Flow attenuation and sediment performance of SUDS - SUDSnet流量衰减与肥皂水沙特性sudsnet-精选文档
- 格式:ppt
- 大小:3.90 MB
- 文档页数:11
流体力学专业名词续渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure猝发过程bursting process表观粘度apparent viscosity运动粘性kinematic viscosity动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation湍流分离turbulent separation分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem 静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equationKDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme 穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme 迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates[自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion 数值通量numerical flux放大因子amplification factor 放大矩阵amplification matrix 阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method。
液相术语积分型检测器in tegrati ng detector激光光热检测器laser and light heat detector激光解吸质谱法laser desorption MS , LDMS激光裂解器laser pyrolyzer 激光色谱laser chromatography 激光诱导光热光偏转测量detection oflaser- induced light heat …激光诱导光束干涉检测detection oflaser-induced light be am I … 激光诱导毛细管振动测量laser-reduced capillary vibrati on det …激光诱导荧光检测器laser- in duced fluoresce nee detector 记忆峰memory peak 记忆效应memory effect 夹层槽sandwich chamber 假峰ghost peak 间断洗脱色谱法in terrupted-elutio nchromatography间接光度(检测)离子色谱法in direct photometr ic ion chromato … 间接光度(检测)色谱法in direct photometric chromatography间接检测in direct detectio n 间接荧光检测in direct fluoresce needetect ion间接紫外检测in direct ultraviolet detection检测器detector检测器检测限detector detectability检测器灵敏度detector sen sitivity检测器线性范围detector lin ear range碱火焰电离检测器alkali flame io ni zatio n detector , AFID 碱洗法alkali wash 剪纸称重法cut-paper weigh ing method 减尾齐U tailing reducer 减压液相色谱vacuum liquid chromatography键合固定相bon ded stati onary phase 键合型离子交换剂bon ded ion excha nger 焦耳热joule heating胶束薄层色谱法micellar thin layer chromatography胶束液相色谱法micellar liquid chromatography交联度crosslinking degree阶梯梯度stagewise gradie nt介电常数检测器dielectric con sta nt detector金属配合物离子色谱法metal complex ion chromatography , MCIC金属氧化物固定相metal oxides statio nary phase金属作用色谱metal in teracti on chromatography进样阀injection valve进样量sample size进样器injector静态顶空分析法static headspacean alysis静态涂渍法static coat ing method径流柱radial flow column径向流动色谱radial flow chromatography径向压缩柱radial compressi on colu mn 径向展开法radial developme nt径向展开色谱radial developme nt chromatography净保留体积net reten ti on volume 居里点裂解器Curie poi nt pyrolyzer矩形池rectangle form pool 聚苯乙烯PS/DVB 聚硅氧烷高温裂解去活high-temperature pyrolysis deactivati on …聚合物基质离子交换剂polymer substrate ion excha nger绝对检测器absolute detector 开口分流ope n split开口管柱ope n tubular colu mn 可见光检测器visible light detector 可交换离子excha ngable ion 空间性谱带加宽band broade ning in space空穴色谱法vaca ncy chromatography孑L结构pore structure孑L径pore diameter孑L径分布pore size distribution控制单元control un it快速色谱法high-speed chromatography 离心逆流色谱cen trifugal coun ter-curre nt chromatography离心制备薄层色谱法cen tric-preparatio n TLC离子对色谱法ion pair chromatography , IPC 离子对试剂ion pair reage nt 离子对探针检测ion-pairi ng probesdetect ion离子对形成模型ion pair formati on model离子交换电动色谱ion-excha ngeelectrok in etic chromatography离子交换剂ion excha nger离子交换毛细管电色谱ion excha nge capillary electrok in etic离子交换膜ion excha nge membra ne 离子交换色谱法ion excha nge chromatography , IEC离子交换树脂ion excha nge resin 离子交换位置ion excha nge site 离子交换柱ion excha nge colu mn 离子排斥色谱法ion exclusion chromatography , ICE 离子色谱法ion chromatography , IC 离子色谱仪ion chromatograph离子相互作用模型ion in teraction model离子相互作用色谱法ion in teracti on chromatography , IIC离子抑制色谱法ion suppressi on chromatography , ISC理论塔板高度height equivale nt to a theoretical plate ( HETP )理论塔板数nu mber of theoretical plates两性电解质ampholytes两性离子zwitter-io n两性离子交换剂zwitteri on excha nger裂解气相色谱法pyrolysis gas chromatography PyGC临界胶束浓度critical micelleconcen trati on淋洗剂eluent淋洗离子elue nt ion淋洗色谱法elutio n chromatography馏分收集器fractio n collector流动池flow cell电离截面检测器ioni zati on cross section detector电歧视效应the effect of electricaldiscrim in ati on电迁移进样electrophoretic injectio n 电渗流electroendosmotic flow 电渗流标记物electroe ndosmotic flow marker电渗流淌度electroe ndosmotic mobility 电位检测器electricity potential detector 电泳淌度electrophoretic mobility电子俘获检测器electro n capture detector电子迁移率检测器electro n mobility detector调整保留时间adjusted rete ntion time 调整保留体积adjusted rete ntion volume 叠加内标法added internal sta ndard method顶空气相色谱法headspace gas chromatography ,GC-HS 顶替法displacement development 顶替色谱法displaceme nt chromatography动态包覆dynamic coating动态分离dynamic separatio动态复合离子交换模型dyn amic complex ion excha nge model动态改性dynamic modification动态离子交换模型dyn amic ion excha nge model动态涂渍dynamic coating动态涂渍法dyn amic coated method动态脱活dynamic de-activity短柱色谱法short colu mn chromatography 堆积硅珠stacked silica bead 堆积性能bulk property多次反射池multi-reflect pool多分散度polydispersity多功能基离子交换剂multi-fu nctio nal group ion excha nger多角度激光光散射光度计multi-a nglelaser light scatteri ng ph •…多孑L层开口管柱porous layer ope n tubular column , PLOT多孔高聚物PLOT柱porous polymer beads PLOT colu mn 多孑L硅胶porous silica gel多孔聚合物气液固色谱柱porous polymer beads GLS colu mn GLS多孑L石墨碳porous graphitic carb on , PGC多孑L载体porous support多脉冲实验multiple pulse experime nts多维色谱法multi-dime nsio nal