H H G 112E G AB ==∴正方体的边长为, 3EF =故,可得 1132OO O A ==OA ==根据对称性可知:点到该半正多面体的顶点的距离相等,则该半正多面体外接球的球心为,半O O径, R OA ==故该半正多面体外接球的表面积为.224π4π18πS R ==⨯=故选:A.7.已知正四面体中,为的中点,则与所成角的余弦值为 A BCD -M AB CM ADA .B C D .1223【答案】C【分析】设正四面体A ﹣BCD 的棱长为2,取BD 的中点N ,连结MN ,CN 则MN ∥AD ,∠CMN 或其补角是CM 与AD 所成的角,由此能求出直线CM 与AD 所成角的余弦值. 【详解】如图,设正四面体A ﹣BCD 的棱长为2,取BD 的中点N , 连结MN ,CN ,∵M 是AB 的中点,∴MN ∥AD , ∴∠CMN 或其补角是CM 与AD 所成的角,设MN 的中点为E ,则CE ⊥MN ,在△CME 中,ME ,CM =CN 12==∴直线CM 与AD 所成角的余弦值为cos ∠CME .ME CM ===故选C .【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是基础题.8.若圆锥的表面积为,其侧面展开图为一个半圆,则下列结论正确的为( ) 3πA .圆锥的母线长为1 B .圆锥的底面半径为2C D .圆锥的侧面积为π【答案】C【分析】设圆锥的底面半径为,母线为,根据侧面展开图为一个半圆,得出半径与母线的关系,r l 结合圆锥的表面积求出半径与母线,然后对选项进行逐一判断即可. 【详解】设圆锥的底面半径为,母线为,r l 由侧面展开图为一个半圆,则,所以,1222l r ππ⨯⨯=2l r =圆锥的表面积为,则,, 2233lr r r ππππ+==1r =2l =圆锥的高h ==圆锥的体积为,213r h π=圆锥的侧面积为, 2rl ππ=故选:C二、多选题9.已知复数满足,则( ) z ()2i 13i z +=+A B .在复平面内对应的点位于第二象限 z C . D .满足方程44z =z 2220z z -+=【答案】AD【分析】根据复数的运算及其几何意义,逐个选项判断即可.【详解】对于A :,故A 正确; 13i1i 2iz +==++对于B :在复平面内对应的点位于第四象限,故B 错误;1i z =-对于C :,故C 错误; 24422(1i)(1i)(2i)4z =⎡⎤=++==-⎣⎦对于D :,故D 正确;. 2222(1i)2(1i)22i 22i 20z z -+=+-++=-++=故选:AD .10.已知平面向量,,则下列说法正确的是( )()1,a λ= ()2,1b =-A .若,则B .若,则0λ=2a b +=//a b 12λ=-C .若与的夹角为锐角,则D .若,则在上的投影向量为 a b2λ<1λ=-a b 35b -【答案】BD【分析】利用向量模及共线向量的坐标表示,计算判断AB ;利用向量夹角公式计算判断C ;求出投影向量判断D 作答.【详解】平面向量,, ()1,a λ= ()2,1b =-对于A ,当时,,因此,A 错误;0λ=(1,1)a b =- +||a b +=对于B ,,则有,解得,B 正确;//a b 21λ-=12λ=-对于C ,与的夹角为锐角,则且与不共线,当时,,a b 0a b ⋅> a b0a b ⋅> 1(2)10λ⨯-+⨯>解得,由B 选项知,当时,与不共线,因此,C 错误;2λ>12λ≠-a b 2λ>对于D ,当时,,而1λ=-3a b ⋅=-||b == 因此在上的投影向量为,D 正确.a b 35||||a b b b b b ⋅⋅=-故选:BD11.如图,AC 为圆锥SO 底面圆O 的直径,点B 是圆O 上异于A ,C 的动点,,则下1SO OC ==列结论正确的是( )A .圆锥SOB .三棱锥S -ABC 体积的最大值为13C .∠SAB 的取值范围是ππ,43⎛⎫⎪⎝⎭D .若,F 为线段AB 上的动点,则 AB BC =SF CF +1【答案】ABD【分析】A 求出母线长、底面周长,应用扇形面积公式求侧面积;B 棱锥体积最大只需到距B AC 离最大,并确定最大值,应用棱锥体积公式求体积;C 注意确定大小即可判断;D AB BC =SAB ∠将两个三角形展开为一个平面,由三点共线求最小值即可.【详解】A :由题设,圆锥母线,底面周长为,故侧面积为,对; l =2π2πr =12π2⨯=B :要使三棱锥S -ABC 体积最大,只需最大即可,即到距离最大,为,ABC S A B AC 1r =所以体积的最大值为,对;111112323⨯⨯⨯⨯=C :当时,△为等腰直角三角形,此时 AB BC =ABC AB BC ==所以,即△为等边三角形,此时,错; SA SB AB ==SAB π3∠=SAB D :由C 分析知:时△为等腰直角三角形、△为等边三角形, AB BC =ABC SAB 将它们展开成一个平面,如下图,要使,即共线,最小值为的长度, SF CF +,,S F C SC而,,则,对. 3π4SBC ∠=SB BC ==1SC ==故选:ABD12.在中,角A ,B ,C 对边分别是a ,b ,c ,,,.则下列说法正确的ABC A π3A =8b =a =是( )A .为锐角三角形B .面积为ABC A ABCA C .AB 长度为6 D .外接圆的面积为ABC A 52π3【答案】BD【分析】利用余弦定理求出边判断C ,再利用余弦定理判断角的范围即可判断A ,利用面积公式c 判断B ,利用正弦定理求出外接圆的半径即可判断D. 【详解】由,,所以,π3A =8,b a ==(222π828cos3c c =+-⨯⨯⨯即,解得或,故C 错误;28120c c --=2c =6c =当时,,所以为钝角, 2c=222cos 02a c b B ac +-===<B 此时为钝角三角形,故A 错误;ABC A 当时,2c =11sin 8222S bc A ==⨯⨯=当时,6c =11sin 8622S bc A ==⨯⨯=所以面积为B 正确;ABC A 设外接圆的半径为R,由正弦定理得,所以ABCA 2sin a R A ===R =所以外接圆的面积为,故D 正确;ABC A 2252πππ3R ⎛== ⎝故选:BD.三、填空题13.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【分析】利用计算即可.11A NMD D AMN V V --=【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 14.在△中,角,,所对的边分别为,,,表示△的面积,若ABC A B C a b c S ABC ,,则__________.cos cos sin a B b A c C +=2221()4S b c a =+-B ∠=【答案】4π【详解】试题分析:∵,∴,∴222cos 2b c a A bc+-=22211sin ()24S bc A b c a ==+-,∴,.∵,∴,∴11sin 2cos 24bc A bc A =⨯tan 1A =4A π=cos cos sin a B b A c C +=2sin()sin A B C +=,∴,∴.sin 1C =2C π=4B π=【解析】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把tan 1A =4A π=中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据cos cos sin a B b A c C +=90C =︒三角形内角和,进而求得.B 15.在棱长为2的正方体中,点分别是棱的中点,是上底面1111ABCD A B C D -,E F 1111,C D B C P 内一点(含边界),若平面,则点的轨迹长为___________.1111D C B A AP ∥BDEF P【分析】由平行关系得出点轨迹后计算P 【详解】如图,取中点,中点,可知,11A D G 11A B H //AH DE //AG BF ,故平面平面,故点的轨迹为线段AG AH A = //AGH BDEF P GHGH =16.已知点为的外心,外接圆半径为,且满足,则的面积为O ABC A 12340OA OB OC ++=ABC A __________.【分析】由题意得到,利用,分别求得向量的||||||1OA OB OC === 2340OA OB OC ++=,,OA OB OC 两两夹角的余弦值,得出正弦值,结合三角形的面积公式,即可求解. 【详解】如图所示,因为点为的外心,可得,O ABC A ||||||1OA OB OC ===由,可得①,②,2340OA OB OC ++= 234OA OB OC +=- 342OB OC OA +=- 243OA OC OB+=- ③;①式两边平方得,可得,所以;412916OA OB +⋅+= 14OA OB ⋅= 1cos 4AOB ∠=同理②③两边分别平方,可得,,7cos 8BOC ∠=-11cos 16AOC ∠=-则,, sin AOB ∠=sin BOC ∠=sin AOC ∠=所以故答案为:11111111222ABC AOB BOC AOC S S S S =++=⨯⨯⨯⨯⨯⨯=A A A A四、解答题17.设向量满足,且,a b1==a b r r 32a b -=(1)求与夹角的大小;a b (2)求在上的投影向量.a b + b 【答案】(1) π3(2) 32b【分析】(1)利用数量积的运算律有,结合已知和向量数量积的定义求夹角2291247a a b b -⋅+= 即可;(2)所求投影向量为,根据已知和数量积的运算律求投影向量即可. ()||||a b b b b b +⋅⋅ 【详解】(1)由题设,,222232(32)91247a b a b a a b b -=-=-⋅+= 1==a b r r 所以,则,, 1312cos ,7a b -= 1cos ,2a b = ,],0π[a b ∈ 所以. π,3a b = (2)由在上的投影向量. a b + b 22()32||||||a b b b a b b b b b b b +⋅⋅+⋅=⋅= 18.已知圆锥的底面半径,高6R =8h =(1)求圆锥的表面积和体积(2)如图若圆柱内接于该圆锥,试求圆柱侧面积的最大值O O '【答案】(1),;96π96π(2).24π【分析】(1)由已知求得圆锥的母线长,再由圆锥的侧面积与体积公式求解;(2)作出圆柱与圆锥的截面图,把圆柱的侧面积用h 表示,然后结合二次函数求最值.【详解】(1)∵圆锥的底面半径R =6,高H =8,圆锥的母线长, ∴10L ==则表面积,体积. 26036π96πS RL R πππ=+=+=21963V R H ==ππ(2)作出圆锥、圆柱的轴截面如图所示,其中,8,6,(08)SO OA OB OK h h ====<<设圆柱底面半径为r ,则,即 . 868r h -=3(8)4r h =-设圆柱的侧面积为. 23322(8)(8)42r h h h h h S =⋅=⋅-'⋅=-+πππ当时,有最大值为.4h =S '24π19.在①;②;③sin cos 0a B A =()22sin sin sin sin sin B C A B C -=-这三个条件中任选一个,补充在下面问题的横线上,并加以解答.问()2cos cos cos A c B b C a +=题:的内角所对的边分别为,且满足________.ABC A ,,A B C ,,a b c (1)求A ;(2)若,求的面积.a =sin 2sin C B =ABC A 注:如果选择多个条件分别解答,按第一个解答给分.【答案】(1)π3【分析】(1)选择①,由正弦定理边化角可得,求得答案;选择②,由正弦定sin 0A A =理边化角,再结合余弦定理求得答案;选择③,由正弦定理边化角,再结合两角和的正弦公式求得答案;(2)利用正弦定理角化边,结合余弦定理即可求得,利用三角形面积公式即得答案.,b c【详解】(1)选择①,,sin cos 0a B A =由正弦定理,得, sin sin cos 0A B B A =而,故(0,π),sin 0B B ∈∴≠sin 0,tan A A A =∴=. π(0,π),3A A ∈∴=选择②,,()22sin sin sin sin sin B C A B C -=-由正弦定理,得,整理得,22()b c a bc -=-222b c a bc +-=又 而. 2221cos ,22b c a A bc +-==π(0,π),3A A ∈∴=选择③,,()2cos cos cos A c B b C a +=由正弦定理,得,()2cos sin cos cos sin sin A C B C B A +=即,即,()2cos sin sin A B C A +=2cos sin sin A A A =又, (0,π),sin 0A A ∈∴≠所以,故. 1cos 2A =π3A =(2)由若,可得,a =sin 2sin C B =2cb =故,即, 222cos 2bc a A bc+-=22153,1,224b b c b -=∴==故11sin 1222ABC S bc A ==⨯⨯=A20.已知函数的图象相邻对称中心之间的距离为. ()()2cos cos 0f x x x x ωωωω=->π2(1)求函数的单调递增区间;()f x (2)若函数,且在上有两个零点,求的取值范围. ()()g x f x b =-()g x π0,2⎡⎤⎢⎥⎣⎦b 【答案】(1) ()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z (2) 10,2⎡⎫⎪⎢⎣⎭【分析】(1)由三角恒等变换化简函数解析式,根据题意可得出函数的最小正周期,结合正()f x 弦型函数的周期公式可求得的值,再利用正弦型函数的单调性可求得函数的单调递增区ω()f x 间;(2)分析函数在上的单调性,根据已知条件可得出关于的不等式组,解之即可. ()g x π0,2⎡⎤⎢⎥⎣⎦b【详解】(1)解:因为 ()21cos 2cos cos 22x f x x x x x ωωωωω+=-=-, 11π12cos 2sin 22262x x x ωωω⎛⎫=--=-- ⎪⎝⎭因为函数图象相邻对称中心之间的距离为,故函数的最小正周期为, π2()f x π因为,则,则,故. 0ω>2π22πω==1ω=()π1sin 262f x x ⎛⎫=-- ⎪⎝⎭由可得, ()πππ2π22π262k x k k -≤-≤+∈Z ()ππππ63k x k k -≤≤+∈Z 因此,函数的单调递增区间为. ()f x ()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z (2)解:因为, ()()π1sin 262g x f x b x b ⎛⎫=-=--- ⎪⎝⎭当时,, π02x ≤≤ππ5π2666x -≤-≤由可得,所以,函数在上单调递增, πππ2662x -≤-≤π03x ≤≤()g x π0,3⎡⎤⎢⎥⎣⎦由可得,所以,函数在上单调递减, ππ5π2266x ≤-≤ππ32x ≤≤()g x ππ,32⎡⎤⎢⎥⎣⎦因为,, ()max ππ11sin 3222g x g b b ⎛⎫==--=- ⎪⎝⎭()π10sin 162g b b ⎛⎫=---=-- ⎪⎝⎭, ππ1sin π262g b b ⎛⎫⎛⎫=---=- ⎪ ⎪⎝⎭⎝⎭要使得函数在上有两个零点,则,解得, ()g x π0,2⎡⎤⎢⎥⎣⎦π1032π02g b g b ⎧⎛⎫=-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-≤ ⎪⎪⎝⎭⎩102b ≤<因此,实数的取值范围是. b 10,2⎡⎫⎪⎢⎣⎭21.如图所示,在四棱锥中,底面为平行四边形,侧面为正三角形,为P ABCD -ABCD PAD M 线段上一点,为的中点.PD N BC(1)当为的中点时,求证:平面.M PD //MN PAB (2)当平面,求出点的位置,说明理由.//PB AMN M【答案】(1)证明见解析;(2)存在点M ,点M 为PD 上靠近P 点的三等分点,理由见解析.【分析】(1)取中点为,连接,利用中位线、平行四边形性质及平行公理有AP E ,EM EB ,即为平行四边形,则,最后根据线面平行的判定证结论; //,BN ME BN ME =BNME //MN BE (2)连接,相交于,连接,由线面平行的性质得,利用相似比可得,AN BD O OM //PB OM ,即可判断的位置. 12PM MD =M 【详解】(1)取中点为,连接,AP E ,EM EB在中,为的中点,为中点,PAD A M PD E AP , 1//,2EM AD EM AD ∴=在平行四边形中,为的中点,ABCD N BC , 1//,2BN AD BN AD ∴=,//,BN ME BN ME ∴=四边形为平行四边形,∴BNME 面面,//,MN BE MN ∴⊄,PAB BE ⊂PAB 平面;//MN ∴PAB (2)连接,相交于,连接,,AN BD O OM 面,面面面,//PB AMN PBD ,AMN OM PB =⊂PBD ,, //PB OM ∴12PM OB BN MD OD AD ===即存在点M ,M 为PD 上靠近P 点的三等分点.22.在路边安装路灯,灯柱与地面垂直(满足),灯杆与灯柱所在平面与AB 90BAD ∠=︒BC AB 道路垂直,且,路灯采用锥形灯罩,射出的光线如图中阴影部分所示,已知120ABC ∠=︒C ,路宽.设灯柱高,.60ACD ∠=︒12m AD =()m AB h =ACB θ∠=()3045θ︒≤≤︒(1)求灯柱的高(用表示);h θ(2)若灯杆与灯柱所用材料相同,记此用料长度和为,求关于的函数表达式,并求出BC AB S S θS 的最小值.【答案】(1)8sin 2h θ=()3045θ︒≤≤︒(2),米8sin(260)S θ=+︒+()3045θ︒≤≤︒(min 4S =+【分析】(1)分别在△、△中,应用正弦定理求、,即可得解析式;ACD ABC AC AB (2)应用正弦定理求得,并应用差角正弦公式、倍角公式、辅助角公式化16cos sin(60)BC θθ=︒-简得到.8sin(260)S θ=+︒+【详解】(1)由题设,,, 90ADC θ∠=︒-60ACD ∠=︒12m AD =在△中,则, ACD sin sin AD AC ACD ADC =∠∠sin sin AD ADC AC ACD θ∠===∠在△中,则. ABC sin sin AB AC ABC θ=∠sin 8sin 2sin AC h AB ABC θθ====∠所以.8sin 2h θ=()3045θ︒≤≤︒(2)由题意,而,则S AB BC =+sin(60)sin BC AC ABCθ=︒-∠,16cos sin(60)BC θθ==︒-所以2116cos sin )8sin cos2BC θθθθθθ=⨯-=-24sin 2θθ=-+结合(1)知:4sin 228sin(260)Sθθθ=++=+︒+又,120260150θ︒≤+︒≤︒所以,当,时,米. 260150θ+︒=︒45θ=︒(min 1842S =⨯+=+。
大学高数期中考试试卷一、选择题(每题2分,共20分)1. 函数f(x)=\(\frac{1}{x}\)在x=0处:A. 连续B. 可导C. 不连续D. 可积2. 若函数f(x)在闭区间[a,b]上连续,则:A. 必存在最大值B. 必存在最小值C. 必存在零点D. 以上都不对3. 微分方程\(\frac{dy}{dx} + y = e^x\)的解是:A. \(y = e^x - xe^x\)B. \(y = e^x + ce^{-x}\)C. \(y = e^x - ce^x\)D. \(y = e^x\)4. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 无法确定5. 函数\(\sin(x)\)的原函数是:A. \(x\)B. \(\cos(x)\)C. \(-\cos(x)\)D. \(\sin(x)\)6. 若f(x)在区间(a,b)内可导,则f(x)在该区间内:A. 必定单调递增B. 必定单调递减C. 必定连续D. 以上都不对7. 曲线y=\(\sqrt{x}\)与直线x=4所围成的面积是:A. \(\frac{16}{3}\)B. \(\frac{32}{3}\)C. \(\frac{64}{3}\)D. \(\frac{128}{3}\)8. 函数\(\ln(x)\)的泰勒展开式是:A. \(x - 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots\)B. \(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\)C. \(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots\)D. \(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} -\cdots\)9. 若\(\int_{0}^{1} f(x)dx = 2\),则\(\int_{0}^{1} x f(x)dx\)的值是:A. 0B. 1C. 2D. 无法确定10. 函数\(\frac{1}{1+x^2}\)的不定积分是:A. \(\ln(1+x^2)\)B. \(\arctan(x)\)C. \(\ln|x|\)D. \(\ln|x+1|\)二、填空题(每空1分,共10分)1. 若\(\frac{dy}{dx} = 3x^2\),则\(dy\) = __________。
