解一元一次方程计算专项训练
- 格式:pdf
- 大小:101.68 KB
- 文档页数:4
列一元一次方程解应用题专项练习180题(有答案)1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采用一种高新技术后,每天多生产10台,结果用12天,不但完成任务,而且超额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区"募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3。
6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际按照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去参观博物馆,出租车的收费标准是:不超过3公里的付费7元;超过3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6。
解一元一次方程专项训练1、721231x x -=++2、322331=-++x x 3、()()3216325=+--x x4、3x+3=2x+7 5、()[]153525--++=x x x 6、1341573--=-xx 7、521321x x -=++ 8、13269-=+--x x x 9、22.15.15+-=-x x10、()()13.024.12.153--=+-x x 11、()12321---=-x x 12、43412332-=-x x13、()()[]2414256-=--+-x x x 14、19.01.02.02.01.0=--x x 15、()()272315321=-+-x x 16、521=--x x 17、168421x x x x x -+-+= 18、108756232-=++-x x x19、()()03.534.02.0546.0=++--x x 20、()()11625.0235.0=-++x x 21、31341-=-x x 22、8212=--x x 23、()8.01.02.025.0=--x x 24、2536+=-x x25、. 26、()()43231652--=+-x x x 27、27931xx x x -+-=28、373212+=+x x 29、()[]1784369+-=-x x 30、()()1067234+=+-+x x x 31、()()1641331=+--x x 32、()()[]{}11253=+-+--x x x 33、[3(x﹣)+]=5x ﹣134、()[]{}2253671234=-+++x 35、. 36、37、232151413121=⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 38、432214+=-x x 39、23312+=-x x40、14126110312-+=+--x x x 41、32635213-=--+x x x 42、32533151231-=⎪⎭⎫ ⎝⎛+-x x x43、()224.051.1--=-x x x 44、3.006.003.04.072.05.1-+=x 45、=﹣2.46、3.01.04.05.03.07.0-=-x x 47、()()51145423352+-=--+x x x 48、()3319313=-+x x 49、1341573-=---xx 50、1411614735=⎪⎭⎫ ⎝⎛--+-x x x 51、当k为什么数时,式子比的值少352、小张在解方程1523=-x a (x 为未知数)时,误将 - 2x 看成 2x 得到的解为3=x , 请你求出原来方程的解.53、已知关于x 的方程 ()1233+=-x a x 无解,求 a . 54、已知关于x 的方程()x x k 2124=-+ 无解,求 k55、已知关于 x 的方程b x ax -=+23有无穷个不同的解,求()2010b a +56、8=x 是方程a x x 2433+=- 的解,又是方程 b a x x 2)31(2+-=-的解,求 b 57. 若2a 与392-a 互为相反数,求a 的值。
七年级一元一次方程经典题型计算题100道解方程(等式的性质)1.x-2=3-2x2.3x-1.3x+5x-2.7x=-12*3-6*43.-x=1-2x4.5=5-3x5.x-5=16.5-3x=8x+17.7x=3+2x8.x-3x-1.2=4.8-5x9.3x-7+4x=6x-210.11x+64-2x=100-9x11.x-7+8x=9x-3-4x12.2x-x+3=1.5-2x13.0.5x-0.7=6.5-1.3x14.-4x+6x-0.5x=-315.-x=-2/5x+116.x-6=-3/5x+317.3/2x=2/318.x=1+x^2/2-x^4/8+1619.x^4/2-1/2=x^2/2+3/420.-x^2/3+x=1解方程(去括号)1.2x-2=42.10x-10=53.-x+3=5x+94.3x-6+1=x-2x+15.5x+10=10x-26.2x-2-x-2=12-3x7.4x+3=2x-2+18.4x+2x-4=12-x9.2x-4-24x+6=3-3x10.4x-8-15x+3=9-x11.1-4x-6=-6x-312.x+1-2x+2=1-3x13.4x-60-3x+21=6x-63-7x14.2x-4=-x-315.4x-8+2x=7+x16.2x-5x-16=3-6x+817.-3x+6+1=4x-2x+118.4x+2x-4=12-x-419.2x-4-12x+3=9-9x20.2y+4-12y+3=9-9y21.4x-60-3x+21=6x-63-7x22.2{3[4(5x-1)-8]-20}-7=123.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-224.x-(x-1)/(2)=(x-1)/(2)25.2x-x-(x-1)=(x-1)/(2)26.(x-1)/3-2[x-1(1/4/5)]+4=127.(x-1)^(-1)=1/21、解方程:1128、6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/82、解方程:1/5x-(1/2)(3-2x)=1/23 化简得:2x+15=46-5x移项得:7x=31解得:x=31/73、解方程:2-(2/3)x=4化简得:(2/3)x=-2移项得:x=-34、解方程:|x+5|=5分两种情况讨论:当x+5=5时,解得:x=0当x+5=-5时,解得:x=-10 5、解方程:6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/86、解方程:(3x-6)/(2/5x-3)=1 化简得:(3x-6)/(2/5x-3)=1移项得:3x-6=2/5x-3移项得:13/5x=3解得:x=15/137、解方程:(x+1)/2-(x+1)/6=1 化简得:(3/6)x+1/2-1=1化简得:(3/6)x=1/2解得:x=18、解方程:2x-11/(0.5x-3)=-6 化简得:(2x-11)/(0.5x-3)=-6 移项得:2x-11=-3x+18移项得:5x=29解得:x=29/59、解方程:0.1x+0.2x/(1-0.3x)=1/0.5-0.2 化简得:0.1x+0.2x/(1-0.3x)=1.25移项得:0.1x(1-0.3x)+0.2x=1.25(1-0.3x) 化简得:0.1x+0.26x-0.375x^2=1.25移项得:-0.375x^2+0.36x-1.25=0解得:x=5/310、解方程:(5-3x)^2=3(3+5x)化简得:25-30x+9x^2=9+15x移项得:9x^2-45x+16=0解得:x=(45±√(45^2-4*9*16))/(2*9)化简得:x=(15±(33))/6解得:x=8/3或x=1/311、解方程:(x-3)/0.2-(2x+5)/0.3=1.6 化简得:1.5x-7.5-6.667x-11.667=1.6 移项得:-5.167x=20.767解得:x=-412、解方程:(2x+1)/4-(x+1)/2=2化简得:0.5x-0.25=2移项得:0.5x=2.25解得:x=4.513、解方程:(y+4)/3-y+5=2-(y-2)/2 化简得:(y+4)/3-y+5=2-(y-2)/2移项得:(y+4)/3+(y-2)/2=3化简得:(2y+8+3y-6)/6=3解得:y=214、解方程:(y-1)/2=2-(y+2)/5化简得:5(y-1)=2(10-3y-6)移项得:8y=33解得:y=33/815、解方程:(x-1)/4+1=2-(x+3)/6化简得:(x-1)/4+(x+3)/6=1化简得:3(x-1)+2(x+3)=12移项得:5x=13解得:x=13/516、解方程:(x-1)/3=(x+1)/5化简得:5(x-1)=3(x+1)移项得:2x=8解得:x=417、解方程:(x-1)/3+1=2-(x+1)/5 化简得:(x-1)/3+(x+1)/5=1化简得:5(x-1)+3(x+1)=15移项得:8x=28解得:x=7/218、解方程:(x-2)/3=(x+2)/4 化简得:4(x-2)=3(x+2)移项得:x=1419、解方程:(1-x^4)-1=(x+1)/2 化简得:-x^4+(x+3)/2=0移项得:x^4-(x+3)/2=0解得:x=-1或x=√220、解方程:(x-1)/3-1=3-(2-x)/2化简得:(x-1)/3+(2-x)/2=4化简得:2(x-1)+3(2-x)=24移项得:-x=5解得:x=-521、解方程:5x-13x^2/4=1/2-(2-x)/3 化简得:20x-39x^2=6-4+2x移项得:39x^2-18x=-2解得:x=2/3或x=-2/1322、解方程:5x+1/6=9x+1/8-(1-x)/3化简得:15x+2=72x+3-(8-24x)/3化简得:45x+6=216x+9+8-24x移项得:-24x=11解得:x=-11/2423、解方程:2x+1/3-(x+2)/6=1/4化简得:12x+4-2(x+2)=3移项得:10x=1解得:x=1/1024、解方程:3x+2(2x-1)/5-1=4-(x+1)/5 化简得:15x+4(2x-1)-5=20-x-1移项得:32x=31解得:x=31/3225、解方程:3x-(2x-1)^2/2=2-(x-2)/5 