chromatography多维色谱仪multidime nsio nal chromatograph 多用色谱仪uni fied chromatograph 惰性气体鼓泡吹扫脱气sweep ing degasby inert gas二次化学平衡sec ondary chemical equilibria , SCE二极管阵列检测器diode-array detector , DAD二维色谱法two-dime nsional chromatography 二元溶剂体系dual solve nt system反冲洗back wash反吹技术back flushi ng tech nique反峰negative peak反离子counter ion 反气相色谱法in verse gas chromatography (IGC) 反相高效液相色谱法reversed phase high performa nee liquid ch …反相离子对色谱reversed phase ion pair chromatography反相离子对色谱法reversed phaseion-pair chromatography反相毛细管电色谱reverse capillaryelectrok in etic chromatogr …反相柱reversed phase column 反应气相色谱法reaction gas chromatography反应色谱reacti on chromatography 反圆心式展开an ti-circular developme nt 反转电渗流reverse electroe ndosmotic flow范第姆特方程式van Deemter equati on仿生传感器Biomimic electrode 放射性电离检测器radio ioni zati on detector放射性检测器radioactivity detector 放射自显影autoradiography 非极性固定相non-polar stati onary phase非极性键合相non-polar bon ded phase非金属离子传感器non-metal ion sen sor非水系凝胶色谱柱non-aqua-system gelcolu mn 非水相色谱non aqueous phase chromatography 非吸附性载体non-adsorptive support非线性分流non-I in earity split stream 非线性色谱non-l in ear chromatography 非线性吸附等温线non-lin ear adsorpti onisotherm 非抑制型电导检测non-suppressed con ducta nee detecti on 非抑制型离子色谱法non-suppressed ion chromatography ,NSIC 费尔盖特效益Fellgett adva ntage酚醛离子交换树脂phe nolic ion excha nge resi n 分离—反应—分离展开SRSdevelopme nt分离数separation number 分离因子separation factor 分离柱separation column 分流split stream 分流比split ratio 分流进样法split sampli ng 分流器splitter 分配等温线distributi on isotherm 分配色谱partiti on chromatography 分配系数partition coefficient 分析型色谱仪an alytical type chromatograph 分子扩散molecular diffusion 分子量分布molecular weight distributi on 分子量检测器molecular weight detector分子筛molecular sieve 分子筛色谱molecular sieve chromatography分子吸附molecular adsorpti on 分子吸收光谱molecular absorpti on spectroscopy 圭寸尾endcapping 峰高peakheight峰面积peak area峰面积测量法measurement of peak area峰面积校正calibration of peak area 峰容量peak capacity 复合柱combinedcolumn改性载体modified support干法柱填充dry column packing干凝胶xerogel干扰抑制电导率检测detection ofin terfere an d restra in condu …干柱色谱法dry-column chromatography干柱色谱法dry-column chromatography , DCC高分子多孑L微球porous polymer beads, GDX高速逆流色谱法high speedcoun ter-curre nt chromatography高温硅烷化去活high temperaturesila nizing deactivati on高温凝胶色谱法high temperaturegel chromatography高效毛细管电泳high-performa nee capillary electrophoresis高效液相色谱-付里叶变换红外分析法high performa nee liquid ch …高效液相色谱法high performance liquid chromatography高效柱high performance column 高压流通池技术high pressure flowcell technique高压输液泵high pressure pump 高压梯度high-pressure gradient 高压液相色谱法high pressureliquid chromatography戈雷方程式Golay equation戈雷柱Golay column隔膜泵diaphragm pump隔膜进样septum sampling工业色谱industrial chromatography工业色谱仪industrialchromatograph工作流速working flow rate功能基团functional group 谷丙转氨酶传感器Glutamic-pyruvictransaminase sensor ,GPT固定化酶immobilized enzyme 固定相stationary phase 固定液stationary liquid固定液的相对极性relative polarityof stationary liquid固定液极性stationary liquidpolarity固相扩散solid diffusion固相荧光免疫分析solid phase fluorescence immunoassay固有粘度intrinsic viscosity官能团保留指数function retention index官能团色谱图functional group chromatogram ,FGC冠醚固定相crown ether stationary phase管壁效应wall effect管式炉裂解器tube furnacepyrolyzer灌注色谱法perfusion chromatography贯注色谱填料perfusion chromatography packing光离子化检测器photo-ionization detector ,PID光密度计densitometer光谱差减法spectral subtraction method光散射检测器light scatteringdetector光声检测法photoacoustic detection光纤化学传感器Optic fiber sensor硅胶silica gel硅胶基质离子交换剂silica-gel substrate ion exchanger硅烷化法silanization硅烷化法silanizing硅烷化载体silanized support归一化法normalization methodlayer chromatography , OPT…过压液相色谱法over pressuredliquid chromatography ,OPLC氦电离检测器helium ionization detector含氧化合物分析器oxygen specificresp onse of the flame ioni …含样去样检测法sample in sample out method赫尔希池检测器Hersch cell detector恒流泵constant flow pump 恒温操作constant temperature method恒压泵constant pressure pump红色载体red support红外检测器infrared detector 红外总吸光度重建色谱图totalinfrared absorbance reconstruct …化合物形成色谱compound-formation chromatography化学发光检测器chemiluminescence化学发光检测器Chemiluminescence detector ,SCD化学键合固定相bonded stationary phase化学键合相色谱bonded phase chromatography化学色谱法chemi-chromatography化学衍生法chemical derivatization method环糊精电动色谱cyclodextrin electrokinetic chromatography环形展开比移值circulardevelopment Rf value环形展开法circular development缓冲溶液添加剂buffer additives辉光放电检测器glow discharge detector混合床离子交换固定相mixed-bed ion exchange stationary phase混合床柱mixed bed column混合溶剂mixed solvent活塞泵piston pump活性activation活性部位active site活性硅胶activated silica gel活性氧化铝activated aluminium oxide过压薄层色谱法over pressured thindetector活性中心active center火焰光度检测器flame photometric detector ,FPD基流background current or base current基线baseline基线宽度baseline width基质substrate materials基质隔离技术matrix isolation technique畸变峰distorted peak积分器integrator电离截面检测器ionization crosssection detector电歧视效应the effect of electrical discrimination电迁移进样electrophoretic injection电渗流electroendosmotic flow电渗流标记物electroendosmotic flow marker电渗流淌度electroendosmotic mobility电位检测器electricity potential detector电泳淌度electrophoretic mobility电子俘获检测器electron capture detector电子迁移率检测器electron mobility调整保留时间adjusted retention