华东理工大学级(下)高等数学期中考试试卷(学分)解答————————————————————————————————作者:————————————————————————————————日期:华东理工大学2013–2014学年第二学期《高等数学(下)11学分》课程期中考试试卷 2014.4开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时间 120 分钟考生姓名: 学号: 班级 任课教师题序 一二三四五六总分得分 阅卷人注 意:试 卷 共 两 页 六 大 题一.填空题(本大题共11小题,每小题4分,共44分):1、微分方程222'y x e yx y -=的通解为 。
答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。
答:x C x C x C C y 3sin 3cos 4321+++=3、函数 zxy u )(= 对变量x 的偏导数 =x u 。
答:12)(--=z x xy x yz u 4、设 ))arctan(,,(xyz e y xze f u zy+=,其中f 关于所有变量有一阶连续偏导数, 则=∂∂yu。
答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所确定,其中f 关于所有变量有一阶连续偏导数,则∂∂zy= 。
答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a ρρρ,则=+⨯+⋅)]()[(c b b a b ρρρρϖ 。
答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。
答:228、微分方程 0'2''=+y xy 的通解=y 。
答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。
高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .以上都不对 2.将八进制数135(8)化为二进制数为( ) A .1 110 101(2) B .1 010 101(2) C .1 111 001(2)D .1 011 101(2)3.某产品在某零售摊位上的零售价x (元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程a ˆx b ˆy ˆ+=中的b ˆ=-4,据此模型预计零售价定为16元时,销售量为( )A .48B .45C .50D .514.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.65.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .106.如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤97.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A .甲、乙两人的各科平均分相同B .甲的中位数是83,乙的中位数是85C .甲各科成绩比乙各科成绩稳定D .甲的众数是89,乙的众数为878.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .29.利用秦九韶算法求f (x )=x 5+x 3+x 2+x +1当x =3时的值为( ) A .121 B .283 C .321 D .23910.如图,矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( ) A .7.68 B .8.68 C .16.32D .17.3211.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. 91B. 92C. 187D.9412.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=21(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为32π,弦长为m 340的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3≈π,73.13≈) A . 15 B . 16 C . 17 D . 18第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归方程:y ∧=0.234x +0.521.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元. 14.已知sin(π4+α)=32,则sin(3π4-α)的值为________. 15.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件B A Y 发生的概率为________.(B 表示B 的对立事件)16.设函数y =f (x )在区间[0,1]上的图像是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得到S 的近似值为________. 二、解答题(17题10分,其余均12分)17.(10分) 已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.18.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程a ˆx b ˆyˆ+= (3)试预测加工10个零件需要多少小时?(注:b ∧=∑ni =1x i y i -n x - y -∑n i =1x i 2-n x -2,a ∧=y --b ∧ x -)零件的个数x(个)2345加工的时间y(小时) 2.5 3 4 4.519.(12分)已知α是第三象限角,f (α)=()()()α-π-•α-π-α-•α-π•α-πsin tan tan )2cos()sin((1)化简f (α);(2)若⎪⎭⎫ ⎝⎛π-α23cos =15,求f (α)的值;20.(12分)某校为了解高三年级学生的数学学习情况,在一次数学考试后随机抽取n 名学生的数学成绩,制成如下所示的频率分布表.(1)求a ,b ,n 的值;(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.21.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.22.(12分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)求这两个班参赛学生的成绩的中位数.高一下期期中考试数学试题答案一、选择题B D B D A B D D BCD B二、填空题13. 0.234 14.3215.32 16.N1N三、解答题(17题10分,其余均12分)17.解:如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x-2)2+(y-2)2≤9的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P1=14π×224×4=π16.18.解:(1)散点图如图.(2)由表中数据得∑4i=1x i y i=52.5,x -=3.5,y -=3.5,∑4i =1x i 2=54. ∴b ∧=0.7,∴a ∧=1.05. ∴y ∧=0.7x +1.05.(3)将x =10代入回归直线方程,得y ∧=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.19.解:(1)f (α)==-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-32π=cos ⎝ ⎛⎭⎪⎫32π-α=-sin α,又cos ⎝⎛⎭⎪⎫α-32π=15,∴sin α=-15.又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.20.解:(1)由表中数据,得5n =0.05,a n =0.35,20n=b ,解得n =100,a =35,b=0.20.(2)由题意,得第三、四、五组分别抽取的学生人数为3060×6=3,2060×6=2,1060×6=1.第三组的3名学生记为a 1,a 2,a 3,第四组的2名学生记为b 1,b 2,第五组的1名学生记为c ,则从6名学生中随机抽取2名,共有15种不同情况,分别为{a 1,a 2},{a 1,a 3},{a 1,b 1},{a 1,b 2},{a 1,c },{a 2,a 3},{a 2,b 1},{a 2,b 2},{a 2,c },{a 3,b 1},{a 3,b 2},{a 3,c },{b 1,b 2},{b 1,c },{b 2,c }.其中第三组的3名学生均未被抽到的情况共有3种,分别为{b 1,b 2},{b 1,c },{b 2,c }. 故第三组中至少有1名学生被抽到与老师面谈的概率为1-315=45.21解:(1)p=3162(2)先从袋中随机取一个球,记下编号m,放回后,再从袋中随机取一个球,记下编号n,可能的结果为(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16个,满足条件的事件为(1,3)(1,4)(2,4)共3个所以n ≥m+2的概率为p=16322.解:(1)各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人.∵第二小组的频数为40人,频率为0.40,∴40x=0.40,解得x=100(人).所以九年级两个班参赛的学生人数为100人.(3)∵(0.03+0.04)×10>0.5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.设中位数为x则0.03×10+(x-59.5)×0.04=0.5得x=64.5高一下学期期中数学考试试卷(时间:120分钟满分:150分)第Ⅰ卷 (选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则( )A. B. C. D.2.( )A.0 B.1 C.2 D.43.若,则下列结论正确的是( )A. B.C. D.4.下列函数中,既不是奇函数,也不是偶函数的是( )A.B.C.D.5.函数的定义域是( )A. B. C. D.6.函数过定点( )A. B. C. D.7.已知,,,则=( )A. B. C. D.8.已知函数为幂函数,则实数的值为( )A.或 B.或 C. D.9.已知函数,若,则实数等于( )A .2 B. 45 C .12 D .910.若,则函数与的图象可能是下列四个选项中的( )11.已知是定义在上的奇函数,当时,,则当时,( )AB .C .D .12.若函数是定义在上的偶函数,在上是增函数,且,则使得的的取值范围是( ) A .B . C. D .第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.设集合,集合,若,则实数14.若,则=15.如果函数,的增减性相同,则的取值范围是.16.已知是方程的两个根,则的值是.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值(式中字母都是正数): (1);(2)已知,求的值.18.(本小题满分12分)已知集合,.(1)若,求;(2)⊆,求的取值范围.19.(本小题满分12分)已知函数+2.(1)求在区间上的最大值和最小值;(2)若在上是单调函数,求的取值范围.20.(本小题满分12分)已知函数是R上的奇函数,(1)求的值;(2)先判断的单调性,再证明.21.(本小题满分12分)已知函数,.(1)求函数的定义域;(2)讨论不等式中的取值范围.22.(本小题满分12分)若二次函数满足且. (1)求的解析式;(2)若在区间上不等式恒成立,求实数的取值范围.高一下学期期中考试试卷数学时量:120分钟 总分:150分一、选择题(本大题共12个小题,每小题5分,共60分)1.3x cos y =是( )A .周期为π6的奇函数B .周期为3π的奇函数C .周期为π6的偶函数D .周期为3π的偶函数2.已知sin α=41,则cos 2α的值为( )A .21B .87- C.21- D.873.已知平面向量()()3,2,4,1==→→b a ,则向量=+→→b a 5251( )A .()1,2B .()5,3 C.()3,5 D.()2,14.已知平面向量a =(2,4),b =(-4,m ),且a ⊥b ,则m =( )A .4B .2C .-4D .-25.为得到函数⎪⎭⎫ ⎝⎛+=33sin πx y 的图象,只需将函数y =sin 3x 的图象( )A .向左平移9π个长度单位B .向右平移9π个长度单位C .向左平移3π个长度单位D .向右平移3π个长度单位6.设a =(8,-2),b =(-3,4),c =(2,3),则(a +2b )·c 等于( )A .(4,18)B .22C .-6 D.(18,4)7.已知a ·b =122,|a |=4,a 与b 的夹角为45°,则|b |为( )A .12 A .3 C .6 D .98.若-π2<α<0,则点P (sin α,cos α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知α∠的终边经过点()31P ,,则=αsin ( )A .21 B .10103C .31D .3310.若=)(x f ⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛+2,32032sin ππππx x f x x ,,求)32(πf =( ) A.0 B.23C.21 D.1 11.已知2tan -=α,则αααα22cos sin cos sin 3-的值是( ) A .2- B . 3 C .2 D .3- 12.在Rt △ABC 中,∠C =90°,AC =3,则AB →·AC→等于( )A .-3B .-6C .9D .6 二、填空题(本大题共4小题,每小题5分,共20分)13.已知AB →=(2,7),AC →=(-5,8),则BC →=__________________.14.函数()()()R x x x x f ∈-=cos sin 2的最小正周期为________,最大值为________. 15.设a =(5,-2),b =(6,2),则2|a |2-12a ·b =______________.16.已知tan α=-2,tan(α+β)=5,则tan β的值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知()ππθθ2,,53cos ∈=,求⎪⎭⎫ ⎝⎛+6sin πθ以及⎪⎭⎫ ⎝⎛-4tan πθ的值.18.(10分)设函数()⎪⎭⎫ ⎝⎛+=6sin 2πωx x f ,0>ω,最小正周期为2π. (1)求()0f .(2)求()x f 的解析式.(3)求()x f 的单调递增区间.19.(12分)已知向量a =(3,2),b =(-1,3),c =(5,2).(1)求6a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ; (3)若(a +k c )//(2b -a ),求实数k . 20. (12分)已知23παπ<<,211-tan tan -=αα.(1)求αtan 的值。
微积分(二)期中复习题第一部分1. 设2,4a b ==,若向量32a b -垂直于向量a b +,向量2a b +垂直于向量43a b -,求a 与b 之间的夹角,并求以32a b -和2a b +为邻边的平行四边形的面积.2.已知向量(,,2)a x y =-与向量(4,1,3)b =垂直,且a 的模等于b 在z 轴上的投影,求 ,x y .3.证明:两直线1111:112x y z L -+-==-与223:12x y L z -+==-相交,并求此两直线所在平面的方程.4.求过直线110:220x y L x y z ++=⎧⎨++=⎩且与直线211:211x y z L -+==--平行的平面方程.5.求过点(1,1,1)P 且与直线12:113x y z L +==-垂直相交的直线方程.6.求曲线222224:3x y z x y z ⎧++=⎪Γ⎨+=⎪⎩在xOy 面的投影。
7.求曲线2244:0x y y z ⎧++=Γ⎨=⎩绕x 轴旋转一周所得的曲面。
第二部分1、求函数)1ln(4222y x y x z ---=定义域。
2、求()22001lim sin .x y x y xy→→+3、讨论函数⎪⎩⎪⎨⎧++=2)(2sin ),(2222y x y x y x f 002222=+≠+y x y x 在点(0,0)处的连续性。
4、设(,)z f x y =由ln x z z y =确定,求22,z z x x∂∂∂∂。
5、设222z y x eu ++=,而y x z sin 2=,求xu ∂∂,du y u ,∂∂。
6、设),(22y x y x f z -=,其中),(υu f 具有二阶连续偏导数,求y x z x z ∂∂∂∂∂2, 。
7、求函数223246u x y y x z =-++在原点沿()2,3,1OA =方向的方向导数。
8、设32u x y z =-,求u 在点()2,1,1-处的方向导数的最大值及取得最大值的方向。
高等数学(下册)期中考试20110504一、 填空题(每小题4分,共计40分)1、已知三点 A(1,0,2),B(2,1,-1),C(0,2,1),则三角形ABC 的面积为 。
2、已知曲面224y x z --=在点P 处的切平面平行于平面0122=-++z y x ,则点P 的坐标是 。
3、函数),(y x f z =在),(00y x 处可微的充分条件为 , 必要条件为 。
4、设方程az z y x 2222=++确定函数),(y x z z =,则全微分dz 。
5、设⎰⎰=202),(x xdy y x f dx I ,交换积分次序后,=I 。
6、设∑是曲面22y x z +=介于1,0==z z 之间的部分,则曲面面积为 。
7、⎰=+Lds y x )(22 ,其中222:a y x L =+。
8、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dv z y x f I ),,(化为先对z 再对y 最后对x 三次积分,则I= 。
9、设Ω:,0,1222≥≤++z z y x 若将三重积分⎰⎰⎰Ω=zdV I 在球面坐标系下化为三次积分,则I= 。
10、设L是椭圆周1422=+y x 的正向,则曲线积分⎰+-L y x ydxxdy 224= 。
二、求解下列问题(共计14分) 1、 (7分)求函数)ln(22z y x u ++=在点A (1, 0,1)沿A 指向点B (3,-2,2)的方向的方向导数。
2、 (7分)已知函数(,)f u v 具有二阶连续偏导数,(1,1)2f =是(,)f u v 的极值,(,(,)).z f x y f x y =+, 求2(1,1).zx y∂∂∂三、求解下列问题(共计16分)1、(8分)计算⎰⎰⎰Ω+++=3)1(z y x dvI ,其中Ω是由0,0,0===z y x 及1=++z y x 所围成的立体域。
2、(8分)设)(x f 为连续函数,定义⎰⎰⎰Ω++=dv y x f z t F )]([)(222,其中{}222,0|),,(t y x h z z y x ≤+≤≤=Ω,求dtdF 。