化简得:6x-(2x-1)^2=20-2(x-2)化简得:6x-4x^2+4x-1=20-2x+4移项得:4x^2-8x+15=0解得:无实数解26、解方程:x-(x-1)^2/2=2-(x+2)/3 化简得:6x-3(x-1)^2=12-(x+2)2化简得:6x-3x^2+6x-6=12-x^2-4x-4移项得:2x^2-16x+22=0解得:x=4-√6或x=4+√627、解方程:x-2=-2x+1/2化简得:3x=5/2解得:x=5/628、解方程:4x-1/3=5x+5/6化简得:3x=11/6解得:x=11/1829、解方程:3x+(x-1)/(x+1)=4-2(x-1) 化简得:3x+((x-1)(x+1))/(x+1)=4-2x+2化简得:3x+(x^2-1)/(x+1)=6-2x化简得:3x(x+1)+(x^2-1)=6x-2x(x+1)化简得:4x^2+5x-1=0解得:x=-1或x=1/430、解方程:x-2x/(x+5/3)=31/3化简得:(x^2+5x/3-2x)/x+5/3=31/3化简得:(x^2-1/3x-31)/x+5/3=0移项得:x^2-1/3x-31=0解得:x=(1/3+√397)/2或x=(1/3-√397)/2 31、解方程:2(x+2)/3-5(x+3)/6=2/3化简得:4(x+2)-5(x+3)=4移项得:-x=1解得:x=-132、解方程:x-2x/(x-2)=5/2化简得:(x^2-2x-5)/x-2=0移项得:x^2-2x-5=0解得:x=1+√6或x=1-√633、解方程:(0.8-9x)/(1.3-3x)+5x-0.4=1.3 化XXX:(0.8-9x)/(1.3-3x)+5x=1.7化简得:0.8-9x+5x(1.3-3x)=1.7(1.3-3x)化简得:-15x^2+10x+23=0解得:x=(-1±√(1-4*(-15)*23))/(2*(-15)) 化简得:x=(-1±√1381)/3034、解方程:(x-1)^2/4+(x-4)^3/27=2 化简得:27(x-1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x-1)^2解得:x=235、解方程:19x-2/x-6-2=0化简得:19x^2-2x-6=0解得:x=1/19或x=336、解方程:1.8-8x/1.2-1.3-3x/(5x-0.4)=1.3化简得:(1.8-8x)(5x-0.4)-(1.3-3x)(1.2-1.3)=1.3(1.2-1.3)(5x-0.4)化简得:-39x^2+31x+6=0解得:x=(1±√(1-4*(-39)*6))/(2*(-39))化简得:x=(1±√937))/7837、解方程:(x+1)^2/4+(x-4)^3/27=2化简得:27(x+1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x+1)^2解得:x=238、将分式化简:frac{0.1x-0.27x+0.18}{2.04}=\frac{x+4}{139}小幅度改写:化简分式得:frac{-0.17x+0.18}{2.04}=\frac{x+4}{139} 41、将方程移项并通分:frac{x^3-1}{2}+\frac{x-1}{2}=0小幅度改写:移项并通分得:frac{x^3+x-2}{2}=042、将方程通分并移项:frac{(y+1)^2}{2}=\frac{y(3-y)-3}{6}小幅度改写:通分并移项得:2y^2+2y-9=043、将方程通分并移项:frac{(x-2)^2}{2}-\frac{3(x-2)}{4}=-1小幅度改写:通分并移项得:2x^2-11x+12=044、将方程通分并移项:frac{x^5+112}{2}-\frac{6(x-4)}{3}=1小幅度改写:通分并移项得:2x^5-3x+70=045、将方程通分并移项:frac{x-4}{x-3}-\frac{2.5}{x-3000}=10\cdot\frac{60}{64}小幅度改写:通分并移项得:frac{-61x+}{64(x-3)(x-3000)}=7549、将方程通分并移项:frac{0.1x}{0.7}-\frac{0.03}{0.7}=\frac{0.9}{0.7}-0.2x-150小幅度改写:通分并移项得:14x+300=0。
一元一次方程计算专项训练(100题)【人教版】1.解方程:−r12=35+1.2.解方程:3x﹣4(x+1)=3﹣2(2x﹣5).3.解方程:0.3K0.10.2−2r93=−6.4.解方程:2−15(x+2)=12(x﹣1).5.解方程:K34−1=5K43.6.解方程:2K23+1=r12.7.解方程:r24−2K36=1.8.解方程:2K13−3r16=1.9.解方程:23=4K89−2.10.解方程:2.4−K42=35.11.解方程:K32−1=2r13.12.解方程:1−K133=9−32+x.13.解方程:4x+3=2(x﹣1)+1.14.解方程:K23−1=3r24.15.解方程:1−2K13=2r12.16.解方程:2r14−K36=1.17.解方程:35+2.7=4.8.18.解方程:r12−K1=3.19.解方程:K14=1−3−2.20.解方程:4r16−2K12=1.21.解方程:25x﹣8=14−15x.22.解方程:K12−1=2+33.23.解方程:2K13−r46=1.24.解方程:3(x﹣2)=x﹣(8﹣8x).25.解关于x的方程:mx﹣3x=2(2﹣x).26.解方程:3﹣6(x+23)=23.27.解方程:2r35=1−K42.28.解方程:3K14−1=5K76.29.解方程:5−23−3r12=−1.30.解方程:K64−3r52=1.31.解方程:5r72−r173=3.32.解方程:0.4r30.2−K0.10.3=2.33.解方程:1−5K38=2+4.34.解方程:1−3−x=3−r22.35.解方程:x﹣1﹣3(x+2)=6x+1.36.解方程:r32=52+4K15.37.解方程:2r13−5K12=1.38.解方程:2r13=K14+1.39.解方程:4−2−2r13=4.40.解方程:r14−3K18=1.41.解方程:2K13=3r24−1.42.解方程:y−r12=2−r25.43.解方程:2x−13(x+2)=﹣x+2.44.解方程:3−23−2=3r112.45.解方程:x−r22=2K13−1.46.解方程:K30.2−r40.5=1.47.解方程:5K14=1−2−3.48.解方程:2r13−K15=1.49.解方程:1−3K14=3+2.50.解方程:14%x﹣9%(x+10)=7%x+0.2 51.解方程:2+K46=−K33.52.解方程:4(x+12)+9=5﹣3(x﹣1)53.解方程:2r15−1=K2354.解方程:5K76+1=3K14.55.解方程:x−K25=2K53−1.56.解方程:2r13−K16=1.57.解方程:K73−1+2=1.58.解方程:2K13=2r16−1.59.解方程:r13−2=x−K12.60.解方程:x−K12=23−r23.61.解方程:6(12−4)+2=7−(13−1).62.解方程:3x+K12=3−2K13.63.解方程:2K13−5r12−1=0.64.解方程:4(2x﹣1)﹣3(5x+1)=14.65.解方程:4x+3(2x﹣3)=12﹣(x+4)(写出检验过程).66.解方程:2−3−3(K1)2=1.67.解方程:K22+2(r2)5=2−210+1.68.解方程:x−r10.2=0.5.69.解方程:3−K35=3K12−x.70.解方程:16(2x﹣1)=18(5x+1)71.解方程:(x﹣4)−(K4)−12=3−(K4)+23 72.解方程:K0.20.4−0.37r10.2=173.解方程:0.1K0.20.02−r10.5=3.74.解方程:32[2(x−12)+23]=5x.75.解方程:2K13−r56=2x+1;76.解方程:13[x−12(x﹣1)]=23(x﹣2).77.解方程:0.2K0.40.5−=0.05K0.20.03.78.解方程:34[43(12t−14)﹣8]=32t﹣1.79.解方程:12(4x﹣3)﹣2=r13+2;80.解方程:12[3−12(32x﹣1)]=12,81.解方程:2K13−3=0.3r0.50.2.82.解方程:4y﹣3(2+y)=5﹣2(1﹣2y);83.解方程:0.4r0.90.5−0.03+0.020.03=K52.84.解方程:2−5r116=1+2K43.85.解方程:0.8r0.90.5=r52+0.3K0.20.3.86.解方程:13[−12(−1)]=23(−2).87.解方程:0.4r30.2−K0.10.3=2.88.解方程:−K12=2−r25;89.解方程:10.2(+1)−=2K30.3.90.解方程:3r12−2=3K210−2r35,91.解方程:0.5(x﹣3)−4r15=1,92.解方程:4−60.01−6.5=0.2−200.2−7.5,93.解方程:3(x+1)−13(x﹣1)=2(x﹣1)−12(x+1),94.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x);95.解方程:3+0.20.2−0.2+0.030.01=0.75 96.解方程:2K13−5r26=1−22−2;97.解方程:3.1+0.20.2−0.2+0.030.01=32.98.解方程:0.8−91.2−1.3−30.2=5r10.3.99.解方程:0.1−0.20.3−1=0.7−0.4.100.解方程:3+0.20.2−0.2+0.030.01=0.75.一元一次方程计算专项训练(100题)参考答案与试题解析1.解方程:−r12=35+1.【解答】解:去分母得:10x﹣5(x+1)=6x+10,去括号得:5x﹣5=6x+10,移项得:5x﹣6x=10+5,合并得:﹣x=15,解得:x=﹣15.2.解方程:3x﹣4(x+1)=3﹣2(2x﹣5).【解答】解:去括号得:3x﹣(4x+4)=3﹣(4x﹣10),即3x﹣4x﹣4=3﹣4x+10,移项合并得:3x=17,解得:x=173.3.解方程:0.3K0.10.2−2r93=−6.【解答】解:方程整理得:3K12−2r93=−6,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项合并得:5x=﹣15,解得:x=﹣3.4.解方程:2−15(x+2)=12(x﹣1).