time调整保留体积adjusted retention volume叠加内标法added internal standard method顶空气相色谱法headspace gas chromatography ,GC-HS顶替法displacement development顶替色谱法displacement chromatography动态包覆dynamic coating动态顶空分析法dynamic headspace analysis动态分离dynamic separation 动态复合离子交换模型dynamic complex ion exchange model动态改性dynamic modification 动态离子交换模型dynamic ion exchange model动态涂渍dynamic coating动态涂渍法dynamic coated method动态脱活dynamic de-activity短柱色谱法short column chromatography堆积硅珠stacked silica bead堆积性能bulk propertydetector 多次反射池multi-reflect pool多分散度polydispersity 二元溶剂体系dual solvent system多功能基离子交换剂multi-functional group ion exchanger多角度激光光散射光度计multi- angle laser light scatteringph•…多孔层开口管柱porous layer open tubular column ,PLOT多孔高聚物PLOT柱porous polymer beads PLOT column多孔硅胶porous silica gel多孔聚合物气液固色谱柱porous polymer beads GLS column GLS多孔石墨碳porous graphiticcarbon ,PGC多孔载体porous support多脉冲实验multiple pulse experiments多维色谱法multi-dimensional chromatography多维色谱仪multidimensional chromatograph多用色谱仪unified chromatograph惰性气体鼓泡吹扫脱气sweeping degas by inert gas二次化学平衡secondary chemical equilibria ,SCE二极管阵列检测器diode-array detector ,DAD二维色谱法two-dimensional chromatography反冲洗back wash反吹技术back flushing technique 反峰negative peak 反离子counter ion反气相色谱法inverse gas chromatography (IGC)反相高效液相色谱法reversed phasehigh performa nee liquid ch …反相离子对色谱reversed phase ion pair chromatography反相离子对色谱法reversed phase ion-pair chromatography反相毛细管电色谱reverse capillary electrokinetic chromatogr …反相柱reversed phase column反应气相色谱法reaction gas chromatography反应色谱reaction chromatography反圆心式展开anti-circulardevelopment反转电渗流reverseelectroendosmotic flow范第姆特方程式van Deemterequation仿生传感器Biomimic electrode 放射性电离检测器radio ionization detector放射性检测器radioactivitydetector放射自显影autoradiography非极性固定相non-polar stationary phase非极性键合相non-polar bonded phase非金属离子传感器non-metal ion sensor非水系凝胶色谱柱non-aqua-system gel column非水相色谱nonaqueous phase chromatography非吸附性载体non-adsorptive support非线性分流non-linearity splitstream非线性色谱non-linear chromatography非线性吸附等温线non-linear adsorption isotherm非抑制型电导检测non-suppressed conductance detection非抑制型离子色谱法non-suppressed ion chromatography ,NSIC费尔盖特效益Fellgett advantage酚醛离子交换树脂phenolic ion exchange resin分离-反应-分离展开SRS development分离数separation number 分离因子separation factor 分离柱separation column 分流split stream 分流比split ratio 分流进样法split sampling 分流器splitter 分配等温线distribution isotherm 分配色谱partition chromatography 分配系数partition coefficient 分析型色谱仪analytical type chromatograph 分子扩散molecular diffusion 分子量分布molecular weight distribution分子量检测器molecular weight detector分子筛molecular sieve分子筛色谱molecular sieve chromatography分子吸附molecular adsorption分子吸收光谱molecular absorption spectroscopy封尾endcapping峰高peak heightOgston 模型Ogston modelpH 梯度动态分离dynamic separation of the pH gradientpH 值梯度洗脱pH gradient elutionZata 电势Zata potentialZ 形池Z-form pool氨基键合相amino-bonded phase 氨基酸分析仪amino acid analyzer 安培检测器ampere detector 白色载体white support 半微柱semimicro-column 半制备柱semi-preparation column 包覆型离子交换剂coated ion exchanger包覆型填料coated packing material薄层板thin layer plate薄层扫描法thin layer chromatography scanning薄层扫描仪thin layer chromatography scanner薄层色谱法thin layer chromatography TLC薄壳型离子交换剂pellicular ion-exchanger薄壳型微珠载体pellicular microbead support保护柱guard column保留时间retention time保留体积retention volume保留温度retention temperature保留值定性法retention qualitative method保留值沸点规律boiling point ruleof retention保留值碳数规律carbon number rule of retention保留指数retention index保留指数定性法retention index qualitative method背景电导background conductance苯酚磺酸树脂phenol sulfonic acid resin苯乙烯styrene比保留体积specific retention volume比例阀proportional valve比渗透率specific permeability比移值Rf value边缘效应edge effect便携式色谱仪portable chromatograph标准偏差standard deviation表观电泳淌度apparent electrophoretic mobility表观交换容量apparent exchange capacity表面电位检测器surface potential detector表面多孔硅胶superficially porous silica gel保留间隙retention gap表面多孔填料superficially porous packing material表面多孔型离子交换剂superficially porous ion-exchanger 玻璃球载体glass beads support 不分流进样splitlesssampling 参比柱reference column残余硅醇基residual silanol场放大进样electrical fieldmagnified injection场流分离field-flow fractionation场流分离仪field-flowfractionation场效应生物传感器Field effect transistor based Biosensor常压液相色谱法common-pressure liquid chromatography超临界流体supercritical fluid 超临界流体色谱supercritical fluid chromatography超临界流体色谱-傅里叶变换红外光谱联用supercritical fluid …超临界流体色谱法supercritical fluid chromatography超临界流体色谱仪supercriticalfluid chromatograph超临界流体萃取supercritical fluid extract ,SFE超声波脱气ultrasonic degas超微传感器ultra-micro sensor程序变流色谱法programmed flow (gas)chromatography程序升温进样programmed temperature sampling程序升温色谱法programmed temperature (gas)chromatography程序升温蒸发器programmed temperature vaporizer ,PTV程序升压programmed pressure触角载体tentacle supports传质速率rate of mass transfer传质阻力resistance of mass transfer垂直切割法vertical incisionmethod催化色谱法catalytic (gas)chromatography大环化合物色谱large ring compound chromatography大孔树脂macro-reticular resin大孔填料macro-reticular packing material大内径毛细管柱Megaobore column 代谢型生物传感器Biological metabolizing sensor单分散气溶胶发生器monodiaperse aerosol generator单活塞往复泵single piston reciprocating pump单相色谱仪single phase chromatograph单向阀one-way valve单柱离子色谱法single column ion chromatography胆固醇传感器Cholesterol sensor氮- 磷检测器nitrogen-phosphorus detector ,NPD导数比率法derivative ratio method等度洗脱isocratic elution等离子体色谱法plasma chromatography等途电泳- 毛细管区带电泳耦合进样isotachophoresis inject ion- c …低负荷柱low load column低容量柱low capacity column低温色谱low temperature chromatography低压液相色谱low-pressure liquid chromatography点样sample application点样器sample spotter ( spot applicator )电导池conductance cell电导检测法conductance detection电荷转移分光光度法charge transfer spectrophotometry电化学检测器electrochemical detector电解抑制器electrolyze suppressor低压梯度low-pressure gradient。