2022-2023学年上海师范大学附属中学高一下学期期中数学试题一、填空题1.若tan 2α=,则sin cos sin cos αααα-+的值为____________.【答案】13【分析】将sin cos sin cos αααα-+分子分母同除以cos α,即可求得答案.【详解】由题意tan 2α=,则cos 0α≠,则sin cos tan 1211sin cos tan 1213αααααα---===+++,故答案为:132.已知向量()()1,1,2,3a b ==,则a 在b 方向上的数量投影为___________【答案】51313【分析】根据平面向量投影的定义计算即可【详解】向量()()1,1,2,3a b ==,12135a b ∴⋅=⨯+⨯= ,222313b =+= ,所以a在b 方向上的数量投影为5513cos 1313a b a bθ⋅===;故答案为:513133.若1πcos ,0,72αα⎛⎫=∈ ⎪⎝⎭,则πcos 3α⎛⎫+= ⎪⎝⎭____________.【答案】1114-【分析】首先根据正余弦的平方关系求出sin α的值,再利用余弦两角和公式化简cos()3πα+,把得到的sin α,cos α代入即可.【详解】解: 若1cos 7α=,π(0,)2α∈2143sin 1cos 1497αα∴=-=-=πππ1143311cos()cos cos sin sin 333727214ααα∴+=-=⨯-⨯=-故答案为:1114-.4.若向量,a b的夹角150︒,||3,||4a b == ,则|2|a b += ___________.【答案】2【分析】直接根据平面向量数量积的概念以及向量模的表示即可得结果.【详解】因为向量a ,b的夹角为150︒,3a = ,4b = ,所以3cos1503462a b a b ⎛⎫⋅=⨯⨯=⨯⨯-=- ⎪ ⎪⎝⎭,所以222|2||2|441224162a b a b a a b b +=+=+⋅+=-+= 故答案为:2.5.已知21,e e 是夹角为2π3的两个单位向量,若向量1232a e e =- ,则1a e ⋅= __________.【答案】4【分析】直接由数量积的定义计算即可.【详解】依题意得,212π111cos 32e e ⋅=⋅⋅=- ,于是()211111223232314a e e e e e e e ⋅=⋅=-⋅=+=- .故答案为:46.已知函数π2cos 24y x ⎛⎫=- ⎪⎝⎭,当函数值为2-时,自变量x 的取值集合为__________.【答案】5ππ,Z 8xx k k ⎧⎫=+∈⎨⎬⎩⎭∣【分析】由题意可求πcos 214x ⎛⎫-=- ⎪⎝⎭,进而利用余弦函数的性质即可求解.【详解】函数π2cos 24y x ⎛⎫=- ⎪⎝⎭,当函数值为2-时,则cos 214x π⎛⎫-=- ⎪⎝⎭,所以π2π2π,Z 4x k k -=+∈,则5ππ,Z 8x k k =+∈,故自变量x 的取值集合为5ππ,Z 8xx k k ⎧⎫=+∈⎨⎬⎩⎭∣.故答案为:5ππ,Z 8xx k k ⎧⎫=+∈⎨⎬⎩⎭∣.7.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,函数()f x 的对称中心与对称轴4x π=的最小距离为6π,则()f x =_________.【答案】2sin 34x π⎛⎫- ⎪⎝⎭【分析】由题设知函数的周期223T ππω==,即可求出ω,再由4x π=是函数()f x 的对称轴可求出ϕ,即可求出函数的解析式.【详解】由函数()f x 的对称中心与对称轴4x π=的最小距离为6π,46T π∴=即223T ππω==,3ω∴=由4x π=是函数()f x 的对称轴,3,42k k Z ππϕπ∴⨯+=+∈,即,4k k Zπϕπ=-∈又||2ϕπ<,令0k =,则4πϕ=-,故n (4)2si 3x f x π⎛-=⎫ ⎪⎝⎭故答案为:2sin 34x π⎛⎫- ⎪⎝⎭【点睛】方法点睛:本题主要考查由函数sin()y A x ωϕ=+的部分图像求解析式,由函数的周期可求出ω,由五点法作图可求得ϕ,即可求出函数的解析式,考查学生的逻辑推理与运算能力,属于中档题.8.已知关于x 的方程22sin 3sin 210x x m -+-=在,2ππ⎡⎤⎢⎥⎣⎦上有两个不同的实数根,则m 的取值范围是___________.【答案】(]2,1--【分析】利用三角函数的倍角公式和辅助角公式,将方程整理化简,利用三角函数的图象和性质,确定条件关系,进行求解即可.【详解】 22sin 3sin 210x x m -+-=,∴1cos 23sin 210x x m --+-=,即cos 23sin 20x x m +-=,∴2sin(2)6x m π+=,即sin(2)62m x π+=,[,]2x ππ∈ ,7132[,]666x πππ+∈,设7132,[,]666x t t πππ+=∈,则sin 2mt =在713[,]66t ππ∈上有两个不同的实数根,∴1sin y t =,22m y =,713[,]66t ππ∈的图像有两个不同的交点,如图由图象可知,1122m -<≤-,即21m -<≤-故答案为:(2,1]--9.声音是由物体的振动产生的能引起听觉的波,每一个音都是由纯音合成的,纯音的数学模型是函数sin πy A t ω=.某技术人员获取了某种声波,其数学模型记为()y H t =,部分图象如图所示,对该声波进行逆向分析,发现它是由两种不同的纯音合成的,满足()()9sin 2πsin π0810H t t t ωω=+<<,其中50.8663H ⎛⎫≈- ⎪⎝⎭,则ω=_________.(参考数据:3 1.732≈)【答案】3【分析】将53t =代入()H t ,结合题干数据可得05πsin 3ω⎛⎫⎪⎭=⎝,又()10H =,可得3ω=或6ω=,又1不是()H x 的周期,从而可求出满足题意的ω的值.【详解】由()()9sin 2πsin π0810H t t t ωω=+<<,且50.8663H ⎛⎫≈- ⎪⎝⎭,得5595sin 2πsin π33103H ω⎛⎫⎛⎫⎛⎫=⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0.86610π95π395πsinsin sin 31032103ωω⎛⎫⎛⎫=+=-≈-+ ⎪ ⎪⎝⎭⎝⎭,因为3 1.732≈,所以3 1.7320.86622≈=,所以05πsin 3ω⎛⎫ ⎪⎭=⎝.由图可知()991sin 2πsin πsin π01010H ωω=+==,故ππ,k k ω=∈Z ,即,k k ω=∈Z .因为08ω<<,且05πsin 3ω⎛⎫⎪⎭=⎝,所以3ω=或6ω=.由图可知,1不是()H x 的周期,当6ω=时,()9sin 2πsin 6π10H t t t =+,此时()()()()991sin 2π1sin 6π1sin 2πsin 6π1010H t t t t t H t +=+++=+=,周期为1,不符合题意.当3ω=时,()9sin 2πsin 3π10H t t t =+,易知()()1H t H t +≠,满足题意.综上,3ω=.故答案为:3.10.已知函数()()3sin cos 0f x x x ωωω=->在区间π3π,34⎡⎤-⎢⎥⎣⎦上单调递增,且在区间[]0,π上只取得一次最大值,则ω的最大值是_______【答案】89【分析】根据辅助角公式,结合换元法、正弦型函数的单调性和最值性质进行求解即可.【详解】()π3sin cos 2sin 6f x x x x ωωω⎛⎫=-=- ⎪⎝⎭,令π6x t ω-=,因为π3π,34x ⎡⎤∈-⎢⎥⎣⎦,所以ππ3ππ,3646t ωω⎡⎤∈---⎢⎥⎣⎦,因为0ω>,所以()2sin f t t =在ππ3ππ,3646t ωω⎡⎤∈---⎢⎥⎣⎦上时单调递增,所以有3πππ84620πππ9362ωωω⎧-≤⎪⎪⇒<≤⎨⎪--≥-⎪⎩,当[]0,πx ∈时,ππ,π66t ω⎡⎤∈--⎢⎥⎣⎦,所以()2sin f t t =在ππ,π66t ω⎡⎤∈--⎢⎥⎣⎦时,只取得一次最大值,因此有ππ5π28π26233ωω≤-<⇒≤<,综上所述:2839ω≤≤,所以ω的最大值是89,故答案为:89【点睛】关键点睛:利用换元法,根据正弦型函数的最值性质和单调性是解题的关键.11.已知函数23tan ,,,2332()63233,,33x x f x x x πππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪-+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________.【答案】47,912ππ⎧⎫⎨⎬⎩⎭【分析】先确定()f x 在区间[)0,a 上有最大值3,且4,33a ππ⎛⎫∈ ⎪⎝⎭,因此()f x 在区间[],2a a 上的最大值为33.然后按()f x 在x a =处或2x a =处取最大值33分类讨论,数形结合,进而可得结果.【详解】依题意可知,()f x 在区间[)0,a 上有最大值必然为3,且4,33a ππ⎛⎫∈ ⎪⎝⎭,所以()f x 在区间[],2a a 上的最大值为33.(1)若()f x 在x a =处取最大值33,即633333a π-⋅+=,解得49a π=,此时87296a ππ=<,所以49a π=适合题意;(2)若()f x 在2x a =处取最大值33,即3tan 23a =,解得712a π=,此时49a π>,所以712a π=适合题意.综上可知,a 的取值集合是47,912ππ⎧⎫⎨⎬⎩⎭.故答案为:47,912ππ⎧⎫⎨⎬⎩⎭.【点睛】关键点点睛:本题的关键点在于确定()f x 在区间[)0,a 上有最大值3,且4,33a ππ⎛⎫∈ ⎪⎝⎭,进而可得()f x 在区间[],2a a 上的最大值为33.12.在ABC 中,角A B C 、、的对边分别为a b c 、、,且a b c 、、为正数,120BAC ∠=︒,AO 为BC 边上的中线,3AO =,则2c b -的取值范围是__________.【答案】()43,23-【分析】先利用平面向量得到2AO AB AC =+,从而求得2212b c bc +=+,设2z c b =-,代入消去c得到关于b 的一元二次方程,从而由判别式得到4343z -≤≤,再分类讨论对称轴的正负求得023z <<,最后由余弦定理得到1220bc +>,从而利用恒成立问题求得43z >-,综上即可得解.【详解】依题意得,,,AB c AC b BC a ===,,,a b c 为正数.又ABC 中,120,BAC AO ∠︒=为BC 边上的中线,3AO =,所以2AO AB AC =+ ,两边平方得22242AO AB AB AC AC =+⋅+ ,则2212b c bc =+-,故2212b c bc +=+①,设22,2b z AB AC c b c z -==+=-,代入①得()22(2)122b z b b z b ++=++,整理得2233120b zb z ++-=②,此方程至少有1个正根,首先()22Δ912120z z =--≥,解得4343z -≤≤③,对于方程②:若对称秞30,03zz z -=-><,则方程②至少1个正根,符合题意;若对称轴30,03zz z -=-<>,要使方程②至少有一个正根,则需2120z -<,解得023z <<;在三角形ABC 中,由余弦定理得222222cos1201220a b c bc b c bc bc =+-︒=++=+>恒成立,所以6c b >-,则622z c b b c=->--恒成立,由于666222243b b b b b b ⎛⎫--=-+≤-⋅=- ⎪⎝⎭,当且仅当62b b =,即3b =时,等号成立,所以43z >-,结合③可得4343z -<≤.综上所述,z 也即2AB AC -的取值范围是()43,23-.故答案为:()43,23-.【点睛】关键点睛:本题的解决关键是假设2z c b =-,将两变量范围问题转化为一个变量z 的范围问题,再由平面向量与余弦定理依次缩小z 的范围,从而得解.二、单选题13.已知两个单位向量a 与b的夹角为θ,则“60θ=︒”是“12a b ⋅= ”的()A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】A【分析】用定义法,分充分性和必要性分别讨论即可.【详解】充分性:若60θ=︒,则由a 、b 是单位向量可知11cos 601122a b a b =⨯⨯︒=⨯⨯= ,即充分性得证;必要性:若12a b ⋅= ,则1cos 2a b a b θ=⨯⨯= 由a 、b 是单位向量可知1cos 2θ=,因为0180θ︒≤≤︒,所以60θ=︒,必要性得证.所以“60θ=︒”是“12a b ⋅= ”的充分必要条件.故选:A14.已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是()A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数【答案】D【分析】一次判断选项即可.【详解】∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A 正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0],f (x )=cos x +sin x =π2sin 4x ⎛⎫+ ⎪⎝⎭,则π3ππ[,]444x +∈-,故f (x )在[-π,0]上不单调,D为假命题,故选:D.15.已知锐角ABC ,23AB =,π3C =,则AB 边上的高的取值范围为()A .(]0,3B .()0,3C .(]2,3D .()2,3【答案】C【分析】设AB 边上的高为h ,根据题意得ππ62A <<,再结合条件得π2sin 216h A ⎛⎫=-+ ⎪⎝⎭,再分析求值域即可.【详解】因为ABC 为锐角三角形,π3C =,设AB 边上的高为h ,所以π022ππ032A A ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62A <<由正弦定理可得,234sin sin sin 32a b c A B C ====,所以4sin a A =,4sin b B =,因为11πsin 223S ch ab ==,所以32π3124sin sin 4sincos sin 32223abh A A A A A ⎛⎫⎛⎫==-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭2π23sin cos 2sin 3sin 21cos 22sin 216A A A A A A ⎛⎫=+=+-=-+ ⎪⎝⎭因为ππ62A <<,所以ππ5π2666A <-<,所以1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭,所以π22sin 2136A ⎛⎫<-+≤ ⎪⎝⎭,所以AB 边上的高的取值范围为(2,3].故选:C.16.设函数()()()()112233sin sin sin f x a x a x a x βββ=⋅++⋅++⋅+,其中i a 、()1,2,3i i β=为已知实常数,x ∈R ,有如下命题:(1)若()π002f f ⎛⎫== ⎪⎝⎭,则()0f x =对任意实数x 恒成立;(2)若()00f =,则函数()f x 为奇函数:(3)若π02f ⎛⎫= ⎪⎝⎭,则函数()f x 为偶函数;(4)当()22π002f f ⎛⎫+≠ ⎪⎝⎭时,若()()120f x f x ==,则()12πZ x x k k -=∈.则所有正确命题的个数是()A .1个B .2个C .3个D .4个【答案】D【分析】根据函数奇偶性的定义判断(1)(2)(3),对于(4),当()22π002f f ⎛⎫+≠ ⎪⎝⎭时,由12()()0f x f x ==,结合三角函数的性质,故可得结论.【详解】(1)若()00f =,则()()()()1122330sin sin sin 0f a a a ααα=⋅+⋅+⋅=则()()()()()112233sin sin sin f x f x a x a x a x ααα-+=⋅-++⋅-++⋅-+()()()112233sin sin sin a x a x a x ααα+⋅++⋅++⋅+[]112233cos sin sin sin 0x a a a ααα=⋅+⋅+⋅=∴函数()f x 为奇函数;若π02f ⎛⎫= ⎪⎝⎭,则112233ππππsin sin sin 2222f a a a βββ⎛⎫⎛⎫⎛⎫⎛⎫=⋅++⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112233cos cos cos 0a a a ααα=-⋅-⋅-⋅=,()()()()()112233sin sin sin f x f x a x a x a x ααα∴--=⋅-++⋅-++⋅-+()()()112233sin sin sin a x a x a x ααα-⋅+-⋅+-⋅+[]1122sin cos cos cos 0n n x a a a ααα=⋅+⋅+⋯+⋅=∴函数()f x 偶函数,故()f x 既是奇函数又是偶函数,故()0f x =对任意实数x 恒成立,故(1)正确;(2)由(1)的证明过程可知当()00f =时,函数()f x 为奇函数,正确.(3)由(1)的证明过程可知当π02f ⎛⎫= ⎪⎝⎭时,函数()f x 为偶函数,正确.(4)对于命题(4),当()22π002f f ⎛⎫+≠ ⎪⎝⎭时,()()()()112233sin sin sin f x a x a x a x ααα=⋅++⋅++⋅+ ()()112233112233cos cos cos sin sin sin sin cos a a a x a a a x αααααα=+++++令112233πcos cos cos 2a a a a f ααα⎛⎫=++= ⎪⎝⎭()112233sin sin sin 0b a a a f ααα=++=则()2222π002a b f f ⎛⎫+=+≠ ⎪⎝⎭,由辅助角公式得()()22sin cos sin f x a x b x a b x ϕ=+=++其中()()122222cos ,sin ,0a b f x f x a ba bϕϕ====++ ,则()()12,0,,0x x 是函数()y f x =的两个对称中心点,函数()y f x =的最小正周期为2π,该函数的两个相邻对称中心之间的距离为周期的一半,因此,()12πZ x x k k -=∈,命题(4)正确.故选:D.三、解答题17.设两个向量,a b满足()132,0,,22a b ⎛⎫== ⎪ ⎪⎝⎭,(1)求a b +方向的单位向量;(2)若向量27ta b +与向量a tb + 的夹角为钝角,求实数t 的取值范围.【答案】(1)5721,1414⎛⎫⎪ ⎪⎝⎭(2)141417,,222⎛⎫⎛⎫--⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)根据()132,0,,22a b ⎛⎫== ⎪ ⎪⎝⎭,求得a b +的坐标和模后求解;(2)根据向量27ta b + 与向量a tb + 的夹角为钝角,由()()270ta b a tb ++< ,且向量27ta b +不与向量a tb +反向共线求解.【详解】(1)由已知()13532,0,,2222a b ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以2253722a b ⎛⎫⎛⎫+=+= ⎪ ⎪⎪⎝⎭⎝⎭,所以57217,1414a b ⎛⎫+= ⎪ ⎪⎝⎭,即a b +方向的单位向量为5721,1414⎛⎫ ⎪ ⎪⎝⎭;(2)由已知1a b ⋅=,2,1a b == ,所以()()()22222722772157ta b a tb ta t a b tb t t +⋅+=++⋅+=++ ,因为向量27ta b +与向量a tb + 的夹角为钝角,所以()()270ta b a tb ++< ,且向量27ta b +不与向量a tb + 反向共线,设()()270ta b k a tb k +=+< ,则27t k kt=⎧⎨=⎩,解得142t =-,从而221570142t t t ⎧++<⎪⎨≠-⎪⎩,解得141417,,222t ⎛⎫⎛⎫∈--⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.18.已知函数2()23sin cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;【答案】(1)最小正周期为πT =,递增区间为ππ[π,π]63k k -++,Z k ∈;(2)[2,1]-【分析】(1)由二倍角公式,结合辅助角公式得()f x π2sin 26x ⎛⎫=- ⎪⎝⎭,再利用周期2πT ω=、正弦型函数单调性求结果;(2)由x 的范围求π26x -的范围,进而可求出πsin 26x ⎛⎫- ⎪⎝⎭的范围,从而可求()f x 的值域.【详解】(1)()3sin2cos2f x x x =-312sin 2cos222x x ⎛⎫=- ⎪ ⎪⎝⎭π2sin 26x ⎛⎫=- ⎪⎝⎭,∴函数()f x 的最小正周期为2ππ2T ==.令πππ2π22π262k x k -+≤-≤+,Z k ∈,则ππππ63k x k -+≤≤+,Z k ∈,所以单调递增区间为ππ[π,π]63k k -++,Z k ∈.(2)∵5ππ[,]126x ∈-,则ππ2[π,]66x -∈-,∴π11sin 262x ⎛⎫-≤-≤ ⎪⎝⎭,∴π22sin 216x ⎛⎫-≤-≤ ⎪⎝⎭,故函数()f x 在区间5ππ[,]126-的值域为[2,1]-.19.近年来,为“加大城市公园绿地建设力度,形成布局合理的公园体系”,许多城市陆续建起众多“口袋公园”、现计划在一块边长为200米的正方形的空地上按以下要求建造“口袋公园”、如图所示,以EF 中点A 为圆心,FG 为半径的扇形草坪区ABC ,点P 在弧BC 上(不与端点重合),AB 、弧BC 、CA 、PQ 、PR 、RQ 为步行道,其中PQ 与AB 垂直,PR 与AC 垂直.设PAB θ∠=.(1)如果点P 位于弧BC 的中点,求三条步行道PQ 、PR 、RQ 的总长度;(2)“地摊经济”对于“拉动灵活就业、增加多源收入、便利居民生活”等都有积极作用.为此街道允许在步行道PQ 、PR 、RQ 开辟临时摊点,积极推进“地摊经济”发展,预计每年能产生的经济效益分别为每米5万元、5万元及5.9万元.则这三条步行道每年能产生的经济总效益最高为多少?(精确到1万元)【答案】(1)2001003+(米)(2)2022万元【分析】(1)根据图依次求出三条线段长度即可求出总长度;(2)将PQ 、PR 、RQ 三边通过图中的关系用关于θ的等式表示,再记经济总效益W ,将W 进行表示,通过辅助角公式化简求出最值即可.【详解】(1)解:由题200,100,1003AC EA EC ==∴=,π3EAC ∴∠=,同理π3FAB ∴∠=,故π3BAC ∠=,由于点P 位于弧BC 的中点,所以点P 位于BAC ∠的角平分线上,则πsin 200sin 1006PQ PR PA PAB ==⋅∠=⨯=,3cos 20010032AQ AP PAB =∠=⨯=,因为π3BAC ∠=,1003AQ AR ==,所以ARQ 为等边三角形,则1003RQ AQ ==,因此三条街道的总长度为10010010032001003l PQ PR RQ =++=++=+(米).