【解答】解:去分母,可得:20﹣2(x+2)=5(x﹣1),去括号,可得:20﹣2x﹣4=5x﹣5,移项,可得:﹣2x﹣5x=﹣5﹣20+4,合并同类项,可得:﹣7x=﹣21,系数化为1,可得:x=3.5.解方程:K34−1=5K43.【解答】解:去分母,可得:3(x﹣3)﹣12=4(5x﹣4),去括号,可得:3x﹣9﹣12=20x﹣16,移项,可得:3x﹣20x=﹣16+9+12,合并同类项,可得:﹣17x=5,系数化为1,可得:x=−517.6.解方程:2K23+1=r12.【解答】解:2K23+1=r12,方程两边同时乘6,得2(2x﹣2)+6=3(x+1),去括号,得4x﹣4+6=3x+3,移项,得4x﹣3x=3+4﹣6,合并同类项,得x=1.7.解方程:r24−2K36=1.【解答】解:方程两边同乘以12得:12×r24−12×2K36=12,则3(x+2)﹣2(2x﹣3)=12,故3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,解得:x=0.8.解方程:2K13−3r16=1.【解答】解:去分母,可得:2(2x﹣1)﹣(3x+1)=6,去括号,可得:4x﹣2﹣3x﹣1=6,移项,可得:4x﹣3x=6+2+1,合并同类项,可得:x=9.9.解方程:23=4K89−2.【解答】解:23=4K89−2,去分母,得6x=4x﹣8﹣18,移项,得6x﹣4x=﹣8﹣18,系数化为1,得x=﹣13.10.解方程:2.4−K42=35.【解答】解:去分母,可得:24﹣5(x﹣4)=6x,去括号,可得:24﹣5x+20=6x,移项,可得:﹣5x﹣6x=﹣24﹣20,合并同类项,可得:﹣11x=﹣44,系数化为1,可得:x=4.11.解方程:K32−1=2r13.【解答】解:去分母,得:3(x﹣3)﹣6=2(2x+1),去括号,得:3x﹣9﹣6=4x+2,移项,得:3x﹣4x=2+9+6,合并同类项,得:﹣x=17,系数化1,得:x=﹣17.12.解方程:1−K133=9−32+x.【解答】解:去分母得:6﹣2(x﹣13)=3(9﹣3x)+6x,去括号得:6﹣2x+26=27﹣9x+6x,移项得:﹣2x+9x﹣6x=27﹣6﹣26,合并同类项得:x=﹣5.13.解方程:4x+3=2(x﹣1)+1.【解答】解:4x+3=2(x﹣1)+1,去括号,得4x+3=2x﹣2+1,移项,得4x﹣2x=1﹣2﹣3,合并同类项,得2x=﹣4,系数化为1,得x=﹣2.14.解方程:K23−1=3r24.【解答】解:去分母,得4(x﹣2)12=3(3x+2),去括号,得4x﹣8﹣12=9x+6,合并同类项,得﹣5x=26,系数化为1,得=−265.15.解方程:1−2K13=2r12.【解答】解:去分母得:6﹣2(2x﹣1)=3(2x+1),去括号得:6﹣4x+2=6x+3,移项得:﹣4x﹣6x=3﹣6﹣2,合并得:﹣10x=﹣5,解得:x=0.5.16.解方程:2r14−K36=1.【解答】解:去分母得:3(2x+1)﹣2(x﹣3)=12,去括号得:6x+3﹣2x+6=12,移项得:6x﹣2x=12﹣3﹣6,合并同类项得:4x=3,系数化为1得:x=34.17.解方程:35+2.7=4.8.【解答】解:移项得:35x=4.8﹣2.7,合并同类项得:35x=2.1,系数化为1得:x=3.5.18.解方程:r12−K1=3.【解答】解:去分母,可得:a(x+1)﹣2(x﹣1)=6a,去括号,可得:ax+a﹣2x+2=6a,移项,可得:ax﹣2x=6a﹣a﹣2,合并同类项,可得:(a﹣2)x=5a﹣2,系数化为1,可得:x=5K2K2(a≠2)或x无解(a=2).19.解方程:K14=1−3−2.【解答】解:去分母,可得:x﹣1=4﹣2(3﹣x),去括号,可得:x﹣1=4﹣6+2x,移项,可得:x﹣2x=4﹣6+1,合并同类项,可得:﹣x=﹣1,系数化为1,可得:x=1.20.解方程:4r16−2K12=1.【解答】解:去分母,可得:4x+1﹣3(2x﹣1)=6,去括号,可得:4x+1﹣6x+3=6,移项,可得:4x﹣6x=6﹣1﹣3,合并同类项,可得:﹣2x=2,系数化为1,可得:x=﹣1.21.解方程:25x﹣8=14−15x.【解答】解:去分母,可得:8x﹣160=5﹣4x,移项,可得:8x+4x=5+160,合并同类项,可得:12x=165,系数化为1,可得:x=13.75.22.解方程:K12−1=2+33.【解答】解:去分母,可得:3(x﹣1)﹣6=2(2+3x),去括号,可得:3x﹣3﹣6=4+6x,移项,可得:3x﹣6x=4+3+6,合并同类项,可得:﹣3x=13,系数化为1,可得:x=−133.23.解方程:2K13−r46=1.【解答】解:去分母,可得:2(2x﹣1)﹣(x+4)=6,去括号,可得:4x﹣2﹣x﹣4=6,移项,可得:4x﹣x=6+2+4,合并同类项,可得:3x=12,系数化为1,可得:x=4.24.解方程:3(x﹣2)=x﹣(8﹣8x).【解答】解:去括号,可得:3x﹣6=x﹣8+8x,移项,可得:3x﹣x﹣8x=﹣8+6,合并同类项,可得:﹣6x=﹣2,系数化为1,可得:x=13.25.解关于x的方程:mx﹣3x=2(2﹣x).【解答】解:mx﹣3x=2(2﹣x),去括号,得mx﹣3x=4﹣2x,移项,得mx﹣3x+2x=4,合并同类项,得(m﹣1)x=4,当m﹣1≠0,即m≠1时,方程的解是x=4K1;当m﹣1=0,即m=1时,方程无解.26.解方程:3﹣6(x+23)=23.【解答】解:3﹣6(x+23)=23,则3﹣6x﹣4=23,﹣6x=53,解得:x=−518.27.解方程:2r35=1−K42.【解答】解:2r35=1−K42,去分母,得2(2x+3)=10﹣5(x﹣4),去括号,得4x+6=10﹣5x+20,移项,得4x+5x=10+20﹣6,合并同类项,得9x=24,系数化为1,得=83.28.解方程:3K14−1=5K76.【解答】解:去分母得:3(3x﹣1)﹣12=2(5x﹣7)去括号得:9x﹣3﹣12=10x﹣14移项得:9x﹣10x=﹣14+15合并得:﹣x=1系数化为1得:x=﹣1.29.解方程:5−23−3r12=−1.【解答】解:5−23−3r12=−1,去分母,得2(5﹣2x)﹣3(3x+1)=﹣6,去括号,得10﹣4x﹣9x﹣3=﹣6,移项,得﹣4x﹣9x=3﹣6﹣10,合并同类项,得﹣13x=﹣13,系数化为1,得x=1.30.解方程:K64−3r52=1.【解答】解:K64−3r52=1,去分母,得x﹣6﹣2(3x+5)=4,去括号,得x﹣6﹣6x﹣10=4,移项,得x﹣6x=4+10+6,合并同类项,得﹣5x=20,系数化为1,得x=﹣4.31.解方程:5r72−r173=3.【解答】解:去分母得:3(5x+7)﹣2(x+17)=18,去括号得:15x+21﹣2x﹣34=18,移项得:13x=31,解得:x=3113.32.解方程:0.4r30.2−K0.10.3=2.【解答】解:0.4r30.2−K0.10.3=2,化简,得2+15−10K13=2,去分母,得6x+45﹣(10x﹣1)=6,去括号,得6x+45﹣10x+1=6,移项,得6x﹣10x=6﹣1﹣45,合并同类项,得﹣4x=﹣40,系数化为1,得x=10.33.解方程:1−5K38=2+4.【解答】解:去分母,可得:8﹣(5x﹣3)=2(2+x),去括号,可得:8﹣5x+3=4+2x,移项,可得:﹣5x﹣2x=4﹣8﹣3,合并同类项,可得:﹣7x=﹣7,系数化为1,可得:x=1.34.解方程:1−3−x=3−r22.【解答】解:去分母,可得:2(1﹣x)﹣6x=18﹣3(x+2),去括号,可得:2﹣2x﹣6x=18﹣3x﹣6,移项,可得:﹣2x﹣6x+3x=18﹣6﹣2,合并同类项,可得:﹣5x=10,系数化为1,可得:x=﹣2.35.解方程:x﹣1﹣3(x+2)=6x+1.【解答】解:去括号,可得:x﹣1﹣3x﹣6=6x+1,移项,可得:x﹣3x﹣6x=1+1+6,合并同类项,可得:﹣8x=8,系数化为1,可得:x=﹣1.36.解方程:r32=52+4K15.【解答】解:去分母,可得:5(x+3)=25+2(4x﹣1),去括号,可得:5x+15=25+8x﹣2,移项,可得:5x﹣8x=25﹣2﹣15,合并同类项,可得:﹣3x=8,系数化为1,可得:x=−83.37.解方程:2r13−5K12=1.【解答】解:去分母得:2(2x+1)﹣3(5x﹣1)=6,去括号得:4x+2﹣15x+3=6,移项得:4x﹣15x=6﹣2﹣3,合并得:﹣11x=1,解得:x=−111.38.解方程:2r13=K14+1.【解答】解:2r13=K14+1,方程两边同时乘以12得4(2x+1)=3(x﹣1)+12,∴8x+4=3x﹣3+12,∴5x=5,解得:x=1.39.解方程:4−2−2r13=4.【解答】解:去分母,可得:3(4﹣x)﹣2(2x+1)=24,去括号,可得:12﹣3x﹣4x﹣2=24,移项,可得:﹣3x﹣4x=24﹣12+2,合并同类项,可得:﹣7x=14,系数化为1,可得:x=﹣2.40.解方程:r14−3K18=1.【解答】解:去分母得:2(x+1)﹣(3x﹣1)=8,去括号得:2x+2﹣3x+1=8,移项得:2x﹣3x=8﹣2﹣1,合并得:﹣x=5,解得:x=﹣5.41.解方程:2K13=3r24−1.【解答】解:去分母得:4(2x﹣1)=3(3x+2)﹣12,去括号得:8x﹣4=9x+6﹣12,移项得:8x﹣9x=6﹣12+4,合并得:﹣x=﹣2,解得:x=2.42.解方程:y−r12=2−r25.【解答】解:去分母,可得:10y﹣5(y+1)=20﹣2(y+2),去括号,可得:10y﹣5y﹣5=20﹣2y﹣4,移项,可得:10y﹣5y+2y=20﹣4+5,合并同类项,可得:7y=21,系数化为1,可得:y=3.43.解方程:2x−13(x+2)=﹣x+2.【解答】解:去分母,可得:6x﹣(x+2)=﹣3x+6,去括号,可得:6x﹣x﹣2=﹣3x+6,移项,可得:6x﹣x+3x=6+2,合并同类项,可得:8x=8,系数化为1,可得:x=1.44.解方程:3−23−2=3r112.【解答】解:去分母,可得:2(3﹣2x)﹣12=3(3x+11),去括号,可得:6﹣4x﹣12=9x+33,移项,可得:﹣4x﹣9x=33﹣6+12,合并同类项,可得:﹣13x=39,系数化为1,可得:x=﹣3.45.解方程:x−r22=2K13−1.【解答】解:去分母,可得:6x﹣3(x+2)=2(2x﹣1)﹣6,去括号,可得:6x﹣3x﹣6=4x﹣2﹣6,移项,可得:6x﹣3x﹣4x=﹣2﹣6+6,合并同类项,可得:﹣x=﹣2,系数化为1,可得:x=2.46.