专利名称:FLOW REACTION ASSISTANCE DEVICE ANDMETHOD, FLOW REACTION EQUIPMENTAND METHOD发明人:INABA, Tatsuya,HASEGAWA, Masataka申请号:EP19859226.3申请日:20190701公开号:EP3851461A1公开日:20210721专利内容由知识产权出版社提供专利附图:摘要:Provided are a flow reaction support apparatus and a flow reaction support method for supporting a flow reaction process by rapidly performing condition setting,and a flow reaction facility and a flow reaction method in which condition setting is rapid. The flow reaction facility includes a flow reactor that performs a flow reaction process, and a support apparatus that has a computing section and a determination section. The computing section generates a prediction data set by calculating a prediction result for each reaction condition whose reaction result is unknown, using measurement data. The computing section extracts the reaction condition of the prediction result closest to a target result as an extracted reaction condition. The determination section determines whether or not a difference between the reaction result under the extracted reaction condition and the prediction result is within an allowable range, and adds, in a case where the difference is not within the allowable range, reaction information in which the extracted reaction condition and the reaction result are associated with each other to the measurement data.申请人:FUJIFILM Corporation地址:26-30, Nishiazabu 2-chome Minato-ku Tokyo 106-8620 JP国籍:JP代理机构:Parker, Andrew James更多信息请下载全文后查看。
An experimental investigation of the interaction of swirl flow with partially premixed disk stabilized propane flamesC.Xiouris,P.Koutmos ⇑Laboratory of Applied Thermodynamics,Department of Mechanical and Aeronautical Engineering,University of Patras,Patras 26500,Greecea r t i c l e i n f o Article history:Received 16October 2010Received in revised form 26January 2011Accepted 24February 2011Available online 1March 2011Keywords:Turbulent propane flames Annular jet flows Swirl burnerPartially premixed flames Lean combustiona b s t r a c tThe present work describes the experimental investigation of reacting wakes established through fuel injection and staged premixing with air in an axisymmetric double cavity arrangement,formed along three concentric disks,and stabilized in the downstream vortex region of the afterbody.The burner assembly is operated with a co-flow of swirling air,aerodynamically introduced upstream of the burner exit plane,to allow for the study of the interaction between the resulting partially premixed recirculating afterbody flames with the surrounding swirl.At low swirl the primary afterbody disk stabilizes the par-tially premixed annular jet in the downstream reacting wake formation region.As swirl increases,a sys-tem of two successive vortices emerges along the axis of the developing wake;the primary afterbody vortex is cooperating with an adjacent,swirl induced,central recirculation zone and this combination further promotes turbulent mixing in the hot wake.Complementary measurements of the counterpart isothermal turbulent velocity fields provided impor-tant information on the near wake aerodynamics under the interaction of the variable swirl and the dou-ble cavity produced annular jet stabilized by the afterbody.Under reacting conditions,measurements of turbulent velocities,temperatures and statistics together with an evaluation of the exhaust emissions were performed using LDV,thin digitally-compensated thermocouples and gas analyzers.A selected number of lean and ultra-lean flames were investigated by regulating the injected fuel and the air supply ratio,while the influence of the variation of the imposed swirl on wake development,flame characteris-tics and emission performance was documented for constant fuel injections.The differences and similar-ities between the present partially premixed stabilizer and other types of axisymmetric configurations are also highlighted and discussed.