(2)由图可知sin 200sin PQ AP θθ==,sin 200sin 1003cos 100sin 33PR AP ππθθθθ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,cos 200cos AQ AP θθ==,cos 200cos 100cos 1003sin 33AR AP ππθθθθ⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎝⎭⎝⎭,在ARQ 中由余弦定理可知:222π2cos3RQ AQ AR AQ AR =+-()()22200cos 100cos 1003sin θθθ=++()2200cos 100cos 1003sin cos3πθθθ-⨯+30000=,则1003RQ =,设三条步行道每年能产生的经济总效益W ,则()5 5.9W PQ PR RQ =+⨯+⨯()200sin 1003cos 100sin 55903θθθ=+-⨯+π1000sin 59033θ⎛⎫=++ ⎪⎝⎭,当sin 13πθ⎛⎫+= ⎪⎝⎭即π6θ=时W 取最大值,最大值为100059032022+≈.答:三条步行道每年能产生的经济总效益最高约为2022万元.20.已知向量(cos 5,sin 5),(2cos(),2sin()),33a x xb x x ππ==-- 令()u x a b =⋅ .(1)求函数()u x 的对称轴方程;(2)设()4cos(2)6v x x π=+,当,612x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()4()2()65(R)f x u x v x λλλ=-++∈的最小值()g λ;(3)在(2)的条件下,若对任意的实数,a b 且0a b >>,不等式21111()(2)()22()t a b g t a a b ab a a b λ-++≤≤+++-对任意的[]0,5λ∈恒成立,求实数t 的取值范围.【答案】(1),Z 412k x k ππ=-∈;(2)221,2()63,24213,4g λλλλλλλλ+<⎧⎪=-+-≤≤⎨⎪-+>⎩;(3)15t ≤≤.【分析】(1)根据平面向量的数量积公式及两角和的余弦公式可得()2cos 43u x x π⎛⎫=+ ⎪⎝⎭,再由43x k ππ+=可得结果;(2)令cos 26x t π⎛⎫+= ⎪⎝⎭,因为,612x ππ⎡⎤∈-⎢⎥⎣⎦,所以1,12t ⎡⎤∈⎢⎥⎣⎦则()()216863f x h t t t λλ==-+-,根据二次函数的性质讨论三种情况,即可得结果;(3)当[]0,5λ∈时,()()max min6,1g g λλ==由()()2112121126t a b a b t a ab a a b ⎧⎛⎫-++≤ ⎪⎪⎝⎭⎪⎨⎪+++≥⎪-⎩,结合基本不等式即可得结果.【详解】(1)因为向量(cos 5,sin 5),(2cos(),2sin()),33a x xb x x ππ==-- 所以()2cos 5cos 2sin 5sin 2cos 4333u x a b x x x x x πππ⎛⎫⎛⎫⎛⎫=⋅=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,由4,Z 3x k k ππ+=∈,得,Z 412k x k ππ=-∈,所以函数()u x 对称轴方程为,Z 412k x k ππ=-∈(2)由(1)得()22cos 42cos 224cos 22366u x x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()4cos(2)6v x x π=+所以()4()2()65(R)f x u x v x λλλ=-++∈2=16cos 288cos 26566x x ππλλ⎛⎫⎛⎫+--+++ ⎪ ⎪⎝⎭⎝⎭2=16cos 28cos 26366x x ππλλ⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭令cos 26x t π⎛⎫+= ⎪⎝⎭,因为,612x ππ⎡⎤∈-⎢⎥⎣⎦,2,663x πππ⎡⎤+∈-⎢⎥⎣⎦所以1,12t ⎡⎤∈⎢⎥⎣⎦,则()()216863f x h t t t λλ==-+-,对称轴为14t λ=,当1142λ<,即2λ<,可得()h t 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以min 111()1686321242h t h λλλ⎛⎫==⨯-⨯+-=+ ⎪⎝⎭,当11124λ≤≤,即24λ≤≤时,22min ()16863634164h t h λλλλλλλ⎛⎫==⨯-⨯+-=-+- ⎪⎝⎭,当114λ>,即4λ>时,()h t 在1,12⎡⎤⎢⎥⎣⎦上单调递减,所以()min ()116863213h t h λλλ==-+-=-+所以221,2()63,24213,4g λλλλλλλλ+<⎧⎪=-+-≤≤⎨⎪-+>⎩(3)当[]0,5λ∈时,由(2)可得()()max min 6,1g g λλ==所以()()2112121126t a b a b t a ab a a b ⎧⎛⎫-++≤ ⎪⎪⎝⎭⎪⎨⎪+++≥⎪-⎩而()11222422b a a b a b a b ⎛⎫++=++≥ ⎪⎝⎭,当且仅当2a b =时取等号,()()()()22111111224a a ab ab a a b ab ab a a b ab a a b a a b ab ++=-+++=-+++≥+=---,当且仅当22,2a b ==时,取等号,所以41246t t -≤⎧⎨+≥⎩所以15t ≤≤,即实数t 的取值范围为[1,5]【点睛】关键点点睛:此题考查三角函数的图象与性质,考查向量的数量积运算,考查二次函数的最值的求法,考查基本不等式的应用,解题的关键是利用三角函数公式将函数进行化简,再换元转化为二次函数求解,考查数学转化思想和分类思想,属于难题.21.设O 为坐标原点,定义非零向量(),OM a b = 的“相伴函数”为()sin cos f x a x b x =+()R x ∈,(),OM a b =称为函数()sin cos f x a x b x =+的“相伴向量”.(1)记()0,2OM =uuur的“相伴函数”为()y f x =,若方程()123sin f x k x =+-在区间[]0,2π上有且仅有四个不同的实数解,求实数k 的取值范围;(2)已知点(),M a b 满足22431a ab b -+=-,向量OM的“相伴函数”()y f x =在0x x =处取得最大值,当点M 运动时,求0tan2x 的取值范围;(3)已知点()0,1M ,向量OM 的“相伴函数”()y f x =在0x x =处的取值为35,在锐角ABC 中,设角A B C 、、的对边分别为a b c 、、,且4a =,()0cos A f x =,求AB AC AB AC +-⋅的取值范围.【答案】(1)[)1,3(2)3,4⎛⎫-∞- ⎪⎝⎭(3))4,2139⎡--⎣【分析】(1)去绝对值得函数的单调性及最值,利用交点个数求得k 的范围;(2)由22()sin cos sin()f x a x b x a b x ϕ=+=++,可求得即()02Z 2x k k ππϕ=+-∈时()f x 取得最大值,其中0tan a x b=,换元求得ab 的范围,再利用二倍角的正切可求得0tan 2x 的范围;(3)解法1:由题意可得3cos 5A =,由余弦定理和向量数量积定义可得21()44AB AC AB AC f t t t +-⋅==-++ ,再由正弦定理化得8sin 4cos 45sin()b c B B B ϕ+=+=+,结合函数性质求解范围即可;解法2:结合三角形的余弦定理、正弦定理、三角形外接圆、数量积的运算,利用函数性质解范围即可.【详解】(1)由题意可得()0,2OM =uuur的“相伴函数”()0sin 2cos 2cos f x x x x =⨯+⨯=,即方程()123sin f x k x =+-为[]2cos 123sin ,0,2πx k x x =+-∈,则方程[]2cos 123sin ,0,2πx k x x =+-∈有四个实数解.所以[]2cos 123sin ,0,2πk x x x =-+∈有四个实数解.令()[]2cos 123sin ,0,2πg x x x x =-+∈①当[]()0,,2cos 123sin 4sin 16x g x x x x ππ⎛⎫∈=-+=+- ⎪⎝⎭;②当(](),2,2cos 123sin 4sin 16x g x x x x πππ⎛⎫∈=--=--- ⎪⎝⎭.所以()[](]π4sin 1,0,π6π4sin 1,π,2π6x x g x x x ⎧⎛⎫+-∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪---∈ ⎪⎪⎝⎭⎩,作出()g x 的图像:所以函数()g x 与y k =有四个交点时,实数k 的取值范围为[)1,3.(2)向量OM的“相伴函数”()()22sin cos sin f x a x b x a b x ϕ=+=++,其中2222cos ,sin ,tan abb aa b a b ϕϕϕ===++.当()π2πZ 2x k k ϕ+=+∈,即()0π2πZ 2x k k ϕ=+-∈时,()f x 取最大值,所以0πtan tan 2πcot 2a x k b ϕϕ⎛⎫=+-== ⎪⎝⎭,所以0022022tan 2tan21tan 1ax b x b x a a bb ⨯===-⎛⎫-- ⎪⎝⎭,令()b m a b a =≠,则()2234110mm a -++=所以()2Δ43410m m =--+>,解得:113m <<,所以021tan2113x m m m⎛⎫=<< ⎪⎝⎭-,因为1y m m =-单调递增,所以18,03m m ⎛⎫-∈- ⎪⎝⎭,所以03tan2,4x ∞⎛⎫∈-- ⎪⎝⎭.(3)解法1:()003cos cos 5A f x x ===,由余弦定理222266161655b c bc b c bc =+-⇒+=+②由定义3cos 5AB AC bc A bc ⋅== 则()2144AB AC AB AC f t t t +-⋅==-++ 由正弦定理:()435sin 5sin 5sin 5sin 5sin 5cos sin 55b c B C B A B B B B ⎛⎫+=+=++=++ ⎪⎝⎭()8sin 4cos 45sin B B B ϕ=+=+,其中锐角ϕ的终边经过点()2,1,由锐角三角形可知ππππ,,2222B A B A ϕϕϕ⎛⎫⎛⎫∈-⇒+∈+-+ ⎪ ⎪⎝⎭⎝⎭注意到ππ25sin sin 225A ϕϕ⎛⎫⎛⎫+-=+= ⎪ ⎪⎝⎭⎝⎭,所以()25sin ,15B ϕ⎛⎤+∈ ⎥ ⎝⎦所以(8,45b c ⎤+∈⎦,②式变形为25()516bc b c =+-,故(]15,20bc ∈,从而(213,8t ⎤∈⎦,此时函数()f t 单调递减,而()()2132139,84f f =-=-所以())4,2139AB AC AB AC f t ⎡+-⋅=∈--⎣解法2:()003cos cos 5A f x x ===,设BC 中点为D ,则22AB AC AD AD +== ()()()()AB AC AD DB AD DC AD DB AD DB⋅=+⋅+=+⋅- 所以2||24AB AC AB AC AD AD +-⋅=-++ 如下图所示,设ABC 的外接圆为圆O ,由于ABC 为锐角三角形,故点A 的运动轨迹为劣弧12A A (不含端点),由正弦定理知圆O 的半径52r =,故533cos 252OD r A ==⨯=,设AOD θ∠=,则ππA θ-<≤,由余弦定理:22259532cos 2cos 4422AD OA OD OA OD θθ=+-⋅⋅=+-⋅⋅⋅(1715cos 13,422θ⎤=-∈⎦由于函数()224f x x x =-++在(13,4x ⎤∈⎦时单调递减,()()132139,44ff =-=-所以)2||244,2139AB AC AB AC AD AD ⎡+-⋅=-++∈--⎣ .。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二学期高一年级数学学科期中考试试卷一、单项选择题(本题共8小题,每小题5分,共40.0分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. cos 20°cos 10sin 20sin10°°°-=( )A. sin 10°B. cos 10°C.12【答案】D 【解析】【分析】利用两角和的余弦公式的逆应用直接求解即可.【详解】cos 20°cos 10sin 20sin10°°°-=()cos 2010cos30+==o o o 故选:D【点睛】本题考查了两角和的余弦公式,需熟记公式,属于基础题.2. 已知向量()1,2a =r ,()1,0b =r ,()3,4c =r ,若l 为实数,()b ac l +^r r r,则l 的值为 ( )A. 311-B. 113-C.12D.35【答案】A 【解析】【详解】因为(1,2)b a l l l +=+r r,()3,4c =r 且()b ac l +^r r r ,所以()0b a c l +×=r r r ,即3(1)80l l ++=,所以311l =-.故选:A .考点:1、向量的加法乘法运算;2、向量垂直的性质.3. 命题p :“向量a r 与向量b r 的夹角q 为锐角”是命题q :“0a b ×>r r”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分又不必要条件【答案】A 【解析】【分析】本题首先可根据“向量a r 与向量b r的夹角q 为锐角”证得“0a b ×>r r ”得出命题p 是命题q 的充分条件,然后通过“0a b ×>r r ”不能证得“向量a r 与向量b r的夹角q 为锐角”得出命题p 不是命题q 的必要条件,即可得出结果.【详解】当向量a r 与向量b r的夹角q 为锐角时,因为夹角q 为锐角,所以cos 0q >,cosθ0a b a b ×=××>r r r r,故命题p 是命题q 的充分条件,若0a b ×>r r,则cosθ0a b ××>r r ,090q £<o ,故命题p 不是命题q 的必要条件,综上所述,命题p 是命题q 的充分不必要条件,故选:A【点睛】本题考查充分条件以及必要条件的判定,给出命题若p 则q ,如果p 可以证得q ,则p 是q 的充分条件,若果q 可以证得p ,则p 是q 的必要条件,考查推理能力,是简单题.4. 下列四个命题中正确的是( )① 如果一条直线不在某个平面内,那么这条直线就与这个平面平行;② 过直线外一点有无数个平面与这条直线平行;③ 过平面外一点有无数条直线与这个平面平行;④ 过空间一点必存在某个平面与两条异面直线都平行.A. ①④ B. ②③C. ①②③D. ①②③④【答案】B 【解析】【分析】①可由空间中直线与平面的位置关系判断; ② ③可由直线与平面平行的性质判断;④可用排查法判断.【详解】空间中直线与平面的位置关系有相交,平行与直线在平面内 ①错误,直线还可能与平面相交②正确 ③正确因为过平面外一点有无数条直线与这个平面平行,且这无数条直线都在与这个平面平行的平面内.④不一定正确 ,当点在其中一条直线上时,不存在平面与两条异面直线都平行.故选B.【点睛】本题考查空间中的直线与平面的位置关系,属于简单题..5. 已知正四棱锥的底面边长为2( )A.43B.23C. 【答案】D 【解析】【分析】求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为故正四棱锥的高为h ==,所以体积为143´=故选D .【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.6. 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uuu vA. 3144AB AC -uuuv uuu v B.1344AB AC -uuuv uuu v C. 3144+AB AC uuuv uuu v D. 1344+AB AC uuuv uuu v 【答案】A 【解析】【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+uuu v uuu v uuu v,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+uuu v uuu v uuu v,之后将其合并,得到3144BE BA AC =+uuu v uuu v uuu v ,下一步应用相反向量,求得3144EB AB AC =-uuu v uuu v uuu v,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++uuu v uuu v uuu v uuu v uuu v uuu v uuu v uuu v 1113124444BA BA AC BA AC uuuv uuu v uuu v uuu v uuu v =++=+,所以3144EB AB AC =-uuu v uuu v uuu v,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 若3cos 22sin()4pa a =-,(,)2pa p Î则sin 2a 的值为( )A.B. C. 79-D.79【答案】C 【解析】【分析】先利用二倍角公式和辅助解公式将3cos 22sin()4pa a =-化简为223(cos sin )sin )a a a a --,再约分后平方,可得结果【详解】解:因3cos 22sin()4pa a =-,所以3cos 22(sin cos cos sin )sin )44p pa a a a a =-=-,223(cos sin )sin )a a a a --,3(cos sin )(cos sin )sin )a a a a a a +--,因为(,)2pa p Î,所以cos sin 0a a -¹,所以3(cos sin )a a +所以cos sin a a +=,两边平方得,212cos sin 9a a +=为所以7sin 29a =-,故选:C【点睛】此题考查正余弦的二倍角公式,辅助角公式,同角三角函数的平方关系,属于中档题.8. 函数()f x =cos()x w j +的部分图像如图所示,则()f x 的单调递减区间为( )A. 13(,),44k k k Z p p -+Î B. 13(2,2),44k k k Z p p -+ÎC. 13(,),44k k k Z-+Î D. 13(2,244k k k Z-+Î【答案】D 【解析】由五点作图知,1+42{53+42pw j p w j ==,解得=w p ,=4p j ,所以()cos(4f x x p p =+,令22,4k x k k Z pp p p p <+<+Î,解得124k -<x <324k +,k Z Î,故单调减区间为(124k -,324k +),k Z Î,故选D.考点:三角函数图像与性质二、多项选择题(本题共4小题,每小题5分,共20.0分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的的3分,有选错的得0分)9. 已知复数()13(z i i +-﹦其中i 为虚数单位),复数z 的共轭复数为z ,则( )A. 5z ﹦B. 12z i =+C. 复数z 的虚部为2-D. 234z i--﹦【答案】ABCD 【解析】【分析】把已知的等式变形,然后利用复数代数形式的乘除运算化简,最后逐个判断.【详解】由()13z i i +-﹦得,3(3)(1)24121(1)(1)2i i i iz i i i i ----====-++-5z \﹦, 12z i =+;复数z 的虚部为2-;2234z i=--﹦(1-2i )故选:ABCD【点睛】本题考查了复数代数形式的乘除运算,考查了复数模、共轭复数的运算.10. 设m 、n 是两条不同的直线,a 、b 是两个不同的平面,下列命题中正确的是( )A. 若//m a ,//m b ,则//a b B. 若//a b ,m a Ì,则//m b C. 若//a b ,//m n ,//m a ,则b n//D. 若//m a ,m b Ì,n a b =I ,则//m n 【答案】BD 【解析】【分析】假设直线m 与平面a 、b 的交线平行,结合线面平行的判定定理可判断A 选项的正误;利用面面平行的性质可判断B 选项的正误;直接判断n 与b 的位置关系可判断C 选项的正误;利用线面平行的性质定理可判断D 选项的正误.【详解】对于A 选项,假设l a b =I ,m a Ë,m b Ë,//m l ,则//m a ,//m b ,但a 、b 不平行,A 选项错误;对于B 选项,若//a b ,m a Ì,由面面平行的性质可知//m b ,B 选项正确;对于C 选项,若//a b ,//m n ,//m a ,则n b Ì或b n//,C 选项错误;对于D 选项,若//m a ,m b Ì,n a b =I ,由线面平行的性质可知//m n ,D 选项正确.故选:BD.【点睛】本题考查线面关系有关命题正误判断,考查推理能力,属于中等题.11.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c,若b =3c =,3A C p +=,则下列结论正的确的是( )A. cos C =B. sin B =C. 3a = D. ABC S =V 【答案】AD 【解析】【分析】根据正弦定理得到cos C =,sin sin 2B C ==,根据余弦定理得到1a =,ABC S =V 案.【详解】3A C p +=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =´,sin 0C ¹,故cos C =,sin C =,sin sin 22sin cos B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C p==,故2B p=,不满足,故1a =.11sin 122ABC S ab C ==´´=△.故选:AD .【点睛】本题考查了正弦定理,余弦定理,面积公式,意在考查学生的计算能力和应用能力.12.