解方程:K30.2−r40.5=1.【解答】解:去分母得:5(x﹣3)﹣2(x+4)=1,去括号得:5x﹣15﹣2x﹣8=1,移项得:5x﹣2x=1+8+15,合并得:3x=24,解得:x=8.47.解方程:5K14=1−2−3.【解答】解:去分母,可得:3(5x﹣1)=12﹣4(2﹣x),去括号,可得:15x﹣3=12﹣8+4x,移项,合并同类项,可得:11x=7,系数化为1,可得:x=711.48.解方程:2r13−K15=1.【解答】解:去分母,可得:5(2x+1)﹣3(x﹣1)=15,去括号,可得:10x+5﹣3x+3=15,移项,合并同类项,可得:7x=7,系数化为1,可得:x=1.49.解方程:1−3K14=3+2.【解答】解:4﹣(3x﹣1)=2(3+x),去分母,得4﹣3x+1=6+2x,移项,得﹣3x﹣2x=6﹣4﹣1,合并同类项,得﹣5x=1,系数化1,得x=−15.50.解方程:14%x﹣9%(x+10)=7%x+0.2【解答】解:方程整理得:14x﹣9(x+10)=7x+20,去括号得:14x﹣9x﹣90=7x+20,移项合并得:﹣2x=110,解得:x=﹣55.51.解方程:2+K46=−K33.【解答】解:去分母得:12+x﹣4=6x﹣2x+6,移项合并得:﹣3x=﹣2,解得:x=23.52.解方程:4(x+12)+9=5﹣3(x﹣1)【解答】解:去括号,得4x+2+9=5﹣3x+3,移项,得4x+3x=5+3﹣2﹣9,化简,得7x=﹣3,两边同除以x的系数7,得x=−37,所以,方程的解为x=−37.53.解方程:2r15−1=K23【解答】解:方程左右两边同时乘以15,得3(2x+1)﹣15=5(x﹣2),去括号得:x﹣2+8=4﹣4﹣2x,移项合并同类项得:x=2.54.解方程:5K76+1=3K14.【解答】解:2(5x﹣7)+12=3(3x﹣1),10x﹣14+12=9x﹣3,10x﹣9x=﹣3+14﹣12,x=﹣1.55.解方程:x−K25=2K53−1.【解答】解:15x﹣3(x﹣2)=5(2x﹣5)﹣15,15x﹣3x+6=10x﹣25﹣15,15x﹣3x﹣10x=﹣25﹣15﹣6,2x=﹣46,x=﹣23.56.解方程:2r13−K16=1.【解答】解:去分母,得:2(2x+1)﹣(x﹣1)=6,去括号,得:4x+2﹣x+1=6,移项,得:4x﹣x=6﹣2﹣1,合并同类项,得:3x=3,系数化为1,得:x=1.57.解方程:K73−1+2=1.【解答】解:去分母得,2(x﹣7)﹣3(1+x)=6,去括号得,2x﹣14﹣3﹣3x=6,移项得,2x﹣3x=6+14+3,合并同类项得,﹣x=23,系数化为1得,x=﹣23.58.解方程:2K13=2r16−1.【解答】解:去分母得:4x﹣2=2x+1﹣6,移项合并得:2x=﹣3,解得:x=﹣1.5.59.解方程:r13−2=x−K12.【解答】解:去分母得:2(x+1)﹣12=6x﹣3(x﹣1),去括号得:2x+2﹣12=6x﹣3x+3,移项得:2x﹣6x+3x=3﹣2+12,合并得:﹣x=13,解得:x=﹣13.60.解方程:x−K12=23−r23.【解答】解:去分母得:6x﹣3x+3=4﹣2x﹣4,移项合并得:5x=﹣3,解得:x=﹣0.6.61.解方程:6(12−4)+2=7−(13−1).【解答】解:原方程可化为:3−24+2=7−13+1,即5+13=24+8,163=32,解得x=6.62.解方程:3x+K12=3−2K13.【解答】解:去分母得,18x+3(x﹣1)=18﹣2(2x﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=2325.63.解方程:2K13−5r12−1=0.【解答】解:去分母得,2(2x﹣1)﹣3(5x+1)﹣6=0,去括号的,4x﹣2﹣15x﹣3﹣6=0,移项得,4x﹣15x=2+3+6,合并同类项得,﹣11x=11,系数化为1得,x=﹣1.故答案为:x=﹣1.64.解方程:4(2x﹣1)﹣3(5x+1)=14.【解答】解:4(2x﹣1)﹣3(5x+1)=14,去括号,得8x﹣4﹣15x﹣3=14,移项,得8x﹣15x=14+4+3,合并同类项,得﹣7x=21,系数化为1,得x=﹣3.65.4x+3(2x﹣3)=12﹣(x+4)(写出检验过程).【解答】解:4x+3(2x﹣3)=12﹣(x+4),去括号得,4x+6x﹣9=12﹣x﹣4,移项得,4x+6x+x=12﹣4+9,合并同类项得,11x=17,系数化为1得,x=1711.检验:把x=1711代入方程,左边:4x+3(2x﹣3)=4×1711+3×(2×1711−3)=6811+311=7111;右边=12﹣(x+4)=12−(1711+4)=12−6111=7111,∴左边=右边,∴x=1711是方程的解.66.解方程:2−3−3(K1)2=1.【解答】解:2−3−3(K1)2=1,去分母,得:2(2﹣x)﹣9(x﹣1)=6,去括号,得:4﹣2x﹣9x+9=6,移项,得:﹣2x﹣9x=6﹣4﹣9,合并同类项,得:﹣11x=﹣7,系数化1,得:x=711.67.解方程:K22+2(r2)5=2−210+1.【解答】解:去分母得:5(x﹣2)+4(x+2)=2﹣2x+10,去括号得:5x﹣10+4x+8=2﹣2x+1,整理得:9x﹣2=12﹣2x,即9x+2x=12+2,化简得:11x=14,解得:x=1411.68.解方程:x−r10.2=0.5.【解答】解:−r10.2=0.5,去分母得:x﹣5(x+1)=2x,去括号得:x﹣5x﹣5=2x,移项得:x﹣5x﹣2x=5,合并同类项得:﹣6x=5,系数化为去得:x=−56.69.解方程:3−K35=3K12−x.【解答】解:方程可变形为:30﹣2(x﹣3)=5(3x﹣1)﹣10x,去括号得:30﹣2x+6=15x﹣5﹣10x,移项得:﹣2x﹣15x+10x=﹣5﹣6﹣30,合并得:﹣7x=﹣41,系数化为1,得:x=417.70.解方程:16(2x﹣1)=18(5x+1)【解答】解:去分母得:4(2x﹣1)=3(5x+1),去括号得:8x﹣4=15x+3,移项合并得:﹣7x=7,解得:x=﹣1.71.解方程:(x﹣4)−(K4)−12=3−(K4)+23【解答】解:去分母得:6(x﹣4)﹣3(x﹣5)=18﹣2(x﹣2),去括号得:6x﹣24﹣3x+15=18﹣2x+4,移项合并得:5x=31,解得:x=6.2;72.解方程:K0.20.4−0.37r10.2=1【解答】解:方程整理得:10K24−37r10020=1,去分母得:50x﹣10﹣37x﹣100=20,移项合并得:13x=130,解得:x=10.73.解方程:0.1K0.20.02−r10.5=3.【解答】解:方程整理得:10K202−10r105=3,即5y﹣10﹣2y﹣2=3,移项合并得:3y=15,解得:y=5.74.解方程:32[2(x−12)+23]=5x.【解答】解:去中括号得:3(x−12)+1=5x,去小括号得:3x−32+1=5x,移项得,3x﹣5x=﹣1+32,合并同类项得:﹣2x=12,解得:x=−14.75.解方程:2K13−r56=2x+1;【解答】解:去分母得:2(2x﹣1)﹣(x+5)=12x+6,去括号得:4x﹣2﹣x﹣5=12x+6,移项合并得:﹣9x=13,解得:x=−139;76.解方程:13[x−12(x﹣1)]=23(x﹣2).【解答】解:去括号得:13x−16(x﹣1)=23(x﹣2),去分母得:2x﹣(x﹣1)=4(x﹣2),去括号得:2x﹣x+1=4x﹣8,移项合并得:﹣3x=﹣9,解得:x=3.77.解方程:0.2K0.40.5−=0.05K0.20.03.【解答】解:方程可化为,2(0.2x﹣0.4)﹣x=5K203,去分母,得6(0.2x﹣0.4)﹣3x=5x﹣20,去括号,得1.2x﹣2.4﹣3x=5x﹣20,移项,得1.2x﹣3x﹣5x=2.4﹣20,合并同类项,得﹣6.8x=﹣17.6,把未知数系数化为1,得x=4417.78.解方程:34[43(12t−14)﹣8]=32t﹣1.【解答】解:34[43(12t−14)﹣8]=32t﹣1,12−14−6=32−1,移项,得12−32=6+14−1,合并同类项,得﹣t=214,系数化为1,得t=−214.79.解方程:12(4x﹣3)﹣2=r13+2;【解答】解:去分母,得3(4x﹣3)﹣12=2(x+1)+12,去括号,得12x﹣9﹣12=2x+2+12,移项,得12x﹣2x=2+12+9+12,合并同类项,得10x=35,系数化为1,得x=3.5;80.解方程:12[3−12(32x﹣1)]=12,【解答】解:去分母,得6[3−12(32x﹣1)]=x,化简,得2x﹣3(32x﹣1)=x,去括号,得2x−92+3=x,移项,得2x−92−x=﹣3,合并同类项,得−72=−3,系数化为1,得x=67.81.解方程:2K13−3=0.3r0.50.2.【解答】解:整理,得2K13−3=5(0.3+0.5),去分母,得2x﹣1﹣9=15(0.3x+0.5),去括号,得2x﹣1﹣9=4.5x+7.5,移项,得2x﹣4.5x=1+9+7.5,合并同类项,得﹣2.5x=17.5,系数化成1,得x=﹣7.82.解方程:4y﹣3(2+y)=5﹣2(1﹣2y);【解答】解:4y﹣3(2+y)=5﹣2(1﹣2y),去括号,得4y﹣6﹣3y=5﹣2+4y,移项,得4y﹣3y﹣4y=5﹣2+6,合并,得﹣3y=9,解得:y=﹣3;83.解方程:0.4r0.90.5−0.03+0.020.03=K52.【解答】解:整理,得4r95−3+23=K52,去分母,得6(4x+9)﹣10(3+2x)=15(x﹣5),去括号,得24x+54﹣30﹣20x=15x﹣75,移项,得24x﹣20x﹣15x=﹣75﹣54+30,合并,得﹣11x=﹣99,系数化为1,得x=9.84.解方程:2−5r116=1+2K43.【解答】解:去分母得:3x﹣(5x+11)=6+2(2x﹣4),去括号得:3x﹣5x﹣11=6+4x﹣8,移项得:3x﹣5x﹣4x=6﹣8+11,合并得:﹣6x=9,解得:x=−32;85.解方程:0.8r0.90.5=r52+0.3K0.20.3.【解答】解:方程整理得:8r95=r52+3K23,去分母得:6(8x+9)=15(x+5)+10(3x﹣2),移项得:48x﹣15x﹣30x=75﹣20﹣54,合并得:3x=1,解得:x=13.86.解方程:13[−12(−1)]=23(−2).【解答】解:整理,得−12(−1)=2(−2),去分母,得2x﹣(x﹣1)=4(x﹣2),去括号,得2x﹣x+1=4x﹣8,移项,得2x﹣x﹣4x=﹣8﹣1,合并同类项,得﹣3x=﹣9,系数化为1,得x=3;87.