Ó2011Elsevier Inc.All rights reserved.1.IntroductionRecirculation regions are frequently employed within the reac-tion zone of combustion systems to control fuel–air mixing,pro-mote flame stabilization and target performance over a wide range of operating conditions [1,2].Bluff body geometries have proved popular arrangements in providing such recirculations,whereby a reaction front anchors close to a region of entraining flow with large-scale engulfment of fuel and air (in the case of non-premixed flames)or fresh mixture and hot products (pre-mixed case)followed by fine scale mixing within reasonable resi-dence times [1,3–6].Challenges in bluff body combustion configurations such as the effects of organized eddy flow/flame structure interactions,fuel injection and air placement on stability,heat release and emissions have been addressed both experimen-tally and computationally for non-premixed [1,7,8]and fully pre-mixed flames [6,9].Swirling motion on the other hand is an equally relevant meth-od traditionally employed to induce intense flow reversals and flame stabilization in practical systems.Plane swirl can be regulated to create a free standing central recirculation zone with proven aerodynamic flame holding characteristics,while in combi-nation with a central bluff body swirl allows for further intensifica-tion in mixing rates and improvements in flame anchoring effectiveness [10–12].A variety of swirl flame configurations have been exploited as a research tool in both experimental [10,11,13]and computational [14–16]investigations related to studies of strong turbulence/chemistry interactions,flame stability and emissions reduction,under both premixed and non-premixed conditions.Rising environmental concerns however are placing even stric-ter controls on pollution from high efficiency/high intensity indus-trial systems leading combustion technology to its limits.Driven by regulation the exploitation of lean or partially premixed combustion [17,18]has emerged as an important and promising0894-1777/$-see front matter Ó2011Elsevier Inc.All rights reserved.doi:10.1016/j.expthermflusci.2011.02.008⇑Corresponding author.Tel.:+302610997244/991497;fax:+302610997244/997271.E-mail address:koutmos@mech.upatras.gr (P.Koutmos).technology to control emissions from practical devices.In particu-lar,gas turbine and spark-ignition engine manufacturers have fo-cused on lean premixed or stratified combustion as the prime technology for reduction of NO and soot emissions[e.g.9,13,14]. Nevertheless,important parameters that determine the burning characteristics of partially premixedflames such as the spatial var-iation of the fuel–air ratio and its large and small scalefluctuations, the local turbulence/chemistry interactions and also the particular stabilization configuration performance(e.g.swirl,bluff body or backstep type)have to be reconciled if the full advantages of this approach are to be realized without compromises[2,13,14,18].As next-generation low emissions/low fuel consumption combustion systems are expected to operate with multiple reaction zones,fur-ther and continuing experimental[2,13,14,19]and computational [9,14,20,21]investigations on partially premixed turbulentflame stabilization are warranted.In more recent years a newflame stabilizing design concept known as the trapped vortex combustor has emerged[22],and is currently being studied extensively with regard to configuring effi-cient mixing of fuel,air and hot products in both novel and tradi-tional industrial combustion chamber applications[e.g.23].In this concept theflame is stabilized within cavities that are designed to trap a stable vortex structure established through fuel and air injection within the cavity.Burning may continue with further fuel injected downstream along a second cavity in axisym-metric systems[22],or across the main combustor section in annu-lar cavity arrangements[23].Such geometries have been found attractive for non-premixed or fully premixedflame stabilization internal to the cavities but these also offer an equally convenient device for applying staged cold fuel injection,premixing with air and further mixture preparation.Within the above context the present work investigates the characteristics of partially premixedflames,established by staged fuel–air premixing in an axisymmetric double cavity arrangement formed along three concentric disks and stabilized in the down-stream vortex region of the third afterbody disk.In these initial studies any form of reaction is avoided within the cavity system; here this is merely exploited as a fuel premixer that provides an annular fuel air jet,with radially variable equivalence ratio,subse-quently fed into the primary recirculation region.In the present configuration the burner assembly is also combined with a surrounding co-flow of swirling air to allow for the study of the interaction between the partially premixed recirculating afterbody flame and the surrounding swirl.Measurements of mean and turbulent velocities and tempera-tures were obtained with laser Doppler velocimetry(LDV)and thin digitally-compensated thermocouples for both the isother-mal and the reacting counterpart configurations.A selected num-ber of lean and ultra-leanflames were examined by regulating the fuel injected within the cavities,while the influence of the variation of the imposed swirl on theflame characteristics was studied for constant fuel injections.Differences between the cold and hot wake development are also discussed,while exhaust gas analysis is also performed to evaluate the performance of the bur-ner and the influence of various operational parameters on