将函数()22cos 16f x x p p æö=+-ç÷èø的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把所得函数的图象向右平移()0j j >个单位长度,最后得到的图象对应的函数为奇函数,则j 的值可以为( )A.116B.76C.56D.23【答案】AC 【解析】【分析】本题首先可以将()22cos 16f x x p p æö=+-ç÷èø转化为()cos 23f x x p p æö=+ç÷èø,然后通过图象变换得出函数()cos 3h x x p p jp æö=-+ç÷èø,最后通过函数()cos 3h x x p p jp æö=-+ç÷èø是奇函数即可得出结果.【详解】()22cos 1cos 263f x x x p p p p æöæö=+-=+ç÷ç÷èøèø,所有点的横坐标伸长到原来的2倍后,得到函数()os 3c g x x p p æö=+ç÷èø,再把所得函数的图象向右平移()0j j >个单位长度,得到函数()cos 3h x x p p jp æö=-+ç÷èø,因为函数()cos 3h x x p p jp æö=-+ç÷èø是奇函数,所以()03cos 0h p jp æö=-+=ç÷èø,即()23k k Z p pjp p -+=+Î,解得16k j =--,故j 的值可以为116、56,故选:AC.【点睛】本题考查余弦函数的相关性质以及三角函数图象变换,考查二倍角公式的应用,函数cos 2y x =的横坐标伸长到原来的2倍后得到函数cos y x =,再向右平移j 个单位长度得到函数()cos y x j =-,考查推理能力与计算能力,是中档题.三、填空题(本大题共4小题,,每小题5分,共20.0分)13. 若复数21a ii+-为纯虚数(i 为虚数单位),则实数a 的值为________【答案】12【解析】【分析】将复数化成代数形式后,再根据纯虚数的概念求出a 的值即可.【详解】()()()()212212111122a i i a i a a i i i i Q+++-+==+--+是纯虚数,2102a \-=且2102a +¹,解得12a =.故答案为:12.【点睛】本题考查复数的除法运算和复数的有关概念,考查学生的运算运算能力,解题的关键是正确进行复数的运算.14. 函数()2cos sin f x x x =+的最大值为__________.【解析】【分析】利用辅助角公式化简函数的解析式,通过正弦函数的有界性求解即可.【详解】解:函数f (x )=2cos x +sinx =x sin x)=sin (x +θ),其中tan θ=2,【点睛】通过配角公式把三角函数化为sin()y A x B w j =++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +£求最值.15. 已知1tan 45p æöa -=ç÷èø,则tan 2a =______.【答案】125-【解析】【分析】本题首先可根据1tan 45p æöa -=ç÷èø得出3tan 2a =,然后通过22tan tan 21tan a a a =-即可得出结果.【详解】因为1tan 45p æöa -=ç÷èø,所以tan tantan 114tan 41tan 51tan tan 4pa p a a p a a --æö-===ç÷+èø+,解得3tan 2a =,则222tan 312tan 21tan 5312aa a===--æö-ç÷èø,故答案为:125-.【点睛】本题考查两角差的正切公式以及二倍角公式的使用,考查的公式为()tan tan tan 1tan tan a b a b a b--=+、22tan tan 21tan a a a=-,考查计算能力,是简单题.16. 在四面体ABCD中,AB CD ==BC DA ==,CA BD ==,则此四面体ABCD 外接球的表面积是__.【答案】14p【解析】【分析】根据对棱长相等可将四面体补成长方体,长方体的外接球就是四面体的外接球,根据对棱长可求外接球的直径,故可得外接球的表面积.【详解】将该几何体补成如图所示的长方体:设长方体的长、宽、高分别为,,a b c ,则22222210513a b a c b c ì+=ï+=íï+=î,所以22214a b c ++=,所以长方体的外接球(即四面体ABCD,其表面积为14p .【点睛】几何体外接球问题,应该先考虑如何确定球的球心,再把球的半径放置在可解的平面图形中,如果球心的位置不易确定,则可以把几何体补成规则的几何体,通过规则几何体的外接球来考虑要求解的外接球的半径.四、解答题(本大题共6小题,17题10分,其余每题12分,共70.0分,解答应写出文字说明,证明过程或演算步骤.)17. 已知单位向量a r ,b r 满足()()2323a b a b -×+=r r r r .(1)求a b ×rr ;(2)求2a b -r r 的值.的【答案】(1)12-; (2.【解析】【分析】(1)利用单位向量的定义、数量积运算性质即可得出;(2)利用数量积运算性质,即可求得答案.【详解】(1)由条件2242633a a b a b b +×-×-=r r r r r r ,即4433a b -×-=rr ,12a b \×=-r r (2)222124441472a b a a b b æö-=-×+=+-´-=ç÷èør r r r r r ,\2a b -=r r 【点睛】本题主要考查了求向量的数量积和向量模,解题关键是掌握向量的基础知识,考查了分析能力和计算能力,属于基础题.18. 如图所示,在四棱锥-C ABED 中,四边形ABED 是正方形,点,G F 分别是线段,EC BD 的中点.(1)求证://GF 平面ABC(2)H 是线段BC 的中点,证明:平面//GFH 平面ACD .【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用线面平行的判定定理证明即可;(2)利用面面平行的判定定理证明即可.【详解】()1证明:由四边形ABED 为正方形可知,连接AE 必与BD 相交于中点F 故//GF AC ,GF ËQ 面ABC ,AC Ì面ABC ,//GF \面ABC ;()2由点,G H 分别为,CE CB 中点可得:////GH EB AD ,GH ËQ 面ACD ,AD Ì面ACD ,//GH \面ACD ,由()1可知,//GF 面ACD ,且GH GF G Ç=,故平面//GFH 平面ACD .【点睛】本题主要考查空间直线与平面的平行的判定与性质和空间平面与平面的平行的判定与性质.19. 已知函数()22sin cos 3f x x x x p æö=--ç÷èø.(1)求()f x 的最小正周期;(2)求当,44x p p éùÎ-êúëû时,()f x 值域.【答案】(1)p ;(2)1,12éù-êúëû.【解析】【分析】(1)展开两角差的正弦,再由辅助角公式化简,利用周期公式求周期;(2)由x 的范围求出相位的范围,再由正弦函数的有界性求f (x )的值域.【详解】(1())22sin cos 3f x x x x p æö=--ç÷èø1cos 22sin 22x x x ö=-÷÷ø12sin 2sin 223x x x p æö=+=+ç÷èø, 22T p p \==,()f x \的最小正周期为p ;(2),44x p p éùÎ-êúëûQ ,52,366x p p p éù\+Î-êúëû,1sin 2123x p æö\-£+£ç÷èø,()f x \的值域是1,12éù-êúëû.【点睛】本题考查两角和与差的三角函数,三角函数的周期性,三角函数值域等问题,考查三角函数和差公式、二倍角公式及图像与性质的应用,难度不大,综合性较强,属于简单题.20.如图,在直角梯形ABCD 中,AB CD P ,BC CD ^,2CD AB ==,45ADC Ð=°,梯形绕着直线AB 旋转一周.(1)求所形成的封闭几何体的表面积;的(2)求所形成的封闭几何体的体积.【答案】(1) (15p + (2) 【解析】【分析】(1)梯形绕着直线AB 旋转一周后形成的几何体可以看作一个圆柱中挖去了一个圆锥后形成的,其表面积++S =圆柱侧面积圆锥侧面积圆柱底面积,计算即可(2)几何体的体积可以看做圆柱的体积减去一个圆锥的体积.【详解】依题意旋转后形成的几何体可以看作一个圆柱中挖去了一个圆锥后形成的,由2CD AB ==,45ADC Ð=°可知BC AD ===圆柱底面积(1)其表面积S=圆柱侧面积+圆锥侧面积+圆柱底面积22p =´+(12315p p p =++=+.(2)其体积V=圆柱体积-圆锥体积2213p p =´´´==.【点睛】本题主要考查了旋转体的表面积,体积,属于中档题.21. △ABC 在内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB.(Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.【答案】(Ⅰ)B=4p 1+【解析】【详解】(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB ①在三角形ABC 中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC ②由①和②得sinBsinC=cosBsinC而C ∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2) S △ABC 12=ac sin B =,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4p³2ac ﹣2ac ,整理得:ac £,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为1122=(2)=+1.22. 在平面四边形ABCD 中,已知//AD BC ,CBD BDC a Ð=Ð=,ACD b Ð=.(1)若30a =o ,75b =o 5+=,求,AC CD 的长;(2)若90a b +>o ,求证:AB AD <.【答案】(1)AC =CD =;(2)见解析【解析】【分析】(1)根据题意,得出45ACB Ð=o ,ADC 60Ð=o ,再利用正弦定理求得AC =,结合已知条件,即可求出,AC CD 的长;(2)利用余弦定理以及三角形的内角和,得出ACB ACD Ð<Ð,通过判断三角形中边角关系,即可得出结论.【详解】(1)由已知得30CBD BDC Ð=Ð=o ,75ACD Ð=o ,所以45ACB Ð=o .因为AD BC ∥,所以30ADB CBD Ð=Ð=o ,45DAC BCA Ð=Ð=o .所以ADC 60Ð=o .在ACD D 中,由正弦定理得sin sin AC CD ADC CAD=ÐÐ,所以sin 60sin 45AC CD =o o ,所以AC =.5=,所以AC =CD =.(2)在ACB D 中,由余弦定理得AB =.在ACD D 中,由余弦定理得AD =因为90a b +>o ,1802ACB a b Ð=--o ,所以()()180218020ACB ACD a b b a b Ð-Ð=---=-+<o o ,即ACB ACD Ð<Ð.又0180ACB <Ð<o o ,0180ACD <Ð<o o ,所以cos cos ACB ACD Ð>Ð,所以AB AD <.【点睛】本题考查正弦定理和余弦定理的应用,通过正弦定理和余弦定理、以及三角形边和角的有关性质等,同时考查学生化归和转化思想.。
高等数学期中考试试卷一 .填空题(每小题3分,共15分)1.二元函数 ln()z y x =-+的定义域是 .2. 曲线22280y z x ⎧+=⎨=⎩绕z 轴旋转一周所成的旋转曲面方程是 。
3.(,)limx y →= 。
4. 已知(,)arctan()yf x y xe =,则全微分df = 。
5. 把二次积分221()xy I dy dx +=⎰转化为极坐标形式 .二.单项选择题(每小题3分,共15分)1. 直线412141x y z -++==--与直线158221x y z --+==-的夹角为( ) A. 6π B.4π C.3π D.2π2. 若函数(,)z f x y =在点(,)x y 处连续,则在该点处函数(,)z f x y =( ) A.有极限 B. 偏导数存在 C.可微 D. A,B,C 都不正确。
3. 设点()00,是函数(),f x y 的驻点,则函数(),f x y 在()00,处( )A . 必有极大值B . 可能有极值,也可能无极值C . 必有极小值D . 必无极值4.设2,1(,)0,1x y f x y x y +≤⎧=⎨+>⎩,{(,)|01,01}D x y x y =≤≤≤≤,则(,)Df x y dxdy ⎰⎰的值为( ).A .1B .12C .13D .165.若(,)f x y 连续,且(,)(,)Df x y xy f u v dudv =+⎰⎰,其中D 是由2y x=,0y =和1x =所围成的闭区域,则(,)f x y =( )A xyB 18xy +C 2xyD 1xy + 三.计算题(每题10分,共50 分)1. 已知平面π过点0(1,0,1)M -和直线211:201x y z L ---==,求平面π的方程。
2. 设z =,求dz3. 设(,)z f x y xy =-,f 具有二阶连续的偏导数,求2zx y∂∂∂4.设(,,)u f x y z =具有连续的偏导数,函数()y y x =与()z z x =分别由方程0xy e y -=和0z e zx -=所确定,求du dx5. 计算二重积分224d d Dx y x y --⎰⎰,其中22{(,)|9}D x y x y =+≤四、设某工厂生产A 和B 两种产品同时在市场销售,售价分别为1p 和2p ,需求函数分别为11221240225q p p q p p =-=+-+,假设企业生产两种产品的成本为221122C q q q q =++,工厂如何确定两种产品的售价时日利润最大?最大日利润为多少?(10分)五、证明题. (共10分)设函数()f x 在[0,1]上连续,证明:211()()()y x dy f x dx e e f x dx =-⎰⎰⎰期中考试题参考答案一、1.()22{,0,0,1}x y y x x x y ->≥+<; 2. 22228x y z ++=; 3. 2;4.22()1y y e dx xdy x e++; 5.21200r d e rdr πθ⋅⎰⎰ 二、1. B ; 2. D ; 3. B ; 4. A ; 5. B.三、1.【解】设平面π的一般方程为0Ax By Cz D +++=,由题意知,π过点0(1,0,1)M -,故有0A C D -+= (1) 在已知直线上选取两点12(2,1,1)(4,1,2)M M ,,将其坐标代入平面方程,得 20A B C D +++= (2) 420A B C D +++= (3) 由(1)(2)(3)式解得 3,2,3B A C A D A ==-=- 所以平面的方程为3230x y z +--=2.【解】2222222211()2x y dz d d x y dx dy x y x y x y==⋅⋅+=++++ 3.【解】令,u x y v xy =-=,则(,)z f u v =,1u x ∂=∂,vy x∂=∂,1u y ∂=-∂,v x y ∂=∂。
福建省福州高一下学期期中考试数学试题一、单选题1.复数(为虚数单位)的虚部为( ) 2i z =-i A . B .1C .D .1-i i -【答案】A【分析】根据给定条件,利用复数的定义直接作答. 【详解】复数的虚部是. 2i z =-1-故选:A2.已知向量满足,则( ),a b 2π1,2,,3a b a b ==<>= ()a ab ⋅+= A .-2 B .-1 C .0 D .2【答案】C【分析】根据向量数量积运算求得正确答案.【详解】. ()22π112cos 1103a ab a a b ⋅+=+⋅=+⨯⨯=-= 故选:C3.已知向量,,,则的值是( )(cos ,3)a α= (sin ,4)b α=- //a b 3sin cos 2cos 3sin αααα+-A .B .C .D .12-2-43-12【答案】A【分析】根据,可得,再利用同角之间的公式化简,代//a b 4tan 3α=-3sin cos 3tan 12cos 3sin 23tan αααααα++=--入即可得解.【详解】因为向量,,(cos ,3)a α= (sin ,4)b α=- //a b,即4cos 3sin a a ∴-=4tan 3α=-3sin cos 3tan 1412cos 3sin 23tan 2412αααααα++-+∴===--+-故选:A【点睛】关键点点睛:本题考查向量平行的坐标运算,及利用同角之间的公式化简求值,解题的关键是的变形,考查学生的运算求解能力,属于基础题.3sin cos 3tan 12cos 3sin 23tan αααααα++=--4.在平行四边形中,为边的中点,记,,则( ) ABCD E BC AC a = DB b = AE =A .B .1124a b - 2133a b + C . D .12a b +3144a b + 【答案】D【分析】根据向量的线性运算法则,求得,结合,即可求1122CB b a =- 12AE AC CE AC CB =+=+解.【详解】如图所示,可得,11112222CB OB OC DB AC b a =-=-=-所以. 111131222244AE AC CE AC CB a b a a b ⎛⎫=+=+=+-=+ ⎪⎝⎭故选:D .5.如图,某建筑物的高度,一架无人机(无人机的大小忽略不计)上的仪器观测到300BC m =Q 建筑物顶部的仰角为,地面某处的俯角为,且,则此无人机距离地面的高C 15 A45 60BAC ∠= 度为( )PQA .B .C .D .100m 200m 300m 400m 【答案】B【解析】计算出和,利用正弦定理求出,由此可得出,即可计算出AC ACQ ∠AQ sin 45PQ AQ = 所求结果.【详解】在中,,,Rt ABC ∆60BAC ∠= 300BC =sin 60BC AC ∴===在中,,,ACQ ∆451560AQC ∠=+= 180456075QAC ∠=--= .18045ACQ AQC QAC ∴∠=-∠-∠= 由正弦定理,得,得sin 45sin 60AQ AC=sin 45sin 60AC AQ ==在中,, Rt APQ ∆sin 45200PQ AQ === 故此无人机距离地面的高度为, 200m 故选:B.【点睛】本题考查高度的测量问题,考查正弦定理的应用,考查计算能力,属于中等题. 6.在中,,,为的重心,若,则外接圆的半ABC A 2π3A =1AB =G ABC A AG AB AG AC ⋅=⋅ ABC A 径为( )A B .1C .2D .【答案】B【分析】根据向量数量积的分配率结合可得,即AG ⊥CB ,结合G 为AG AB AG AC ⋅=⋅ 0AG CB ⋅=△ABC 重心可得△ABC 为等腰三角形,再根据几何关系即可求△ABC 外接圆半径. 【详解】延长AG 交BC 于D ,∵G 是△ABC 重心,∴AD 为△ABC 中线.,()000AG AB AG AC AG AB AG AC AG AB AC AG CB ⋅=⋅⇒⋅-⋅=⇒⋅-=⇒⋅=即AD ⊥BC ,故△ABC 是等腰三角形,且, AB AC =则△ABC 外接圆圆心在AD 上,设为O ,则OA =OC , ∵∠OAC =,∴△OAC 是等边三角形,∴OA =OC =AC =AB =1,即△ABC 外接圆半径为1. π3故选:B .7.在中,内角A ,B ,C 的对边分别是a ,b ,c .若﹐则中最ABC A 2015120aBC bCA cAB ++=ABC A 小角的余弦值等于( )A .B .C .D 453435【答案】A【分析】由已知,根据题意,将展开,从而得到,再根据BC(2015)(1220)0a b AC c a AB -+-= AC 和为不共线向量,即可得到a ,b ,c 三边关系,从而使用余弦定理可直接求解出中最小ABABC A 角的余弦值.【详解】由已知,,所以, 2015120aBC bCA cAB ++=20()15120a AC AB bCA cAB -++= 即,又因为和为不共线向量,(2015)(1220)0a b AC c a AB -+-= AC AB所以,所以,,2015012200a b c a -=⎧⎨-=⎩43b a =53c a =在中,A ,B ,C 的对边分别是a ,b ,c ,所以边长a 最小, ABC A 所以,所以中最小角的余弦值等于.2224cos 25b c a A bc +-==ABC A 45故选:A.8.在锐角中,角,,的对边分别为,,,为的面积,且ABC A A B C a b c S ABC A ,则的取值范围为( )()222S a b c =--222b c bc+A . B . C.D .4359,1515⎛⎫⎪⎝⎭4315⎡⎫⎪⎢⎣⎭5915⎡⎫⎪⎢⎣⎭)⎡+∞⎣【答案】C【分析】根据余弦定理和的面积公式,结合题意求出、的值,再用表示,求ABC A sin A cos A C B 出的取值范围,即可求出的取值范围. sin sin b B c C =222b c bc+【详解】解:在中,由余弦定理得, ABC A 2222cos a b c bc A =+-且的面积,ABC A 1sin 2S bc A =由,得,化简得, 222()S a b c =--sin 22cos bc A bc bc A =-sin 2cos 2A A +=又,,联立得,(0,2A π∈22sin cos 1A A +=25sin 4sin 0A A -=解得或(舍去), 4sin 5A =sin 0A =所以, sin sin()sin cos cos sin 43sin sin sin 5tan 5b B A C A C A C cC C C C ++====+因为为锐角三角形,所以,,所以,ABC A 02C π<<2B AC ππ=--<22A C ππ-<<所以,所以,所以, 13tan tan 2tan 4C A A π⎛⎫>-==⎪⎝⎭140,tan 3C ⎛⎫∈ ⎪⎝⎭35,53b c ⎛⎫∈ ⎪⎝⎭设,其中,所以, b t c =35,53t ⎛⎫∈ ⎪⎝⎭221212222b c b c t tbc c b t t ⎛⎫ ⎪+=+=+=+ ⎪ ⎪⎪⎝⎭由对勾函数单调性知在上单调递减,在上单调递增, 12y t t =+35⎛ ⎝53⎫⎪⎪⎭当时,;当时,;t =y =35t =4315y =53t =5915y =所以,即的取值范围是.5915y ⎡⎫⎪⎢⎣⎭∈222b c bc +5915⎡⎫⎪⎢⎣⎭故选:C.