解方程:0.4r30.2−K0.10.3=2.【解答】解:整理,得5(0.4y+3)−103(y﹣0.1)=2,去分母,得15(0.4y+3)﹣10(y﹣0.1)=6,去括号,得6y+45﹣10y+1=6,移项,得6y﹣10y=6﹣1﹣45,合并同类项,得﹣4y=﹣40,系数化为1,得y=10.88.解方程:−K12=2−r25;【解答】解:去分母,可得:10y﹣5(y﹣1)=20﹣2(y+2),去括号,可得:10y﹣5y+5=20﹣2y﹣4,移项,可得:10y﹣5y+2y=20﹣4﹣5,合并同类项,可得:7y=11,系数化为1,可得:y=117.89.解方程:10.2(+1)−=2K30.3.【解答】解:去分母,可得:3(x+1)﹣0.6x=2(2x﹣3),移项,可得:3x﹣0.6x﹣4x=﹣6﹣3,合并同类项,可得:﹣1.6x=﹣9,系数化为1,可得:x=458.90.解方程:3r12−2=3K210−2r35,【解答】解:去分母,得5(3x+1)﹣20=3x﹣2﹣2(2x+3),去括号,得15x+5﹣20=3x﹣2﹣4x﹣6,移项,得15x﹣3x+4x=20﹣5﹣2﹣6,合并同类项,得16x=7,系数化为1,得x=716;91.解方程:0.5(x﹣3)−4r15=1,【解答】解:去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项,得5x﹣8x=10+15+2,合并同类项,得﹣3x=27,系数化为1,得x=﹣9;92.解方程:4−60.01−6.5=0.2−200.2−7.5,【解答】解:整理,得100(4﹣6x)﹣6.5=5(0.2﹣20x)﹣7.5,去括号,得400﹣600x﹣6.5=1﹣100x﹣7.5,移项,得100x﹣600x=﹣400+6.5+1﹣7.5,合并同类项,得﹣500x=﹣400,系数化为1,得x=45;93.解方程:3(x+1)−13(x﹣1)=2(x﹣1)−12(x+1),【解答】解:去分母,得18(x+1)﹣2(x﹣1)=12(x﹣1)﹣3(x+1),去括号,得18x+18﹣2x+2=12x﹣12﹣3x﹣3,移项,得18x﹣2x﹣12x+3x=﹣12﹣3﹣18﹣2,合并同类项,得7x=﹣35,系数化为1,x=﹣5.94.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x);【解答】解:去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;95.解方程:3+0.20.2−0.2+0.030.01=0.75【解答】解:方程整理得:30+22−20+31=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=−238.96.解方程:2K13−5r26=1−22−2;【解答】解:去分母,得2(2x﹣1)﹣(5x+2)=3(1﹣2x)﹣12,去括号,得4x﹣2﹣5x﹣2=3﹣6x﹣12,移项,得4x﹣5x+6x=3﹣12+2+2,合并,得5x=﹣5,系数化为1,得x=﹣1;97.解方程:3.1+0.20.2−0.2+0.030.01=32.【解答】解:5(3.1+0.2p5×0.2−100(0.2+0.03p100×0.01=3×0.52×0.5,整理,得15.5+x﹣20﹣3x=1.5,移项,得x﹣3x=1.5﹣15.5+20,合并,得﹣2x=6,所以x=﹣3.98.解方程:0.8−91.2−1.3−30.2=5r10.3.【解答】解:方程整理得:8−9012−13−302=50r103,去分母得:8﹣90x﹣6(13﹣30x)=4(50x+10),去括号得:8﹣90x﹣78+180x=200x+40,移项得:﹣90x+180x﹣200x=40﹣8+78,合并同类项得:﹣110x=110,把x系数化为1得:x=﹣1.99.解方程:0.1−0.20.3−1=0.7−0.4.【解答】解:方程整理得:1−23−1=7−104,去分母得:4(1﹣2x)﹣12=3(7﹣10x),去括号得:4﹣8x﹣12=21﹣30x,移项合并得:22x=29,解得:x=2922.100.解方程:3+0.20.2−0.2+0.030.01=0.75.【解答】解:30+22−20+31=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=−238.。
七年级一元一次方程计算练习300道(含答案)一.解答题(共50小题)1.解下列方程:(1)4﹣4(x﹣3)=2(9﹣x)(2)x﹣=﹣12.解方程:(1)2(x+8)=3x﹣1(2)3.解方程:(1)5x﹣6=3x﹣4(2)﹣=14.解下列方程:(1)x﹣2=﹣2;(2)3x﹣5=5x﹣(2+x);(3)﹣=1;(4)[2(x﹣)+]=6x.5.解方程:(1)x﹣9=4x+27(2)1﹣x=3x+(3)12(2﹣3x)=4x+4(4)=(5)﹣=1(6)﹣=126.解方程(1)2(x﹣3)=x+2(2)1﹣=7.解下列方程:(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2.8.解方程9.解方程:10.解下列方程(1)3x﹣1=x+3(2)﹣=111.解方程:(1)5x=3x﹣4;(2).12.解下列方程:(1)﹣3x﹣6=9(2)5﹣4x=﹣6x+7(3)2(x﹣1)+2=4x﹣6(4)=1.13.解方程:(1)x﹣3(x+1)﹣1=2x(2)y﹣=3+14.解方程:(1)4x+3=2(x﹣1)+1;(2)x;(3);(4)x﹣+2.15.解方程:(1)2(2x+3)+3(2x+3)=15;(2)﹣=1.16.解下列一元一次方程:(1)4x+7=32﹣x(2)8x﹣3(3x+2)=1(3)2(y﹣)=(3y﹣2)(4)﹣=117.化简或解方程:(1)化简:3a2﹣[5a﹣(2a﹣3)+4a2](2)解方程:+1=18.解方程(1)2(x+8)=3(x﹣1)(2)19.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=20.解方程:(1)4(x﹣2)﹣1=3(x﹣1);(2)21.解方程(1)2(2x﹣1)=1﹣(3﹣x)(2)22.解方程:(1)4﹣3(2﹣x)=5x;(2).23.解下列方程:(1)2x﹣2=3x+5(2).24.(1)计算:﹣(﹣1)4+(﹣42)×()2+23(2)解方程:25.解方程:(1)3x+2(x﹣3)=8﹣(x+2)(2)=﹣126.解方程:(1)2(10﹣0.5x)=﹣(1.5x+2);(2)+=2﹣27.解方程:(1)4x﹣5=10﹣x;(2)﹣=1.28.解方程:(1)4(x﹣1)﹣3=7;(2)﹣=1.29.解方程:(1)7﹣2x=3﹣4(x﹣2)(2)30.解方程:(1)4(x﹣2)=2﹣x;(2).31.解方程(1)3x+7=32﹣2x;(2)﹣1=32.解方程(1)﹣(3x+1)+2x=2(1.5x﹣1)(2)1﹣.(1)2﹣3x=x+1(2)34.解方程(1)2(100﹣15x)=60+5x(2)=1.35.解方程:(1)5(x+8)=6(2x﹣7)+5(2)=﹣1 36.(1)[4(x﹣)+]=1;(2)+=1﹣.37.解方程:(1)2(x+1)+3=1﹣(x﹣1)(2)=2﹣(1)3(2x﹣1)=﹣15;(2)﹣=139.解方程:(1)5x+3(2x﹣3)=13(2)2[x﹣(2x﹣)]=x (3)+=2﹣40.解方程:(1)3﹣2(x﹣3)=2﹣3(2x﹣1);(2)41.解方程:(1)5(x﹣1)=3(x+1);(2)﹣=1.42.解方程(1)10x+7=12x﹣5(2)(3)43.解方程:﹣=1.44.解下列方程:(1)2x﹣(x+10)=5x+2(1﹣x).(2)3x+.45.=﹣146.解方程(1)3(x﹣1)+6=2(x+3)+7(2)1+=.47.解方程:(1)5(2﹣x)﹣3(2x﹣1)=2(2)﹣=1﹣48.解方程(1)3x﹣2(x﹣1)=9﹣4(x+3)(2)=3+49.解方程=﹣150.解方程:(1)﹣=﹣1(2)10x+7=14x﹣5﹣3x七年级一元一次方程计算练习300道答案一.解答题(共50小题)1.【解】(1)去括号得:4﹣4x+12=18﹣2x,移项合并得:﹣2x=2,解得:x=﹣1;(2)去分母得:15x ﹣3x+6=10x﹣5﹣15,移项合并得:2x=﹣26,解得:x=﹣13.2.【解】(1)去括号得:2x+16=3x﹣1,移项合并得:x=17;(2)去分母得:5x﹣5=10﹣6x﹣4,移项合并得:11x=11,解得:x=1.3.【解】(1)移项合并得:2x=2,解得:x=1;(2)去分母得:2x﹣14﹣3﹣3x=6,移项合并得:﹣x=23,解得:x=﹣23.4.【解】(1)x=﹣2+2,x=0;(2)x=﹣3;(3)x=2;(4x=﹣.5.【解】(1)x=﹣12,(2)x=﹣,(3)x=,(4)x=﹣1,(5)x=﹣3,(6)x=.6.【解】(1)x=8.(2)x=1.7.【解】(1)x=﹣10,(2)x=﹣1.8.【解】x=.9.【解】x=110.【解】(1)x=2,(2)x=﹣7.11.【解】(1)x=﹣2,(2)x=4.12.【解】(1)x=﹣5,(2)x=1,(3)x=3,(4)x=.13.【解】(1)x=﹣1,(2)y=﹣7.14.【解】(1)x=﹣2(2)x=0(3)x=6(4)x=15.【解】(1)x=0.(2)x=﹣17.16.【解】(1)x=5;(2)x=﹣7;(3)y=4.(4)y=.17.【解】(1)=﹣a2﹣3a﹣3;(2)x=﹣1.5.18.【解】(1)x=19;(2)x=.19.【解】(1)=﹣9;(2)x=﹣6;(3)x=﹣.20.【解】(1)x=6;(2)x=﹣23.21.【解】(1)x=0;(2)x=﹣0.9,22.【解】(1)x=﹣1;(2)x=.23.【解】(1)x=﹣7;(2)y=﹣0.4.24.【解】(1)3;(2)x=﹣15.25.【解】(1)x=2,(2)x=5.26.【解】(1)x=﹣44;(2)y=.27.【解】(1)x=3;(2)x=2.28.【解】(1)x=.(2)x=0.29.【解】(1)x=2;(2)x=﹣1.5.30.【解】(1)x=2;(2)y=.31.【解】(1)x=5;(2)y=.32.【解】(1)x=(2)x=﹣633.【解】(1)x=(2)=34.【解】(1)x=4(2)x=﹣35.【解】(1)x=11;(2)x=﹣1.5.36.【解】(1)x=;(2)x=;37.【解答】(1)x=﹣1;(2).38.【解】(1)x=﹣2;(2)x=﹣7.39.【解】(1)x=2;(2);(3).40.【解】(1)x=﹣1;(2)y=0.41.【解】(1)x=4;(2)x=﹣4.42.【解】(1)x=6;(2)x=2;(3)x=.43.【解】x=﹣.44.【解】(1)x=﹣6;(2)x=.45.【解】y=﹣2.46.【解】(1)x=10;(2)x=47.【解】(1)x=1;(2)x=2.48.【解】(1)x=﹣1,(2)x=4.49.【解】x=11.50.【解】(1)x=;(2)x=12.。