pollu-tant emissions.2.Flow and burner configurationThe combustion tunnel facility and the burner configuration set up at the Laboratory of Applied Thermodynamics are shown in Fig.1a–c.The tunnel is made up of a system of three vertically placed concentric tubes separately supplied by individual blowers regulated by electric motors(Fig.1a).All air massflow supplies were calibrated through LDV velocity measurements at the exit plane of the concentric tube system.The burner assembly (Fig.1c)is composed of three disk shaped axisymmetric bluff bodies,connected along their axis with a central shaft made up of a hollow fuel tube,namely a forebody disk,a hollow fuel inject-ing(active)bluff body disk and aflame stabilizing afterbody disk. Fuel is initially supplied along the central connecting shaft into the internal hollow of the middle active bluff body disk and then injected through an annular1mm slot into the‘primary’fuel air mixing cavity,Fig.1c,where isothermal mixing between the fuel and the central tube air takes place.The secondary cavity formed between the active disk and the afterbody promotes even further premixing of the upstream fuel and air supplies prior to ignition,flame stabilization and subsequent combustion established imme-diately downstream of the stabilizing afterbody.A diameter of D b=25mm was chosen for the three disks while the diameters of the hollow shaft and of the central air supply tubeNomenclatureBR blockage ratioCRZ central recirculation zoneD b axisymmetric bluff-body(disk)diameterD p fuel supply tube diameterD c central air supply tube diameterD s swirl tube diameterD e external air tube diameterD F laminar diffusion coefficientKa Karlovitz number[=(U rms/S L)1.5/(L t/d L)0.5]L f visibleflame length(mm)L R primary vortex recirculation lengthL t integral length scale of turbulencem Fuel fuel massflow rateMR momentum ratio between central air supply and swirl co-flowPflame power output(kW)Re Db Reynolds number based on bluff-body diameterr radial location(m)S swirl numberSt Strouhal number based on bluff-body diameter S L laminarflame speedT time-averaged temperature(K)T rms rms of temperature(K)T max maximum wake temperatureU F fuel injection velocityU FBO fuel injection velocity at blow-offU time-averaged axial velocity(m/s)U rms rms of axial velocity(m/s)U C central tube air bulk velocity(excluding injected fuel massflow rate)U S mean axial velocity component of swirl co-flowU e external annulus air bulk velocityW time-averaged tangential velocity(m/s)W S mean tangential velocity component of swirl co-flow x axial location(m)d L laminarflame thickness(=D F/S L)U equivalence ratioU LS equivalence ratio of lean mixturesU US equivalence ratio of ultra-lean mixtures1056 C.Xiouris,P.Koutmos/Experimental Thermal and Fluid Science35(2011)1055–1066were chosen as D p=10mm and D c=52mm respectively.The resulting blockage ratio(BR)of the formed annular jet was BR=(D b/D c)2=0.23.The cavity lengths were chosen from past experience[24],but also according to presently performed isother-mal mixing computations[25]and in line with aerodynamic de-sign values established in previous studies[22].The length of the secondary cavity was also dictated by the requirement for reacting operation free fromflameflashback,something that will be dis-cussed further in Section4,and by the intention for future studies on fuel injection modulation.In the present work the above burner configuration was oper-ated in combination to a surrounding swirling co-flow supplied via a concentric tube of D s=85mm diameter,as shown in Fig.1a and b.Swirl is introduced into this co-flow air tube aerodynami-cally,300mm upstream of theflame stabilizing afterbody exit plane via four tangential ports inclined15°upwards and placed circumferentially at90°to each other(Fig.1b).The merits of aero-dynamic swirl generation in regulating swirl intensity as opposed to radial type/vaned swirl generators have been addressed in Masri et al.[10]and this methodology has been followed here.The resultant swirl number was determined as the ratio of the mean tangential(W S)to the mean axial(U S)component evaluated by integration of the corresponding LDV profiles at the exit plane of the tube arrangement.Finally the central bluff body/swirl burner configuration was housed in a peripheral141mm diameter annulus airflow to shield the operation of the present set up from external disturbances.The operating conditions along with important global perfor-mance parameters for the measured cold and hotflow configura-tions are shown in Table1.3.Experimental methodsThe burner was initially investigated under isothermal opera-tion for a range offlow conditions that related to their counterpart reacting ones to establish the underlying mixing topologies that sustain the reactingfields presented below.The sevenflames stud-ied were chosen within the stable operation envelope of the burner as indicated by their positions on the stability diagram(Fig.2a).All flames were lying towards the lower lean blow-off limit opera-tional regime(flames