【点睛】关键点点睛:由,所以本题的解题关键点是根据已知及2222b c b cbc c b+=+求出的取值范围. sin sin()sin cos cos sin 43sin sin sin 5tan 5b B A C A C A C c C C C C ++====+b c二、多选题9.已知为虚数单位,复数满足,则下列说法错误的是( )i z ()2022i 2iz -=A .复数的模为B .复数的共轭复数为z 15z 21i 55--C .复数的虚部为D .复数在复平面内对应的点在第一象限z 1i 5z 【答案】ABC【分析】利用可将化简,求出复数,再根据复数模长求法,共轭复数定义,复数的几2i 1=-2022i z 何意义求解即可. 【详解】,()101122022i i12i i 2i 22i 5z +====---,z 的虚部为,z =21i 55z =-15故选ABC .10.已知函数,则下列说法正确的是( )()22cos 2π13f x x ⎛⎫=++ ⎪⎝⎭A .任意,x ∈R ()()πf x f x =-B .任意,x ∈R ()()33ππ+=-f x f x C .任意, 12ππ36x x -<<<()()12f x f x >D .存在, 12,R x x ∈()()124f x f x -=【答案】ACD【分析】根据余弦函数的性质:周期性、对称性、单调性、最值分别判断各选项. 【详解】因为的最小正周期是,因此A 正确; ()f x 2ππ2T ==时,, π3x =2π4π2π,Z 33x k k +=≠∈不是图象的对称轴,B 错; π3x =()f x时,,由余弦函数性质知在是单调递减,C 正确;ππ36x -<<2π02π3x <+<()f x ππ(,36-同样由余弦函数性质知的最大值是3,最小值是,两者差为4,因此D 正确. ()f x 1-故选:ACD .11.已知△ABC 三个内角A ,B ,C 的对应边分别为a ,b ,c ,且,c =2.则下列结论正确π3C ∠=( )A .△ABCB .的最大值为AC AB ⋅2C . D .的取值范围为coscos b A a B+=cos cos BA )∞∞⎛-⋃+ ⎝【答案】AB【分析】A 选项,利用余弦定理和基本不等式求解面积的最大值;B 选项,先利用向量的数量积计算公式和余弦定理得,利用正弦定理和三角恒等变换得到2242b a AC AB +-⋅= ,结合B 的取值范围求出最大值;C 选项,利用正弦定理进行求解;D 22π26b a B ⎛⎫-=- ⎪⎝⎭选项,用进行变换得到,结合A的取值范围得到的取()cos cos B A C =-+cos 1cos 2B A A =-cos cos B A 值范围.【详解】由余弦定理得:,解得:,2241cos 22a b C ab +-==224a b ab +=+由基本不等式得:,当且仅当时,等号成立, 2242a b ab ab +=+≥a b =所以,故A 正确; 4ab ≤1sin 2ABC S ab C =≤A , 222224cos 22b c a b a AC AB AC ABA bc bc +-+-⋅=⋅=⋅=其中由正弦定理得: 2πsin sin sin3a b A B ===所以 ()22222216162πsin sin sin sin 333b aB A B B ⎡⎤⎛⎫-=-=-- ⎪⎢⎥⎝⎭⎣⎦,4π1cos 2161cos 2π323226B B B ⎡⎤⎛⎫-- ⎪⎢⎥-⎛⎫⎝⎭⎢⎥-=- ⎪⎝⎭⎢⎥⎢⎥⎣⎦因为,所以,2π0,3B ⎛⎫∈ ⎪⎝⎭ππ7π2,666B ⎛⎫-∈- ⎪⎝⎭故,22π26b a B ⎛⎫-=- ⎪⎝⎭的最大值为222224cos22b c a b a ACAB AC AB A bc bc +-+-⋅=⋅=⋅=2B 正确; , )()cos cos sin cossin cos 2b A a B B A A B A B C +=+=+===故C 错误;, πcos cos13cos cos 2A B A A A ⎛⎫-+ ⎪⎝⎭===-因为,所以,2π0,3A ⎛⎫∈ ⎪⎝⎭(()tan ,0,A ∞∞∈-⋃+,D 错误. ()11,2,22A ∞∞⎛⎫-∈--⋃-+ ⎪⎝⎭故选:AB【点睛】三角函数相关的取值范围问题,常常利用正弦定理,将边转化为角,结合三角函数性质及三角恒等变换进行求解,或者将角转化为边,利用基本不等式进行求解.12.设,为单位向量,满足,,则,的夹角为,则1e 2e 12e 12a e e =+123b e e =+ a bθ的可能取值为( )2cos θA .B .C .D .1192020292829【答案】CD【分析】设单位向量,的夹角为,根据已知条件,然后利用1e 2eα12e 3cos 14α≤≤夹角公式可将表示成关于的函数,利用不等式的性质求出其值域即可.2cos θcos α【详解】设单位向量,的夹角为,1e 2eα由,解得,12e54cos 2α-≤3cos 14α≤≤又,, 12a e e =+123b e e =+,同理||a ∴==r||b =r 且,44cos a b α=+⋅r r,cos b b a a θ∴==⋅⋅r r r r =,令,244cos cos 53cos αθα+∴=+2cos t θ=则, 844cos 4353cos 353cos t ααα+==-++,,,3cos 14α≤≤Q 2953cos 84α∴≤+≤81323,53cos 387α⎡⎤∴∈⎢⎥+⎣⎦所以,即的取值范围为 84283,1353cos 29α⎡⎤-∈⎢⎥+⎣⎦2cos θ28,129⎡⎤⎢⎥⎣⎦故选:CD三、填空题13.已知向量为单位向量,其夹角为,则__________.,a b π3|2|a b +=【分析】利用模长公式直接求解【详解】|2|a b +===14.已知1+2i 是方程x 2-mx +2n =0(m ,n ∈R )的一个根,则m +n =____.【答案】92【分析】将代入方程,根据复数的乘法运算法则,得到,再由12x i =+()()32420m n m i --++-=复数相等的充要条件得到方程组,解得即可;【详解】解:将代入方程x 2-mx +2n =0,有(1+2i )2-m (1+2i )+2n =0,即12x i =+,即,由复数相等的充要条件,得144220i m mi n +---+=()()32420m n m i --++-=解得 320420m n m --+=⎧⎨-=⎩522n m ⎧=⎪⎨⎪=⎩故. 59222m n +=+=故答案为:9215.的内角,,的对边分别为,,,满足.若ABC A A B C a b c ()22sin sin sin sin sin B C A B C -=-为锐角三角形,且,则当面积最大时,其内切圆面积为________.ABC A 3a =ABC A【答案】/34π34π【分析】先用正弦定理及余弦定理可得,结合面积公式和基本不等式可得当为等边三角形A ABC A 时,面积取到最大值,再利用等面积法求内切圆半径即可. ABC A 【详解】∵,22(sin sin )sin sin sin B C A B C -=-则由正弦定理可得,整理得,22()b c a bc -=-222b c a bc +-=则. 2221cos 22b c a A bc +-==∵为锐角三角形,则,故,ABC A π0,2A ⎛⎫∈ ⎪⎝⎭π3A =由面积为,ABC A 11sin 22△ABC S bc A bc ===可得当面积取到最大值,即为取到最大值. ABC A bc ∵,即,即, 222b c a bc +-=2292b c bc bc +=+≥9bc ≤当且仅当,即为等边三角形时等号成立. 3==b c ABC A故当为等边三角形时, ABC A ABC A 9=设的内切圆半径为,则 ABC A r ()1922△ABC r S r a b c =++==r =故内切圆面积为. 23ππ4r =故答案为:.3π416.中,,若,ABC A ()min |2AB AC AB BC R λλ==+=∈ 2AM MB =,其中,则的最小值为__________.22sin cos AP AB AC αα=⋅+⋅ ,63ππα⎡⎤∈⎢⎥⎣⎦MP【分析】由平面向量的加法法则得到为点A 到BC 的距离为2,从而为等腰min 2||AB BC λ+=ABC A 直角三角形,斜边为4,再根据,其中,得到点P 在线段22sin cos AP AB AC αα=⋅+⋅ ,63ππα⎡⎤∈⎢⎣⎦DE 上,且D ,E 为BC 的四等分点求解. 【详解】解:如图所示:在中,由平面向量的加法法则得为点A 到BC 的距离, ABC A min ||AB BC λ+即,则为等腰直角三角形,斜边为4,2AN =ABC A 又,其中,22sin cos AP AB AC αα=⋅+⋅ ,63ππα⎡⎤∈⎢⎥⎣⎦所以点P 在线段DE 上,且D ,E 为BC 的四等分点, 又,2AM MB =则, AM =当点P 在点D 时,的最小,MP由余弦定理得, 22252cos 459MD AM BD AM BD =+-⋅⋅=四、解答题17.已知是虚数单位,复数,i ()()242z a a =-++i a R ∈(1)若为纯虚数,求实数的值;z a (2)若在复平面上对应的点在直线上,求的值. z 210x y ++=z z ⋅【答案】(1)2;(2)10.【分析】(1)根据纯虚数的定义:实部为零,虚部不为零求解;(2)根据复数的几何意义得到复数对应的点的坐标,代入直线方程求得的值,进而利用共轭复a 数的定义和复数的乘法运算求得.【详解】解:(1)若为纯虚数,则,且, z 240a -=20a +≠解得实数的值为2;a (2)在复平面上对应的点,z ()24,2a a -+由条件点在直线上,()24,2a a -+210x y ++=则, 242(2)10a a -+++=解得.1a =-则, 3i z =-+3i z =--所以.()23110z z ⋅=-+=18.已知向量,,.()1,3a = ()1,3b =- (),2c λ=(1)若,求实数,的值;3a mb c =+m λ(2)若,求与的夹角的余弦值.()()2a b b c +⊥- a 2b c + θ【答案】(1) (2 01m λ=⎧⎨=-⎩【解析】(1)根据向量的数乘运算及坐标加法运算,可得方程组,解方程组即可求得,的值.m λ(2)根据向量坐标的加减法运算,可得结合向量垂直的坐标关系,即可求得的值.进而2,a b + ,b c -λ表示出,即可由向量的坐标运算求得夹角的余弦值.2b c +θ【详解】(1)由,得, 3a mb c =+()()()1,3,33,6m m λ=-+即,解得. 13336m m λ=-+⎧⎨=+⎩01m λ=⎧⎨=-⎩(2),.()21,9a b +=()1,1b c λ-=-- 因为,所以,即.()()2a b b c +⊥-190λ--+=8λ=令, ()26,8d b c =+=则cos a d a dθ=⋅=【点睛】本题考查了向量的坐标的数乘运算和加减运算,向量垂直时的坐标关系,根据向量数量积求夹角的余弦值,属于基础题.19.在①,②,③这三个条件中()()3a b c a b c ab +++-=tan tan tan tan 1A BA B +=-sin cos 2sin sin cos C C B A A=-任选一个,补充在下面的横线上,并加以解答.在中,角,,所对的边分别为,,,且满足___________. ABC A A B C a b c (1)求的值;tan C(2)若为边上一点,且,,,求. D BC 6AD =4BD =8AB =AC【答案】(1)tan C =(2)AC =【分析】(1)选择①,由余弦定理可求解,选择②,由正切的两角和公式可求解,选择③,由正弦的两角和公式可求解;(2)由余弦定理及正弦定理可求解.【详解】(1)选择①,由,可得,于是得,即()()3a b c a b c ab +++-=222a b c ab +-=1cos 2C =,所以3C π=tan C =选择②,由,有tan tan tan tan 1A BA B +=-tan tan tan tan()tan tan 1A B C A B A B +=-+==-tan C =选择③,由,有,sin cos 2sin sin cos C CB A A=-sin cos 2sin cos cos sin C A B C C A =-即,即,又因为,所以,于是得sin()2sin cos A C B C +=sin 2sin cos B B C =0B π<<sin 0B ≠,即,所以1cos 2C =3C π=tan C =(2)由在中,,,,由余弦定理得,所ABD △6AD =4BD =8AB =3616641cos 2644ADB +-∠==-⨯⨯以, sin sin ADB ADC ∠=∠=在中,由正弦定理有,得.ADC △sin sin AC ADADC C=∠∠AC =20.某赛事公路自行车比赛赛道平面设计图为五边形(如图所示),为ABCDE ,,,,DC CB BA AE ED 赛道,根据比赛需要,在赛道设计时需设计两条服务通道(不考虑宽度),现测得:,AC AD,,千米,23ABC AED π∠=∠=4CAD BAC π∠=∠=BC =CD =(1)求服务通道的长;AD (2)如何设计才能使折线赛道(即)的长度最大?并求出最大值. AED AE ED +【答案】(1)千米8(2)当时,折线赛道千米 AE ED =AED【分析】(1)在中,利用正弦定理可求得;在中,利用余弦定理可求得; ABC A AC ACD A AD (2)方法一:在中,利用余弦定理构造方程,结合基本不等式可求得的最大值,ADE V AE ED +由此可得结果;方法二:在中,设,,,利用正弦定理可表示出ADE V ADE α∠=EAD β∠=,0,3παβ⎛⎫∈ ⎪⎝⎭,AE ED,利用三角恒等变换知识化简为关于的正弦型函数的形式,利用正弦型函数的最大值可AE ED +α求得结果.【详解】(1)在中,由正弦定理得:ABC A sin sin BC ABCAC BAC⋅∠===∠在中,由余弦定理得:,ACD A 2222cos CD AD AC AC AD CAD =+-⋅⋅∠即,解得:,234182cos4AD AD π=+-⨯⨯8AD =服务通道的长为千米.∴AD 8(2)方法一:在中,由余弦定理得:, ADE V 22222cos3AD AE ED AE DE π=+-⋅⋅即,;222AD AE ED AE ED =++⋅()264AE ED AE ED ∴=+-⋅(当且仅当时取等号),()24AE ED AE ED +⋅≤AE ED =,即, ()23644AE ED ∴+≤()22563AE ED +≤(当且仅当 AE ED ∴+≤AE ED ==当时,折线赛道∴AE ED =()AED AE ED +方法二:在中,设,,,ADE V ADE α∠=EAD β∠=,0,3παβ⎛⎫∈ ⎪⎝⎭,,sin sin sin AE DE ADAED αβ====∠AE α∴DE β=)1sin sin sin sin sin sin 32AE DE παβααααα⎫⎤⎛⎫∴+=+=+-=-⎪ ⎪⎥⎪⎝⎭⎦⎭, 1sin 23πααα⎫⎛⎫==+⎪ ⎪⎪⎝⎭⎭,, 03πα<< 2333πππα∴<+<当,即时,取得最大值,此时,∴32ππα+=6πα=sin 3πα⎛⎫+ ⎪⎝⎭16πβ=时,折线赛道千米. 6AEDE π∴===()AED AE ED +21.已知向量,,函数. ()sin 2,cos 2m x x = 12n ⎫=⎪⎪⎭()f x m n =⋅(1)求函数的解析式和对称轴方程;()f x (2)若时,关于的方程恰有三个不同的实根,π2π,63x ⎡⎤∈-⎢⎥⎣⎦x ()()1sin R 6f x x πλλλ⎛⎫+++=∈ ⎪⎝⎭1x 2x ,,求实数的取值范围及的值.3x λ123xx x ++【答案】(1),对称轴方程是,; π()sin(26f x x =+ππ26k x =+Z k ∈,. 13λ≤<1233π2x x x ++=【分析】(1)由数量积的坐标表示求得,结合正弦函数的对称轴求得的对称轴; ()f x ()fx (2)方程化简得和,由正弦函数性质和的范围,同时得出和,求得sin 1x =1sin 2x λ-=λ1x 23x x +结论.【详解】(1)由已知,1π()2cos 2sin(226f x m n x x x =⋅=+=+ ,,所以对称轴方程是,;ππ2π62x k +=+ππ26k x =+ππ26k x =+Z k ∈(2),2ππ(sin(2)cos 212sin 62f x x x x +=+==-时,递增,时,递减,,ππ[,]62x ∈-sin y x =π2π[,]23x ∈sin y x =2πsin 3=π1sin(62-=-, πsin 12=方程为,()()1sin R 6f x x πλλλ⎛⎫+++=∈ ⎪⎝⎭212sin (1)sin x x λλ-++=即, 22sin (1)sin 10x x λλ-++-=,(sin 1)(2sin 1)0x x λ-+-=或,sin 1x =1sin 2x λ-=因为,所以时,,设,π2π,63x⎡⎤∈-⎢⎥⎣⎦sin 1x =π2x =1π2x =, 112λ-≤<13λ≤<在上有两个解,记为,则,1sin 2x λ-=π2π[,]3323,x x 23πx x +=所以. 1233π2x x x ++=22.如图,在中,,是角的平分线,且.ABC A ()AB mAC m R =∈AD A ()AD kAC k R =∈(1)若,求实数的取值范围.3m =k (2)若,时,求的面积的最大值及此时的值.3BC =2m ≥ABC A k【答案】(1);(2)当的面积取最大值.30,2⎛⎫ ⎪⎝⎭k =ABC A 3【分析】(1)设,则,利用可得出,由此可2BAC θ∠=02πθ<<ABC BAD CAD S S S =+A A A 3cos 2k θ=求得的取值范围;k (2)由三角形的面积公式可得,利用余弦定理化简可得22sin 2ABC S AC m θ=△29sin 2212cos 2ABC m S m m θθ=+-△,可得出,利用辅助角公式可得出,()2214cos 29sin 2ABC ABCS mmSm θθ+=+△△()22228141ABCm Sm≤-△结合函数单调性可求得的最大值及其对应的,即可得出结论. ABC S A k 【详解】(1)设,则,其中,2BAC θ∠=BAD CAD θ∠=∠=02πθ<<由,可得, ABC BAD CAD S S S =+A A A 111sin 2sin sin 222AB AC AB AD AC AD θθθ⋅=⋅+⋅所以,,()2cos AB AC AD AB AC θ+⋅=⋅即,所以,; ()212cos m AC kAC mAC θ+⋅=2cos 33cos 0,122m k m θθ⎛⎫==∈ ⎪+⎝⎭(2),可得,221sin 2sin 222ABC m S mAC AC θθ==⋅△22sin 2ABC S AC m θ=△由余弦定理可得,()222222cos 212cos 29BC AB AC AB AC m m AC θθ=+-⋅=+-⋅=所以,,所以,, 222912cos 2sin 2ABC S AC m m m θθ==+-△29sin 2212cos 2ABCm S m m θθ=+-△可得()2214cos 29sin 2ABC ABC S m mS m θθ+=+≤△△所以,,()22228141ABCm Sm≤-△,则,2m ≥ ()2991212ABC m S m m m ==⎛⎫-- ⎪⎝⎭△由于函数在时单调递增, ()1f m m m=-2m ≥所以,随着的增大而减小,则当时,,ABCS A m 2m =()max93322ABC S ==⨯△此时,,由,可得, 93tan 244ABCm mS θ==△22sin 23tan 2cos 24sin 2cos 2102θθθθθθπ⎧==⎪⎪+=⎨⎪<<⎪⎩4cos 25θ=所以,cos θ==2cos 4cos 13m k m θθ===+【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有、、的齐次式,优先考虑正弦定理“边化角”; a b c (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.。
高等数学期中试卷班级 姓名 计分 一.填空题(本题满分30分,共有10道小题,每道小题3分),请将合适的答案填在空中.1.函数( )2.已知,2lim (2)0,2x x x →-=-则称函数当( )时为无穷小。