一元一次方程专题训练姓名:___________班级:___________一、单选题1.已知x=1是方程x+2a=-1的解,那么a 的值是( )A .-1B .0C .1D .22.下列利用等式的性质,错误的是( )A .由a =b ,得到5﹣2a =5﹣2bB .由a c =b c ,得到a =bC .由a =b ,得到ac =bcD .由a =b ,得到a c =b c 3.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A .1 B .2 C .3 D .44.如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( )A .92B .-92C .29D .29- 5.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A .7 B .5 C .3 D .06.对于非零的两个数a ,b ,规定a ⊗b =3a -b ,若(x +1)⊗2=5,则x 的值为( ) A .1 B .-1 C .43 D .-2 7.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x+2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .58.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个 9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是( )A .亏2元B .亏4元C .赚4元D .不亏不赚10.如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A .16cm 2B .20cm 2C .80cm 2D .160cm 211.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++B .()12x 1013x 60+=+C .x x 60101312+-=D .x 60x 101213+-= 12.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒13.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( ) A .75B .90C .105D .120二、填空题14.李明和他父亲年龄和为 55 岁,又知父亲的年龄比他年龄的 3 倍少 1 岁,若设李明年龄为 x 岁,则可列方程为_____.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元.17.由一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得新数与原数之和是77,这个两位数为_____.18.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有_____人.19.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.20.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题21.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.22.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.23.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)13(x﹣5)=3﹣23(x﹣5)(3)24x+﹣1=326x-(4)x﹣19(x﹣9)=13[x+13(x﹣9)](5) 210.5x--30.6x+=0.5x+224.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a =________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?26.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?27.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?28.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?29.A 、B 两地相距64 km ,甲从A 地出发,每小时行14 km ,乙从B 地出发,每小时行18 km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16 km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10 km?30.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a –b |,线段AB 的中点表示的数为2a b . (问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(综合运用)(1)填空:①A 、B 两点间的距离AB =__________,线段AB 的中点表示的数为__________;②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=12 AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.31.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.32.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税______元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是_____元.参考答案1.A【解析】试题分析:根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.2.D【解析】A.∵a=b,∴−2a=−2b,∴5−2a=5−2b,故本选项正确;B. ∵a bc c=,∴c×ac=c×bc,∴a=b,故本选项正确;C. ∵a=b,∴ac=bc,故本选项正确;D. ∵a=b,∴当c=0时,ac无意义,故本选项错误.故选:D. 3.C 【解析】【详解】设被阴影盖住的一个常数为k,原方程整理得,k=-32y+12,把53y=-代入k=-32y+12,中得,k=-32×(53-)+12=5122+=3,故选C.4.D【解析】【分析】根据互为相反数的两个数的和为0可得方程5x-7+4x+9=0,解方程求得x的值即可. 【详解】根据题意得5x-7+4x+9=0,移项得5x+4x=- 9+7,合并同类项得9x = -2,系数化为1,得29x =-. 故选D.【点睛】本题考查了一元一次方程的解法,熟知一元一次方程的解法是解决问题关键.5.A【解析】【分析】先求出213x +=的解,然后把求得的方程的解代入203a x --=即可求出a 的值. 【详解】∵213x +=,∴1x =.把1x =代入203a x --=,得 1203a --=, 解之得,7a =.故选A.【点睛】本题主要考查方程的解的概念和一元一次方程的解法,熟练掌握一元一次方程的解法是解答本题的关键.6.C【解析】【分析】根据新定义列出方程3(x-1)-2=4,解之可得.【详解】根据题意知3(x-1)-2=4,3x-3-2=4,3x=4+3+2,3x=9,x=3,故选:C .【点睛】考查解一元一次方程,解题的关键是根据题意列出关于x 的方程及解方程的步骤. 7.B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.8.C【解析】由①天平可得:一个球形物体和两个圆柱形物体质量相等;②天平是由①天平左右两边同时减去一个圆柱形物体得到的,仍然平衡;③天平时由①天平左边减去一个球形物体和一个圆柱形物体,即减去三个圆柱形物体,右边减去三个圆柱形物体得到的,左右两边仍然平衡;④天平由①天平左边减去一个圆柱形物体,右边减去三个圆柱形物体得到的,所以左右两边不平衡.故选C.点睛:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.9.A【解析】【分析】设这件商品的进价为a元,可用a表示出第一次和第二次的定价,再根据等量关系:第二次的定价=商品的实际售价48元,可列出关于a的方程;然后解关于a的方程,求出a的值,并将a的值与48进行比较即可得出结论.【详解】设这件商品的进价为a元,则a(1+20%)(1-20%)=48,解得a=50.由50-48=2可知,这次生意亏2元.故选:A.【点睛】本题主要考查的是一元一次方程的应用,根据题意得到等量关系是解题的关键;10.C【解析】【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.【详解】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm,则4x=5(x-4),去括号,可得:4x=5x-20,移项,可得:5x-4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.11.B【解析】试题解析:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.