LS000,LS035,LS065,LS100)while three of them were operated in much closer proximity to the lean blow-off limit(US000,US035,US065).The swirl strength is described by the numbers following the letters in eachflame e.g.LS065 denotes a Lean Swirl=0.65flame.This stability diagram was ob-tained as a function of three parameters,the fuel injection velocity (U F),the central bluff body air supply velocity(U C,excluding the in-jected mass of fuel)and the swirl level(S=W S/U S).The position of eachflame away from the lean blow-off line is denoted by the mass flow rate variable d,(Table1),where d=(m FuelÀm Fuel,at extinction)/ m Fuel,at extinction and expresses the current fuelflow level as a per-cent of the injected fuel mass at global extinction.The reacting studies were directed at investigating:(a)the effect of swirl varia-tion on the partially premixed burnerflame characteristics(flames LS000,LS035,LS065,LS100)while keeping the fuelflow constant and,(b)the effect of reducing the fuelflow rate to reach a limiting ultra-lean operating condition while the swirl is now kept constant (pareflames US000vs.LS000,US035vs.LS035,US065vs. LS065).An estimate of an overall equivalence ratio based on theflow rates of the fuel,the central tube and the swirl air supplies,isgiven (a)Combustion tunnel facility,(b)swirl arrangement,and(c)fuel–air cavity premixer and burner arrangement.in Table 1for each flame (only a percentage of swirl air is entrain-ing the flame stabilization region and such an estimation,of about 20%,was tentatively calculated from radial velocity measure-ments).However this estimation is not representative of the local stoichiometry that governs the primary reaction region.The equiv-alence ratio levels that are achieved at the annular jet exit supply-ing the primary reaction zone are rather determining the flame properties and characterize the development of the reacting wake in a more consistent manner.In an effort to elucidate the mixture quality there,a few sampling probe measurements of the fuel con-centration profile were attempted and the implications of these measured levels for the primary stabilization region are further discussed in Section 4.Center-line and radial profiles of the time-mean axial and tan-gential velocities,turbulent intensities and related statistics were measured at certain positions within the main afterbody primary vortex and in the downstream developing wake region with a sin-gle component LDV.The system includes a 2-W Argon-Ion laser fi-ber-optics-linked to the transmitting and receiving optics bench.The transmitting components included an optical unit (TSI model 9180A)fitted with a single Bragg cell to give a frequency shift of 40MHz,while the receiving optical component comprised a 115-mm focal-length lens and a 200-mm pinhole photomultiplier (TSI model 9160).Electronic downshifting resulted in an operating effective frequency shift range of 0–10MHz.The flow was seeded with dried magnesium oxide powder (approximately 5mm nomi-nal diameter before agglomeration),dispersed by two purpose-built cyclone separators.The band-passed filtered Doppler signals were processed by a TSI frequency counter (1980B)interfaced with a computer.Mean and statistical values were derived by post-pro-cessing a sample of 20480data points.The data were weighted by the time between particles to correct for velocity bias effects due to random particle arrival times.Velocity fluctuation spectra were obtained for the velocity components by sampling the data at 4kHz.Spectra were produced by a Fast Fourier Transform (FFT)performed on 20sets of 1024values.Maximum uncertainties in the velocities due to non-turbulent Doppler broadening,sample size (statistical error),and sampling bias are less than 8%in the mean and less than 15%in the rms.Temperatures were measured with Pt–Pt/10%Rh uncoated beaded-type thermocouples (S-type)of 75-l m-diameter wire.The thermocouples were supported in a twin-bore ceramic cladding of length 130mm,outer diameter of 0.9mm and a diam-eter of capillary holes of 0.2mm.The measuring stem was orientedMeasured blow-off limits of present burner configuration and (b)photographs of selected investigated Table 1Operating conditions and important global performance parameters.CASE U F U FBO d U s W s S T max (K)L f /D b L R /D b MR U GlobalKa P (kW)IS00000010003000 1.150.138000IS03500010 3.50.353000 1.180.138000IS06800010.5 6.80.653000 1.180.125000IS10000010.510.513000 1.230.125000LS000 1.75 1.0665.110001971 5.5 1.40.1380.107(0.182)6 6.73LS035 1.75 1.0665.110 3.50.351977 4.8 1.40.1380.107(0.182)7.15 6.73LS065 1.75 1.254010.5 6.80.6519384 1.750.1250.105(0.182)10.35 6.73LS100 1.75 1.5612.210.510.511803 3.2 1.90.1250.105(0.182)14 6.73US000 1.25 1.0617.910001732 4.3 1.630.1380.076(0.129)18.5 4.8US035 1.25 1.0617.910 3.50.351684 4.1 1.730.1380.076(0.129)47 4.8US068 1.441.2515.210.56.80.6517593.71.810.1250.086(0.149)715.531.d =(m Fuel Àm Fuel ,at blow-off )/m Fuel ,at blow -off (%).2.T max :Maximum wake temperature.3.L f :Visible flame length.4.L R :Estimated primary