3.设x x x y arcsin 12-+=,则='y ______________________.4.设函数()x y y =由方程42ln 2x y y =+所确定,则=dx dy _______________.5.设 = _________.6.函数()22sin x x e x f x +--=在区间()∞+∞-,上的最小值为_____________. 7.3201sin limsin 2x x x x →=8.设()231ln e x y ++=,则='y 9.设⎩⎨⎧==t y t x ln 2 则=dxdy10.曲线23bx ax y +=有拐点()3,1,则,a= . b=二选择题(请选择一个正确答案序号填在括号中,共8小题,每小题3分共24分)1、指出下列哪些是基本初等函数( )(1)2y x =;(2) y =; 3;(sin y x = 4;)32ln(x y +=2、设在[0,1]上函数f(x)的图像是连续的,且()f x '>0,则下列关系一定成立的是( ) 1;f(0)<0 2;f(1)>0 3;f(1)>f(0) 4;f(1)<f(0)3、函数y=1+3x-x3有( )(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2 (D )极小值-1,极大值34、曲线1704,4y P x ⎛⎫--=- ⎪⎝⎭上一点处的切线方程是( )(A )5x+16y+8=0 (B )5x-16y+8=0 (C )5x+16y-8=0 (D )5x-16y-8=0351lim 232+--→x x x x5、31xy +=的反函数是( )A ;3ln 1y x =+()B ;1y =C ;13-=x yD ;31x y e +=()6、函数f(x)=xsinx+2x 2是( )A.偶函数B.奇函数C.非奇非偶函数D.有界函数7、设函数f(x)在区间I 连续,那么f(x)在区间I 的原函数( )A.不一定存在B.有有限个存在C.有唯一的一个存在D.有无穷多个存在8.函数y=ex-x-1单调增加的区间是( ) A.[)+∞-,1 B.()+∞∞-, C.(]0,∞- D.[)+∞,0 三、求函数321)(2--+=x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x →(10分)四、求函数 y=e -x ×conx 的二阶及三阶导数(8分)五、判断曲线21y x x =- 的凹 凸性和拐点(10分)六、某质点的运动方程是S=t 3-(2t-1)2,则在t=1s 时的瞬时速度为 。
大一第二学期高等数学期中考试试卷一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。
1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为4、2222222(,)(0,0)(1cos())sin lim()ex y x y x y xy x y +→-+=+5、设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。
以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。
1、旋转曲面1222=--z y x 是( ) (A ).x O z 坐标面上的双曲线绕Ox 轴旋转而成; (B ).x O y 坐标面上的双曲线绕Oz 轴旋转而成; (C ).x O y 坐标面上的椭圆绕Oz 轴旋转而成; (D ).x O z 坐标面上的椭圆绕Ox 轴旋转而成.2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数.(A).212211sin )(cos )(x d x b x a x x b x a x ++++;(B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++; (D).322111)sin )(cos (d x d x d x x b x a x +++++3、已知直线π22122:-=+=-zy x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( )(A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=;(B) 二元函数()y x f z ,=的两个二阶偏导数22x z ∂∂,22yz∂∂在区域D 内连续,则在该区域内两个二阶混合偏导必相等;(C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条件;(D) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微 的必要条件.5、设),2,2(y x y x f z -+=且2C f ∈(即函数具有连续的二阶连续偏导数),则=∂∂∂yx z2( )(A)122211322f f f --; (B)12221132f f f ++; (C)12221152f f f ++; (D)12221122f f f --.三、计算题(本大题共29分) 1、(本题13分)计算下列微分方程的通解。
第 1 页/共 6 页华东理工大学2023年年–2023年年学年第二学期 《高等数学(下)11学分》课程期中考试试卷 2023年年.4 开课学院:理学院, 专业:大面积, 考试形式:闭卷,所需时光 120 分钟考生姓名: 学号: 年级 任课教师一.填空题(本大题共11小题,每小题4分,共44分): 1、微分方程222'y x e yx y -=的通解为 。
答:C e xe e xx y +-=22412122、微分方程0''9)4(=+y y 的通解为 。
答:x C x C x C C y 3sin 3cos 4321+++=3、函数 z x yu )(= 对变量x 的偏导数 =x u 。
答:12)(--=z x x yx yz u4、设 ))arctan(,,(xyz e y xze f u z y +=,其中f 关于所有变量有一阶延续偏导数, 则=∂∂yu。
答:3222211f zy x xz f f xze y u y +++=∂∂ 5、设函数z z x y =(,)由方程 ),(yzxz f z = 所决定,其中f 关于所有变量有一阶延续偏导数,则∂∂zy= 。
答:21222yf f xy y zf ---6、设1)(-=⋅⨯c b a,则=+⨯+⋅)]()[(c b b a b 。
答: 17、函数)ln(22z y x u ++=在点)1,0,1(处最大的方向导数等于 。
答:228、微分方程 0'2''=+y xy 的通解=y 。
答: 21C xC y +-= 9、设平面π过直线⎩⎨⎧=+-=++04,05:z x z y x L 则原点到平面π距离d 的范围是 。
答: ]22,0[10、设),(y x z z =由方程2xyz e z =所决定,则=dz 。
答: dy xyze xz dx xyz e yz dz z z 2222-+-=11、求一个最低阶的常系数线性齐次微分方程,使得x 和x x cos sin +都是它的特解,则该常系数线性齐次微分方程为 。
高等数学期中试题一、填空题(每题3分,共15分)1、262sin0lim(1)x x x →+= ;2、设21y x ,则dy ;3、0000(2)()()2,lim h f x h f x f x h→+-'== ;4、曲线⎩⎨⎧=+=321t y t x 在2=t 处的切线方程为 ; 5、当0x →时,21cos 2x kx -,k = 。
二、选择题(每题3分,共15分)1、21()1x f x x 在1x 处为 ( ) A 无穷间断点; B 第一类可去间断点 ;C 第一类跳跃间断点 ;D 震荡间断点。
2、()1xf x x ,则(4)(0)f =( )A 4!-;B 4!;C 5!- ;D 5! 。
3、若()()f x f x =--,在()0,+∞内()()'0,''0f x f x >>,则在(),0-∞内( ).A ()()'0,''0f x f x <<;B ()()'0,''0f x f x <>;C ()()'0,''0f x f x ><;D ()()'0,''0f x f x >>.4.设3()(1)f x x x x =--,()f x 不可导点的个数为( )A 0;B 1;C 2 ;D 3 。
5.设()()()F x g x x ϕ=,()x ϕ在x a =处连续,但又不可导,又()'g a 存在,则()0g a =是()F x 在x a =处可导的( )条件.A 充要;B 充分非必要;C 必要非充分;D 非充分非必要三、求下列极限(20分)1.)tan 11(lim 20x x x x -→ ; 2. 2tan )1(lim 21x x x π-→;3.x x x x 10)cos sin 2(lim +→; 4.)2112111(lim n n +++++++∞→四、求下列导数或微分(20分)1.,2222x x x x y +++=求:y '2.)(,)(ln )(x f e x f y x f ⋅=二阶可导,求:dy dx3.33cos sin x t y t⎧=⎨=⎩求:224d ydx x π= 4.设)(x y y =是由方程arctan y x =所确定的函数,求:dy dx 。
一、单选题 1.复数(i 为虚数单位)的共轭复数的虚部等于( ) 1i1i+-A .1 B .C .D .1-i i -【答案】B 【分析】先对复数化简,再求其共轭复数,从而可求得答案 1i1i+-【详解】因为, ()()()221i 1i 12i i i 1i 1i 1i 2++++===--+所以其共轭复数为,则其虚部为, i -1-故选:B2.已知,均为单位向量,它们的夹角为,则( )a b120︒|3|a b +=A B . C D .137【答案】A【分析】先由题意,求出,再由向量模的计算公式,即可求出结果.a b ⋅【详解】因为,均为单位向量,它们的夹角为,a b60︒所以,1cos1202a b a b ⋅=⨯⨯=-因此3a = 故选:A.3.已知,则的值为( )()()cos74,sin14,cos14,sin74a b == a b ⋅A .0B .C D .112【答案】B【分析】利用数量积的坐标运算结合三角恒等变换求解即可.【详解】解:因为,()()cos74,sin14,cos14,sin74a b ==.1cos 74cos14sin14sin 74cos(7414)cos 602a b ∴⋅=+=-==故选:B .4.在中,,是,所对的边,已知,则的形状是( ) ABC A a b A ∠B ∠a cosB bcos A =ABC A A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】B【分析】由正弦定理得,化简得,即得解. sin sin A cosB Bcos A =in 0()s A B -=【详解】由正弦定理得, sin sin A cosB Bcos A =所以, sin sin 0A cosB cos A B -=所以, in 0()s A B -=因为, ,(0,)A B π∈所以. 0,A B A B -=∴=所以三角形是等腰三角形. 故选:B【点睛】本题主要考查正弦定理的应用,考查差角的正弦公式的应用,意在考查学生对这些知识的理解掌握水平.5.要得到函数的图像,只需要将函数的图像 2sin 2y x=2cos 2y x x =-A .向右平移个单位 B .向右平移个单位 6π12πC .向左平移个单位D .向左平移个单位6π12π【答案】D【详解】试题分析:根据题意,由于将函数的图像向左平移个2cos 2=2sin(2)6y x x x π=--12π单位得到,可知成立,故答案为D.=2sin(2+2126y x x ππ-()【解析】三角函数图像的变换点评:主要是考查了三角函数的图象的平移变换的运用,属于基础题.6.设与的夹角为,则在上的投影向量为( )||5,||3,a b a == b120︒a b A .B .C .D . 56b 56b - 310b 310b -【答案】B【分析】直接根据投影向量的公式计算即可.【详解】在上的投影向量为:a b. 2215cos120cos1205236a b a a b b b b b b b b b ⎛⎫⨯- ⎪⋅︒⋅︒⋅⎝⎭⋅=⋅=⋅=⋅=- 故选:B7.圣·索菲亚教堂是哈尔滨的标志性建筑,其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美.犇犇同学为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物,高约为AB,在它们之间的地面上的点(,,三点共线)处测得楼顶、教堂顶的仰角分别35m M B M D A C 是和,在楼顶处测得塔顶的仰角为,则犇犇估算索菲亚教堂的高度约为(结果45︒60︒A C 15︒CD 保留整数)( )A .B .C .D .44m 47m 50m 53m 【答案】D【分析】在,由边角关系得出,再由正弦定理计算出中的Rt ABM A AM =ACM △,最后根据直角三角形算出即可.CM =DCM CD 【详解】解:由题意知:,,所以, 60CAM ∠=︒75AMC ∠=︒45ACM ∠=︒在中,,Rt ABM A sin sin 45AB ABAM AMB ===∠︒在中,由正弦定理得,ACM △M Msin 45sin 60A C =︒︒所以,sin 60sin 45AM CM ︒===︒在中,,Rt DCM A 3sin 60 1.53552.5532CD CM AB =⋅︒==⨯=≈故选:D.8.已知函数满足对恒成立,则函数 ()sin(2)f x x ϕ=+()()f x f a ≤x R ∈A .一定为奇函数 B .一定为偶函数 ()f x a -()f x a -C .一定为奇函数 D .一定为偶函数()f x a +()f x a +【答案】D【详解】由题意得,时,则,,所以()sin(2)1f x a ϕ=+=222a k πϕπ+=+k ∈Z ,此时函数为偶函数,故选D .()sin(22)sin(22)cos 22f x a x a x k x πϕπ+=++=++=二、多选题9.已知向量,,则( )(2,1)a =(3,1)b =-A .()a b a +⊥ B .向量在向量上的投影向量是a bC .|2|5a b +=D .与向量共线的单位向量是a【答案】AC【分析】由向量垂直的坐标表示,数量积的定义,模的坐标表示,共线向量的坐标表示及单位向量的定义计算后判断.【详解】解:因为向量,,故,(2,1)a = (3,1)b =- 5a b ⋅=- 对于A ,,所以,所以,故A 正确; (1,2)a b +=- ()2(1)210a b a +⋅=⨯-+⨯= ()a b a +⊥对于B ,向量在向量上的投影向量是,(注a b 2251||cos ||(3)12||||||||||b a bb a b a a b b b b a b b b θ⋅⋅-⋅=⋅⋅=⋅==--+是向量的夹角),故B 错误;:θ,a b对于C ,,所以,故C 正确;2(4,3)a b +=- |2|5a b +==对于D ,共线的单位向量是,即或,故D 错误. a ||a a ± (故选:AC.10.若复数满足,则( ) z ()12i 10z -=A . 24i z =-B .是纯虚数2z -C .复数在复平面内对应的点在第三象限z D .若复数在复平面内对应的点在角的终边上,则z αsin α【答案】AB【分析】对于A :计算出复数的代数形式即可判断; z 对于B :求出的代数形式即可判断;2z -对于C :求出复数在复平面内对应的点即可判断其位置; z 对于D :通过复数在复平面内对应的点求出即可判断. z sin α【详解】对于A :,,A 正确; ()()()1012i 1024i 12i 12i 12i z +===+--+24i z ∴=-对于B :,为纯虚数,B 正确;224i 24i z -=+-=对于C :,其在复平面内对应的点为,在第一象限,C 错误; 24z i =+()2,4对于D :复数在复平面内对应的点为,则,D 错误. z ()2,4sin α=故选:AB.11.已知函数(其中,,的部分图象,则下列结论正确()()sin f x A x =+ωϕ0A >0ω>0πϕ<<的是( ).A .函数的图象关于直线对称 ()f x π2x =B .函数的图象关于点对称()f x π,012⎛⎫- ⎪⎝⎭C .函数在区间上单调增()f x ππ,36⎡⎤-⎢⎥⎣⎦D .函数与的图象的所有交点的横坐标之和为1y =()π23π1212y f x x ⎛⎫=-≤≤ ⎪⎝⎭8π3【答案】BCD【分析】现根据图像求出函数的解析式,再根据图像性质对每个选项进行判断即可. ()f x 【详解】由图可知,,即, 2A =2543124T πππ=-=T π=因,且,故,因此,2T ωπ=0ω>2ω=()2sin(2)f x x ϕ=+又因的图像过点,所以 , ()y f x =2,23π⎛⎫-⎪⎝⎭222,32k k Z ππϕπ⨯+=-+∈因,故,因此.0<<πϕ6πϕ=()2sin(26f x x π=+对于选项A ,由,得的对称轴为, 262x k πππ+=+()y f x =,62k x k Z ππ=+∈故不是函数的对称轴,因此A 错;2x π=()f x 对于选项B ,由,得函数的对称中心为,, 26x k ππ+=()f x ,0122k ππ⎛⎫-+⎪⎝⎭Z k ∈故函数的图像关于点对称,因此B 正确;()f x ,012π⎛⎫- ⎪⎝⎭对于选项C ,由,222262k x k πππππ-+≤+≤+得函数的单增区间为,,()f x ,36k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈故函数在区间上单调递增,因此C 正确;()f x ,36ππ⎡⎤-⎢⎥⎣⎦对于选项D ,由,做出如下图形:()2sin(2)6f x x π=+由图可知,函数与的图像在上有4个交点,1y =()y f x =23,1212ππ⎡⎤-⎢⎥⎣⎦则这4个交点的横坐标之和为,故D 正确.7822663πππ⨯+⨯=故选:BCD.12.在中,角A ,B ,C 所对的边分别是a ,b ,c ,且,则下列说法正ABC A 23cos 3cos b C c B a +=确的是( ) A . 3a =B .若,且有两解,则b 的取值范围为 π4A =ABC A ⎡⎣C .若,且为锐角三角形,则c 的取值范围为 2C A =ABC A (D .若,且,O 为的内心,则 2A C =sin 2sin B C =ABC A AOB S =△【答案】ACD【分析】选项A :根据条件求出;选项B :由余弦定理得23cos 3cos b C c B a +=3a =,将此式看作关于的二次方程,由题意得此方程有两个正解,求得b 的取值范围;229b c =+c 选项C :根据正弦定理得,利用为锐角三角形求角A 的范围,从而求边的范围;6cos c A =ABC A c 选项D :利用正弦定理求出角,从而判断出是直角三角形,利用等面积法求的内切C ABC A ABC A 圆半径,从而求的面积.AOB A 【详解】解:对于A 选项,因为,23cos 3cos b C c B a +=所以由正弦定理,得,即 , 3sin cos 3sin cos sin B C C B a A +=()3sin sin B C a A +=因为,所以,且,所以,A 选项正确; πA B C ++=()sin sin B C A +=sin 0A ≠3a =对于B 选项,由余弦定理得, 2222cos a b c bc A =+-229b c =+将此式看作关于的二次方程,由题意得此方程有两个正解,c 2209c b +-=故 ,解得,所以选项B 错误;()22290)490b b ⎧->⎪⎨-->⎪⎩(b ∈对于C 选项,由正弦定理,得 ,即 , sin sin 2a cA A=2cos 6cos c a A A ==因为为锐角三角形,ABC A 所以 ,即,解得, π02π02π02A B C⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π02π0π32π022A A A ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩ππ64A <<所以,故选项C 正确; (6cos c A =∈对于D 选项,因为,所以, sin 2sin B C =2b c =因为,所以, 2A C =()sin sin sin 3B A C C =+=所以由正弦定理,得,即, sin sin b c B C =2sin 3sin c c C C=sin 32sin C C =所以, sin 2cos cos 2sin 2sin C C C C C +=即,222sin cos 2cos sin sin 2sin CC C C CC +-=因为,所以,即, sin 0C ≠222cos 2cos 3C C +=23cos 4C =又因为, 2A C =所以,, ,是直角三角形,π6C =π3A =π2B =b c ==ABCA 所以内切圆的半径满足,即r ()1122ABC S a b c r ac =++=A ac r a b c ==++所以的面积为D 正确. AOB A 1122S cr ===故选:ACD.【点睛】方法点睛:在三角形中,常常隐含角的范围:①若已知一个角数,则另两角的范围不能是,如=,则,特别是在求值域问题时会用到. (0,π)B π32π(0,)3A ∈②在锐角三角形中,不要只考虑,还要想到另外两角之和在内,若再知其中一π,,(0,)2A B C ∈π(,π)2角,要考虑其它角的范围,如=,则,所以; B π32ππ32A C =-<ππ63C <<若知其中两角关系,也要考虑角的范围,如在本题中,综合三个角为锐角有,得2A C =π02π0π32π022A A A ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩. ππ64A <<三、填空题13.已知非零向量与满足,则向量与夹角的余弦值为__________. a b ||4||,|2|||b a a b b =-=a b 【答案】/0.25 14【分析】利用向量数量积的运算律和向量的夹角公式计算即可.