考点:由实际问题抽象出一元一次方程.12.D【解析】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4,故选D.13.C【解析】【分析】根据题目中的数据,可以发现题目中数据的变化规律,从而可以得到第5个数.【详解】∵3=1×3,12=2×6=2×(3+3),30=3×10=3×(6+4),60=4×15=4×(10+5),∴第5个数是:5×(15+6)=5×21=105,故选C.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.14.3x ﹣1+x=55.【解析】【分析】直接利用已知表示出父亲的年龄,进而得出答案.【详解】设李明年龄为x 岁,则可列方程为:3x-1+x=55,故答案是:3x-1+x=55.【点睛】考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.15.-3【解析】试题分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.解:∵()2370a a x ---=是一个一元一次方程,∴30a -≠且 |a|−2=1,∴a =-3.故答案为-3.16.90【解析】试题分析:设进货价为x 元,根据九折降价出售,仍获利20%,列方程求解.解:设进货价为x 元,由题意得,0.9×120﹣x=0.2x , 解得:x=90.故答案为:90.考点:一元一次方程的应用.17.52【解析】【分析】设原来的这个两位数个位数字为x ,则十位数字为3+x .利用新数+原数=77,列方程求解即可.【详解】设原个位数字为x ,则十位数字为3+x ,由题意得:(10x+3+x )+10(3+x )+x=77,解得:x=2,则原数为10(3+2)+2=52.故答案为52【点睛】本题考查了一元一次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程求解是解题关键.18.45名.【解析】试题分析:设这个班有x 名学生,因为每人3本,则剩余20本,所以书的总量是3x+20,又每人分4本,缺25本,所以书的总量是4x ﹣25,所以可得方程:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生.考点:一元一次方程的应用.19.1000。
七年级一元一次方程计算题一、简单的一元一次方程求解(1 - 10题)1. x + 5 = 12- 解析:方程两边同时减去5,得到x+5 - 5=12 - 5,即x = 7。
2. 2x-3 = 7- 解析:首先方程两边同时加上3,得到2x - 3+3=7 + 3,即2x=10。
然后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。
3. 3(x + 1)=18- 解析:先使用分配律将括号展开,得到3x+3 = 18。
方程两边同时减去3,3x+3 - 3=18 - 3,即3x = 15。
最后方程两边同时除以3,3x÷3=15÷3,解得x = 5。
4. (x)/(2)+1 = 3- 解析:方程两边同时减去1,得到(x)/(2)+1 - 1=3 - 1,即(x)/(2)=2。
然后方程两边同时乘以2,(x)/(2)×2 = 2×2,解得x = 4。
5. 4x-2x+3 = 7- 解析:先合并同类项,4x-2x = 2x,方程变为2x+3 = 7。
方程两边同时减去3,2x+3 - 3=7 - 3,即2x = 4。
最后方程两边同时除以2,2x÷2 = 4÷2,解得x = 2。
6. 5(x - 2)=3x- 解析:先展开括号,得到5x-10 = 3x。
方程两边同时减去3x,5x-3x - 10=3x - 3x,即2x-10 = 0。
方程两边同时加上10,2x-10 + 10=0 + 10,即2x = 10。
最后方程两边同时除以2,2x÷2 = 10÷2,解得x = 5。
7. (2x + 1)/(3)=3- 解析:方程两边同时乘以3,得到2x + 1=9。
方程两边同时减去1,2x+1 - 1=9 - 1,即2x = 8。
最后方程两边同时除以2,2x÷2 = 8÷2,解得x = 4。
8. 3x+5 = 2x - 1- 解析:方程两边同时减去2x,3x - 2x+5 = 2x - 2x-1,即x+5=-1。
一元一次方程计算题专练(含答案)1.解方程:212132x x -+=+2.解方程:(1)()104x 32x 1+-=-; (2)14y 2y 1y 25-+=-.3.解方程(1)2x 13x 2x 1124+--=-. (2)x 0.160.1x 80.50.03--=4.解方程.(1)()83520x x -+= (2)1:225%:0.753x =(3) 2940%316x ÷=5.解方程(1)5322x -=; (2)3254x x -=-(2)5(31)2(42)8-=+-x x ; (4)2114135-+=-x x6.解下列方程或方程组(1)2x ﹣1=x+9 (2)x+5=2(x ﹣1)(3)43135x x --=- (4)3717245x x -+-=-7.解方程:(1)()12142x x x ⎛⎫--=- ⎪⎝⎭ (2)132123x x +-+=8.解方程:(1) 2534x x -=+ (2)341125x x -+-=9.解方程(1)2x+5=5x-7; (2)3(x-2)=2-5(x+2);(4)12x + +43x -=2; (4)12311463x x x -++-=+.10.解方程:(1)4(x﹣2)=2﹣x;(2)3121243y y+-=-.11.解方程:21122 323 x xx-++=-12.解方程:(1)2x+3=x+5;(2)2(3y–1)–3(2–4y)=9y+10;(3)3157146y y-+-=;(4)3(1)1126x x++=+.13.解方程25321 68x x+--=14.解方程:(1)51312423-+--=x x x;(2)30.4110.50.3---=x x15.解方程x ﹣13x -=36x -﹣116.解方程:(1)3x 158+=; (2)()7x 22x 310--=; (3)x 22x 1146+--=17.解方程 (1)5y ﹣2(y +4)=6 (2)2121136x x -+-=-18.111(9)(9)339x x x x ⎡⎤---=-⎢⎥⎣⎦19.解方程并在每一步后面写出你的依据.212163+--x x =120.解方程:32384x -=.21.解下列方程:(1)11(32)152x x --=; (2)131122x x +-=--;(3)243148x x --=-; (4)113(1)(21)234x x x ⎡⎤--=+⎢⎥⎣⎦ 参考答案1.14x =【解析】【分析】按照解一元一次方程的步骤,去分母,去括号,移项,合并同类项,系数化为1,即可求出解.【详解】解:去分母得:2(21)3(2)6x x -=++,去括号得:42366x x -=++,移项得:43662x x -=++,合并同类项得:14x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.2.(1)1x 2=;(2)y 2=-. 【解析】【分析】 ()1方程去括号,移项合并,把x 系数化为1,即可求出解;()2方程去分母,去括号,移项合并,把y 系数化为1,即可求出解..【详解】解:()1去括号得:104x 122x 1+-=-,移项得:4x 2x 11012-=--+,合并得:2x 1=, 解得:1x 2=; ()2去分母得:()5y 1024y 210y +=--,去括号得:5y 108y 410y +=--,移项得:5y 8y 10y 410-+=--,合并得:7y 14=-,解得:y 2=-.此题考查了解一元一次方程,解题关键在于掌握其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解.3.(1)x=1(2)x=52【解析】【分析】(1)先分母,再去括号,合并移项即可求解;(2)先把分母化成整数,再求解方程的解.【详解】(1)2x 13x 2x 1124+--=-()12x 21123(32)x x -+=--12x-2x-1=12-9x+619x=19,x=1(2)x 0.160.1x80.50.03--=1610x283x --=6x-16+10x=2416x=40 x=52此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.4.(1)20x;(2)12x =;(3)1516x = 【解析】【分析】(1)原式去括号,移项然后系数化为1即可得出答案;(2)把原式中的百分数转化为分数的形式,然后比例转化为乘法计算,运用乘法法则计算即可得出答案;(3)把原式中的百分数转化为分数的形式,然后等式两边乘以23,再利用除法法则计算即可得出结果.【详解】(1)解:83520x x --= 20x(2)解:1120.7543x ⨯=⨯ 12x = (3)解:2925163x =⨯ 1516x = 【点睛】本题主要考查解一元一次方程,根据等式的性质进行解答即可.5.(1)5x =;(2)1x =;(3)17x =;(4)72x =.【分析】(1)(2)依次移项,合并同类项,系数化为1即可得解;(3)依次去括号、移项,合并同类项,系数化为1即可得解;(4)依次去分母、去括号、移项,合并同类项,系数化为1即可得解【详解】解:(1)移项得5223x =+,合并同类项得525x =系数化为1得5x =;(2)移项得3524x x -=-合并同类项得22x -=-系数化为1得1x =;(3)去括号得155848x x -=+-移项得158485x x -=+-+合并同类项得71x =系数化为1得17x =;(4)去分母得5(21)3(14)15x x -=+-去括号得10531215x x -=+-移项得10123515x x -=+-合并同类项得27x -=-系数化为1得72x =.本题考查解一元一次方程,需注意,移项要变号,去分母时,没有分母的项也要乘以分母的最小公倍数,去括号时,括号外面的数与括号里面的每一项都要相乘.6.(1)10x = (2)7x = (3) 5.5x = (4)13x =【解析】【分析】解:(1)对移项合并2x ﹣1=x+9即可得到答案;(2)先去括号得x+5=2x ﹣2,移项合并,再系数化为1即可得到答案;(3)去分母得20﹣5x =3x ﹣9﹣15,移项合并,再系数化为1即可得到答案;(4)去分母得40﹣15x+35=﹣4x ﹣68,移项合并,再系数化为1即可得到答案.【详解】解:(1)对2x ﹣1=x+9移项合并得:x =10;(2)去括号得:x+5=2x ﹣2,移项合并得:﹣x =﹣7,系数化为1得:x =7;(3)去分母得:20﹣5x =3x ﹣9﹣15,移项合并得:﹣8x =﹣44,系数化为1得:x =5.5;(4)去分母得:40﹣15x+35=﹣4x ﹣68,移项合并得:﹣11x =﹣143,系数化为1得:x =13.本题考查解一元一次方程,解题的关键是掌握解一元一次方程的基本解题步骤.7.(1)1x =;(2)3x =【解析】【分析】利用等式的性质解一元一次方程即可解答.【详解】(1)()12142x x x ⎛⎫--=- ⎪⎝⎭解:去括号得:2142x x x -+=-移项合并同类项得:33x -=-系数化为1得:1x =(2)132123x x +-+= 解:去分母得:3(1)2(32)6x x ++-=去括号得:33646x x ++-=移项合并同类项得:3x -=-系数化为1得:3x =【点睛】本题考查了解一元一次方程,难度较低,熟练掌握等式的性质以及解一元一次方程是解题关键. 8.(1)x=14-(2)x=-9【分析】(1)根据一元一次方程移项合并即可求解;(2)去分母后,再根据一元一次方程的解法即可求解.【详解】(1) 2534x x -=+-8x=2 x=14- (2)341125x x -+-= 5(x-3)-2(4x+1)=105x-15-8x-2=10-3x=27x=-9【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知一元一次方程的解法.9.(1)x=4;(2)14x =-;(3)751x =;(4)5x =-. 【解析】【分析】(1)通过移项、合并同类项、系数化为1即可得解;(2)通过去括号、移项、合并同类项、系数化为1即可得解;(3)(4)都是通过去分母去括号、移项、合并同类项、系数化为1即可得解.【详解】(1)2x+5=5x−7移项得:2x−5x=−7−5合并同类项得:−3x=−12系数化为1得:x=4.(2)3(x−2)=2−5(x+2)去括号得:3x−6=2−5x -10移项得:3x+5x=2-10+6合并同类项得:8x=-2系数化为1得:x=14- .(3)12x + +43x -=2;去分母得: 3(1)2(4)12x x ++-=去括号得: 332812x x ++-=移项得: 321283x x +=+-合并同类项得: 517x =.系数化为1得751x =.(4)12311463x x x-++-=+去分母得: 3(1)122(23)4(1)x x x --=+++去括号得: 33124644x x x --=+++移项得: 34464312x x x --=+++合并同类项得: 525x -=系数化为1得: 5x =-.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤是:(1)去分母(即在方程两边都乘以各分母的最小公倍数,去各项中的分母);(2)去括号(即按先去小括号,再去中括号,最后去大括号的顺序,逐层把括号去掉);(3)移项(即把含有未知数的项都移到方程的一边,其它项都移到方程的另一边。
解一元一次方程专项训练(40道)目录【专项训练一、移项与合并同类项】 (1)【专项训练二、去括号】 (8)【专项训练三、去分母】 (11)【专项训练三、拓展】 (19)【专项训练一、移项与合并同类项】1.解方程.(1)124 2.4x-=(2)45258 x:=:2(3)()42:15x-=【答案】4x =-【分析】本题主要考查了解一元一次方程,按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】解;3256x x -=+移项得:3562x x -=+,合并同类项得:28x -=,系数化为1得:4x =-.3.解方程:15%9%7%0.31x x -=+.【答案】5x =【分析】本题主要考查了解一元一次方程,根据解一元一次方程的步骤求解即可.【详解】解:15%9%7%0.31x x -=+,0.150.090.070.31x x -=+,移项得:0.150.070.310.09x x -=+,合并同类项得:0.080.4x =,系数化为1得:5x =.4.解下列方程:(1)6259x x -=-+;(2)0.4 2.8 3.6 1.6 1.7y y y+-=-(1)5278x x -=+;(2)1752x x -=+;(3)2.49.8 1.49x x -=-;(4)5671238x x x x -++=+-+.【答案】(1)5x =-(2)24x =-(3)0.8x =(4)1x =【分析】此题考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.(1)先移项、合并同类项,再将系数化为1即可得到方程的解;(2)先移项、合并同类项,再将系数化为1即可得到方程的解;(3)先移项、合并同类项,即可得到方程的解;(4)先移项、合并同类项,再将系数化为1即可得到方程的解【详解】(1)(1)36 57x+=;(2)61173x¸=;(3)218 1525x=;(4)319 112020x-=.(1)1154 x x-=(2)3136 712x¸=(3)83283 54x-´=(1)133 428x-=;(2)2.4 4.516 2.6x x+=-.(1)132354x x x -+=-+;(2)42147x x x -+-=-.(1)2.49.8 1.49y y -=-(2)3312x x -=+.【专项训练二、去括号】11.解方程:2(5)333(51)x x -=-+.【答案】=1x -【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键,根据去括号、移项、合并同类项、系数化为1求解即可;【详解】解:2(1)15(2)x x -=-+,221510x x -=--,251102x x +=-+,77x =-,=1x -.13.解方程:()()23531214x x x x -+-=.【答案】2x =-【分析】本题考查了一元一次方程的解法,解决本题的关键是先根据单项式乘以多项式去括号.先根据单项式乘以多项式去括号,再解一元一次方程,即可解答.【详解】解:2(35)3(12)14x x x x -+-=,去括号得:226103614x x x x -+-=,移项合并同类项得:714x -=,系数化为1得:2x =-.14.解方程:()()250%1831x x +=--【答案】4x =【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键.【详解】解:()()250%1831x x +=--去括号得211833x x +=-+移项得231813x x +=-+合并得520x =系数化为1得4x =.15.解方程:94(2)2(31)x x x -+=+.16.解方程:.解方程:.【答案】5x =-【分析】本题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤,先去括号,然后移项合并同类项,最后未知数系数化为1即可.根据解一元一次方程的步骤进行求解即可.【详解】解:()()7211335x x -=+-去括号得:71411915x x -=+-,移项,合并同类项:210x -=,系数化为1得:5x =-.18.解下列方程(1)()3124x =-+(2)()12113x x x+--=-(1)()46252x x -=-;(2)()214x x -+=-;【答案】(1)2x =;(2)2x =.【分析】(1)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;(2)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;【详解】(1)解:()46252x x -=-,46104x x -=-,44106x x +=+,816x =,2x =;(2)解:()214x x -+=-,224x x --=-,242x x -=-+,2x -=-,2x =.20.解方程:()()4253521x x -+=--.【专项训练三、去分母】21.解下列方程:(1)221146x x ---=;(2)155x x +-=.【答案】(1)16x =-22.解方程:213 5102x x x-+--=.23.解方程:5121163x x--=-.【答案】1x=24.解方程:5121123x x +-=-;(1)223312x x x +-=--.(2)10.10.220.30.05x x x ++-=.26.解方程:2131 52x x+--=.27.解方程:323 0.20.5-+-=x x.28.解方程:341123+--=x x 29.解方程:0.12230.30.6x x x -+-=30.解方程:3532142y y y ---=-.31.解方程:2121163x x+--=.(1)141 23x x+=+;(2)4352 27x x-+=-.33.解方程:(1)222123x x --+=;(2)253432x x +--=;(1)()()()2234191y y y +--=-;(2)322132x x x +--=-.(3)()3151x x +=-;(4)2121136x x -+=-.(1)()()1123222x x -=--(2)3157146x x ---=【专项训练三、拓展】36.解关于x 的方程()()222a x x +=-37.解关于x 的方程:55ax a x +=+.【答案】当1a ¹时,5x =-;当1a =时,x 一切实数.【分析】本题考查了解一元一次方程,将原方程化为()()151a x a -=-,分两种情况:当1a ¹时;当1a =时,分别求解即可得出答案.【详解】解:55ax a x +=+Q ,()()151a x a \-=-当1a ¹时,5x =-,当1a =时,x 一切实数.38.已知关于x 的一元一次方程320222022x x n +=+的解为2022x =,求关于y 的一元一次方程()5232022522022y y n --=--的解.39.已知关于x 的方程有无数多个解,求常数a 、b 的值.40.当整数k为何值时,方程9314-=+有正整数解?并求出正整数解.x kx。
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。