【详解】因为, ||4||,|2|||b a a b b =-=所以,,222a b b -= 22244a a b b b -⋅+= 所以,2a b a ⋅= 所以.221cos ,44a a b a b a b a ⋅===故答案为:1414.已知_____. sin cos 22θθ+=sin θ=【答案】13【分析】把等式. sin cos 22θθ+=【详解】由题得. 221sin cos +2sin cos ,sin 2222343θθθθθ+=∴=故答案为:13【点睛】本题主要考查二倍角的正弦公式的应用,考查同角的平方关系的应用,意在考查学生对这些知识的理解掌握水平.15.若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为 ,则(1),01()sin ,12x x x f x x x π-≤≤⎧=⎨<≤⎩+=______.()5f 41()6f 【答案】/0.5 12【分析】根据函数的周期性和奇偶性及分段函数的性质求函数值. 【详解】解:由题意得:函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为(1),01()sin ,12x x x f x x x π-≤≤⎧=⎨<≤⎩ ∴()415(6f f +7(41)(86f f =++-7(1)(6f f =+-7(1)(6f f =- 71(11)sin(6π=⨯-- 12=故答案为:1216.在复平面内,已知复数满足(为虚数单位),记对应的点为点,z z |1||i |z z -=+i 02i z =+0Z 对应的点为点,则点与点之间距离的最小值_________________ Z 0Z Z【分析】根据已知条件,集合复数模公式,求出点Z 的轨迹方程,再结合点到直线的距离公式,即可求解.【详解】设, i(,R)z x y x y =+∈,|1||i |z z -=+,|1i ||(1)i |x y x y ∴-+=++化简整理可得 ,0x y +=复数的对应点的轨迹,∴z Z 0x y +=对应的点为点,02i z =+ 0(2,1)Z点与点, ∴0Z Z=四、解答题17.平面内给定三个向量,,.(3,2)a =(1,2)b =- (4,1)c =(1)求; cos ,a b (2)求;|2|a b - (3)若,求实数k .()(2)a kc b a +⊥-【答案】(3) 1118-【分析】(1)根据平面向量夹角的坐标公式即可求解; (2)根据平面向量模长公式的坐标表示即可求解; (3)根据平面向量垂直的坐标表示即可求解. 【详解】(1)解:因为,,(3,2)a =(1,2)b =-所以,,()31221a b ⋅=⨯-+⨯= a===所以 cos ,a b a b a b⋅===(2)解:因为,,所以, (3,2)a =(1,2)b =- ()()()223,21,27,2a b -=--= 所以;|2|a b -==(3)解:因为,,, (4,1)c =(43,2)a kc k k +=++ 2(5,2)b a -=- 又,()(2)a kc b a +⊥-所以,解得. ()()()435220k k +⨯-++⨯=1118k =-18.已知,计算下列各式的值. sin cos 3sin cos αααα+=-(1);tan α(2).2sin 2sin cos 1ααα-+【答案】(1)2(2)1【分析】(1)根据同角三角函数的商数关系,利用已知条件即可求出; sin tan cos ααα=tan α(2)根据同角三角函数的平方关系构造齐次式,再利用商数关系化简,代入求值即可.【详解】(1)解:已知,化简, sin cos 3sin cos αααα+=-得,所以. 4cos 2sin αα=sin tan 2cos ααα==(2) 22222222sin 2sin cos tan 2tan 222sin 2sin cos 1111sin cos tan 121ααααααααααα---⨯-+=+=+=++++.1=19.已知、,是虚数单位,若复数与互为共轭复数.a b ∈R i 1i z a =-22i z b =+(1)判断复平面内对应的点在第几象限;2z (2)若复数在复平面内对应的点在第二象限,求实数的取值范围.()218m z m --m 【答案】(1)第一象限(2)(2,6【分析】(1)根据共轭复数的定义可求出、的值,利用复数的几何意义可得出结论; a b (2)利用复数的四则运算化简复数,利用复数的几何意义可出关于实数的不等式()218m z m --m 组,解之即可.【详解】(1)解:因为、,是虚数单位,若复数与互为共轭复数, a b ∈R i 1i z a =-22i z b =+则,所以,,复数在复平面内对应的点的坐标为,位于第一象限. 21a b =⎧⎨=⎩22i z =+2z ()2,1(2)解:由(1)可得,12i z =-, ()()()()()2222182i 828122i 12322i m z m m m m m m m m m --=-+-=---+-=-++-因为复数在复平面内对应的点在第二象限, ()218m z m --则,解得2123020m m m ⎧-+<⎨->⎩26m <<因此,实数的取值范围是. m (2,620.已知向量,,. )a = ()cos ,sinb x x = ()0,πx ∈(1)若,求的值;a b ⊥ x(2)若,且的值. ()f x a b =⋅ ()f α=πsin 26α⎛⎫+ ⎪⎝⎭【答案】(1) 23π(2) 59-【分析】(1)根据题意得到即可得到答案. tan x =()0,πx ∈(2)首先根据题意得到,再根据πsin 3α⎛⎫+= ⎪⎝⎭22ππ5cos 212sin 339αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭求解即可. π2ππsin 2sin 2632αα⎡⎤⎛⎫⎛⎫+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦【详解】(1)因为所以,所以a b ⊥ sin 0a b x x ⋅=+= tan x =由于,所以. ()0,πx ∈2π3x =(2)由 ()sin 2sin 3f x a b x x x π⎛⎫=⋅+=+ ⎪⎝⎭所以. ()π2sin 3f αα⎛⎫=+= ⎪⎝⎭πsin 3α⎛⎫+ ⎪⎝⎭而 22ππ5cos 212sin 339αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭所以. π2ππ2π5sin 2sin 2cos 263239ααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦21.的内角的对边分别为,已知.ABC A ,,A B C ,,a b c 120B =(1)若的值;1,a b ==A (2)若,求周长的最大值.3b =ABC A 【答案】(1)30(2)3+【分析】(1)由正弦定理求得,进而求得的大小; 1sin 2A =A (2)由余弦定理化简得到,结合基本不等式,求得的最大值,22()b a c ac =+-22a c ac +⎛⎫≤ ⎪⎝⎭a c +进而求得周长的最大值.ABC A【详解】(1)解:由正弦定理知,解得, sin sin b a B A =1sin A=1sin 2A =因为为钝角,所以.B 30A = (2)解:由余弦定理得, 2222222cos ()b a c ac B a c ac a c ac =+-=++=+-又由,则, 0,0a c >>22a c ac +⎛⎫≤ ⎪⎝⎭所以, 222239()()()24a c a c ac a c a c +⎛⎫=+-≥+-=+ ⎪⎝⎭所以时,等号成立,即的最大值为a c +≤a c =a c +所以周长的最大值为ABC A 3+22.为解决社区老年人“一餐热饭”的问题,某社区与物业、第三方餐饮企业联合打造了社区食堂,每天为居民提供品种丰富的饭菜,还可以提供送餐上门服务,既解决了老年人的用餐问题,又能减轻年轻人的压力,受到群众的一致好评.如图,送餐人员小夏从处出发,前往,,三个地A B C D 点送餐.已知,,,且,.300m AB =200m AD =100m CD =AB CD ∥60BAD ∠=︒(1)求的长度.AC (2)假设,,,均为平坦的直线型马路,小夏骑着电动车在马路上以的速AB BC CD AD 250m /min 度匀速行驶,每到一个地点,需要2分钟的送餐时间,到第三个地点送完餐,小夏完成送餐任务.若忽略电动车在马路上损耗的其他时间(例如:等红绿灯,电动车的启动和停止…),求小夏完成送餐任务的最短时间.【答案】(1)(2)8min【分析】(1)根据余弦定理即可求解;(2)根据余弦定理求解,进而得,由两角和与差的余弦公式可得,cos CAD ∠sin CAD ∠cos BAC ∠进而由余弦定理求解,根据三种不同的送餐路线,计算路程的大小,即可比较求解.AB 【详解】(1)因为,,所以,AB CD ∥60BAD ∠=︒120ADC ∠=︒在中,由余弦定理,得ACD A AC. ==(2)在中,由余弦定理,得 ACD A 222cos 2AD AC CD CAD AD AC+-∠==⋅所以 sin CAD ∠==所以()11cos cos cos 22BAC BAD CAD CAD CAD ∠=∠-∠=∠∠==在中,由余弦定理,得ABC A 2222cos BC AC AB AC AB BAC =+-⋅⋅∠,解得. (22300230040000=+-⨯=200m BC =假设小夏先去地,走路线,路长,B A BCD ---600m假设小夏先去地,因为,所以走路线,路长, C BC CD >A C D C B ----(400m +假设小夏先去地,走路线,路长,D A D C B ---500m由于500600400<<+所以小夏走路线,且完成送餐任务的最短时间为. A D C B ---500238min 250+⨯=。
《 高等数学》(下)期中考试题及评分标准一、填空题(每小题4分,共28分,写出各题的简答过程,并把答案填在各题的横线上,仅写简答过程不填答案或只填答案不写简答过程均不给分)。
.____________x )1,1,1(1y )xy arcsin()1y (x z .1轴的倾角是处的切线对上点曲线⎩⎨⎧=-+=4:π解 .41a r c t a n ,1)]xy arcsin(0x [dx d )1,x (f x π==θ=⋅+=故,e z .2xy=设.__________dz )2,1(=则)dy dx 2(e :2+-解.e x1e y z,e 2)xy (e xz 2)2,1(xy )2,1(2)2,1(2xy)2,1(=⋅=∂∂-=-=∂∂._________,4z 31y x t z ,t y ,t x .332则切点的坐标是的切线平行于平面已知曲线=++===)1,1,1(:--解.1z ,1y ,1x 1t 0t t 21n T },31,1,1{n },t 3,t 2,1{T 22-==-=⇒-=⇒=++=⋅==.____________2z )y x (214z .422于所围成的立体的体积等与面曲面=+-=π4:解ππθπ402)8(2)212()21212(]2)(214[42202022222=-=-=--=-+-=⎰⎰⎰⎰⎰⎰r r rdr r d dxdy y x dxdy y x V xyxy D D则平面所围成的闭区域与是上半球面设,x oy )0z (1z y x .5222≥=++Ω.______zdxdydz =⎰⎰⎰Ω4:π解.44r 2s i n 2dr sin r cos r d d zdxdydz 1042022010220π=⋅ϕπ=ϕ⋅ϕϕθ=πππΩ⎰⎰⎰⎰⎰⎰则曲线积分的交线与平面是球面设,0z y x R z y x .62222=++=++Γ._________z y x ds222=++⎰Γ π2:解 .2R 2R 1R ds π=π⋅==∴⎰Γ原式._________)x (f ,x oy dy )x (f dx ye .7x =-+则分平面上是某函数的全微在设 )y (e :x ϕ+-解.)y (e )x (f e )x (f )x (f x Q ,e y P x x x ϕ+-=⇒='⇒'-=∂∂=∂∂二、选择题(每小题4分,共28分。
大一下学期高等数学期中考试试卷及答案大一第二学期高等数学期中考试试卷一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。
1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为4、2222222(,)(0,0)(1cos())sin lim()ex y x y x y xy x y +→-+=+5、设二元函数y x xy z 32+=,则=∂∂∂yx z2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。
以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。
1、旋转曲面1222=--z y x 是( )(A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成.2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).212211sin )(cos )(x d x b x a x x b x a x ++++;(B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++;(D).322111)sin )(cos (d x d x d x x b x a x +++++3、已知直线π22122:-=+=-zy x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( )(A) 两向量a r 与b r 平行的充要条件是存在唯一的实数λ,使得b a λ=r r;(B) 二元函数()y x f z ,=的两个二阶偏导数22x z ∂∂,22yz∂∂在区域D 内连续,则在该区域内两个二阶混合偏导必相等;(C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条件;(D) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微 的必要条件.5、设),2,2(y x y x f z -+=且2C f ∈(即函数具有连续的二阶连续偏导数),则=∂∂∂yx z2( ) (A)122211322f f f --; (B)12221132f f f ++; (C)12221152f f f ++; (D)12221122f f f --.三、计算题(本大题共29分)1、(本题13分)计算下列微分方程的通解。
(1)(6分)221xy y x y +++='(2)(7分)x xe y y y 223=+'-''2、(本题8分)设u t uv z cos 2+=,t e u =,t v ln =,求全导数dtdz 。
3、(本题8分)求函数()()y y x e y x f x 2,22++=的极值。
四、应用题(本题8分)1、某工厂生产两种型号的机床,其产量分别为x 台和y 台,成本函数为xy y x y x c -+=222),( (万元),若市场调查分析,共需两种机床8台,求如何安排生产使其总成本最少?最小成本为多少?五、综合题(本大题共21分)1、(本题10分)已知直线⎪⎩⎪⎨⎧==+011x c z b y l :,⎪⎩⎪⎨⎧==-012y c z a x l :,求过1l 且平行于2l 的平面方程.2、(本题11分)设函数(,,)ln ln 3ln f x y z x y z =++ 在球面22225(0,0,0)x y z R x y z ++=>>>上求一点,使函数(,,)f x y z 取到最大值.六、证明题(本题共12分)1、设函数⎪⎭⎫⎝⎛=x y xzF x u k ,,其中k 是常数,函数F 具有连续的一阶偏导数.试证明:z u z y u y x u x ∂∂+∂∂+∂∂⎪⎭⎫ ⎝⎛=x y xz F kx k ,第二学期高等数学期中考试试卷答案一、填空题(本题满分15分,共有5道小题,每道小题3分) 1.、 ()()()21113222=-+++-z y x2、12.3、2450x y z +--=.4、05、232x y +;二、选择填空题(本题满分15分,共有5道小题,每道小题3分) 1(A ) 2(B ) 3(C ) 4(C ) 5(A )三、计算题(本大题共29分)1、(1)解:将原微分方程进行分离变量,得:x x yyd )1(1d 2+=+ 上式两端积分得c x x x x y yy ++=+==+⎰⎰2)d 1(arctan 1d 22即 : c x x y ++=2arctan 2其中c 为任意常数.(2)解:题设方程对应的齐次方程的特征方程为,0232=+-r r 特征根为,11=r,22=r 于是,该齐次方程的通解为,221x e C x C Y +=因2=λ是特征方程的单根,故可设题设方程的特解:.)(210*x e b x b x y +=代入题设方程,得,22010x b b x b =++比较等式两端同次幂的系数,得,210=b ,11-=b于是,求得题没方程的一个特解*y .)121(2x e x x -=从而,所求题设方程的通解为.)121(2221x x x e x x e C e C y -++= 2、解:()u t v u t uv u u z sin cos 22-=+∂∂=∂∂, ()uv u t uv v v z 2cos 2=+∂∂=∂∂,u tz cos =∂∂ 依复合函数求导法则,全导数为dtdt t z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂= ()1cos 12sin 2⋅+⋅+-=u t uv e u t v t()tt t t e t e t e e t t cos ln 2sin ln 2++-=3、解:解方程组()()()()⎪⎩⎪⎨⎧=+==+++=022,01422,222y e y x f y y x e y x f xyx x ,得驻点⎪⎭⎫⎝⎛-1,21。
由于()()124,22+++==y y x e y x f A x xx ,()()142+==y e xy f B x xy ,()x yy e y x f C 22,==在点⎪⎭⎫ ⎝⎛-1,21处,02>=e A ,0=B ,e C 2=,224e B AC =-,所以函数在点⎪⎭⎫⎝⎛-1,21处取得极小值,极小值为21,21e f -=⎪⎭⎫⎝⎛-。
四、应用题(本题8分) 1、解:即求成本函数()y x c ,在条件8=+y x 下的最小值构造辅助函数 ())8(2,22-++-+=y x xy y x y x F λ解方程组 ⎪⎩⎪⎨⎧=-+='=++-='=+-='080402y x F y x F y x F y x λλλ解得 3,5,7==-=y x λ这唯一的一组解,即为所求,当这两种型号的机床分别生产5台和3台时,总成本最小,最小成本为:2835325)3,5(22=⨯-⨯+=c (万) 五、综合题(本大题共21分)1、解:直线1l 与2l 的方向向量分别为 {}⎭⎬⎫⎩⎨⎧-=⨯⎭⎬⎫⎩⎨⎧=b c c b 1100011101,,,,,,s ρ,{}⎭⎬⎫⎩⎨⎧=⨯⎭⎬⎫⎩⎨⎧-=a cc a 1010101012,,,,,,s ρ,作 ⎭⎬⎫⎩⎨⎧--=⨯=221111c bc ca,,s s n ρρρ,取直线1l 上的一点()c P ,,001,则过点1P 且以⎭⎬⎫⎩⎨⎧--=2111c bc ca ,,n ρ为法向量的平面01=+--czb y a x ,就是过1l 且平行于2l 的平面方程.2、解:设球面上点为(,,)x y z .令 2222(,,,)ln ln 3ln (5)L x y z x y z x y z R λλ=+++++-,222211120,20,20,503x y z L x L y L z L x y z R x y zλλλλ=+==+==+==++-= 由前三个式子得2223z x y ==,代入最后式子得,x y R z ===.由题意得(,,)f x y z在球面上的最大值一定存在,因此唯一的稳定点(,)R R 就是最大值点,最大值为5(,))f R R =. 六、证明题(本题共12分)1、证明:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂-22211,,,x y x y x z F x x z x y xz F x x y x z F kx x u kkk ⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛'-⎪⎭⎫ ⎝⎛=---x y xz F yx x y xz F zx x y xz F kx k k k ,,,22121⎪⎭⎫⎝⎛'=⋅⎪⎭⎫ ⎝⎛'=∂∂-x y x z F x x x y x z F x y u k k ,1,212⎪⎭⎫ ⎝⎛'=⋅⎪⎭⎫ ⎝⎛'=∂∂-x y xz F x x x y xz F x z u k k ,1,111 所以,zu z y u y x u x∂∂+∂∂+∂∂ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛'-⎪⎭⎫ ⎝⎛'-⎪⎭⎫ ⎝⎛⋅=---x y xz F yx x y xz F zx x y x zF kx x k k k ,,,22121 ⎪⎭⎫⎝⎛'⋅+⎪⎭⎫ ⎝⎛'⋅+--x y xz F x z x y xzF x y k k ,,1121 ⎪⎭⎫ ⎝⎛=x y x z F kx k ,。