recirculation length.5.Central air supply velocity U C =4.8m/s,external air supply velocity U e =12.4m/s and Re Db =7942for all cases.6.U Global ,global equivalence ratio,based on mass flow rates of fuel and central air supplies (numbers in parenthesis include also 20%of swirl air flow).1058 C.Xiouris,P.Koutmos /Experimental Thermal and Fluid Science 35(2011)1055–1066horizontally to minimizeflow disturbances.The thermocouple output was interfaced to a DaqTemp7A Omega card.The thermo-couple acts as a low-passfilter because of the heat capacity of the thermo-wires junction and the ceramic tube.The time constant has typically low values of the order of some Hertz(e.g.,50Hz) for thermo-wires with a diameter of about100l m.This time con-stant is dependent on various local parameters(temperature,junc-tion geometry and material,gas velocity,conductivity,heat capacity and density,flame structure)[26,27,28].It is different for each position andflow condition and can be estimated only after the measurement.Here,using an FFT algorithm the frequency spectrum of the signal was estimated,the amplitude and the phase were corrected,and the signal was transformed back to the time domain,so that about50%of the temperaturefluctuations spec-trum could be calculated.Further details of the thermocouple sig-nal procedure may be found in[26,28].Mean and rms temperature values were derived at each location at a sampling frequency of 200Hz.Uncertainties in the estimation of the thermocouple time con-stant are rather unimportant for the mean temperature,but according to the present compensation procedure[28]may affect the variance of the temperaturefluctuation by between20%and 30%of the mean value.No correction was made for radiation losses.According to the extensive analysis of Heitor[27]for recir-culating propane diffusionflames and uncoated thermocouple wires the largest systematic error in the measurement of the mean due to radiation loss increases monotonically with temperature, reaching up to10%at1800K.It is independent of wire diameter in the range40–80l m.The LDV transmitting and receiving optics together with the thermocouple were mounted on a three-dimen-sional traversing unit that allowed the positioning of the probe vol-ume to within±0.75mm.The global emission performance of the burner set up was also evaluated with exhaust gas analysis.An exhaust probe,located at 10D b downstream of the burner exit,extractsflue gas and mea-sures species(NO x,CO,CO2,O2,and C x H y)concentrations with the help of a Kane-May KM9106Quintoxflue gas analyzer.The Quintoxflue gas analyzer is composed of an O2analyzer(0–25% range,0.1%accuracy),a CO analyzer(0–10%range,accuracy is5% of the reading),a NO analyzer(0–5000ppm,5ppm accuracy),a C x H y analyzer(0–50,000ppm),and a CO2analyzer.The analyzer is calibrated with a calibration gas to yield emissions on dry basis. The sample gases are continuously drawn from the combustion product zone through a stainless-steel probe.The sample gases are immediately cooled with a cooling jacket,dried,and then transferred to the analyzer.Gas samples were obtained in eight radial positions spanning a distance from the axis to the swirler radius and this rake was re-peated at four circumferential positions90°apart around the exit periphery.The mean of these values is reported in Section4.The basic probe tip assembly was alsofitted with an extension quartz micro-probe fabricated in-house and the analyzer was calibrated accordingly to enable a few sampling measurements of the hydro-carbon levels at the annular jet exit and therefore allow an initial estimation of the equivalence ratio at this position.Here it should be noted that the gas sampling analysis provides mass-weighted averages as suggested in e.g.[27].4.Results and discussion4.1.IsothermalflowFig.2b displays photos of the investigatedflames and illustrates the effect of swirl variation onflame development thus providing an overall visualization of the width,length,spread and general global characteristics of theseflames.Fig.3displays the axial mean velocity development along the center-line of the wake formed behind the afterbody disk,for the four swirl numbers investigated,without fuel injection and for a Reynolds number of8000based on the disk diameter and the cen-tral tube air supply velocity(Table1).Without swirl a time-aver-aged recirculation length of about 1.15D b with backflow velocities up to49%of U C is accompanied by wake development within4.5afterbody diameters similar to annular jet recirculation regions formed at larger blockages[29,30].The impact of swirl at S=0.35is rather small on the vortex formation region and the rate of wake development remains mostly unaffected with a minimal primary vortex elongation and strengthening.The only noticeable difference between S=0and0.35is the initiation of a moderately retarded wake development downstream of x/D b%8.5.The length, width and strength of the primary vortex increase as the swirl lev-els gradually increase from0.65to1.00;peak negative velocities of 60%of U C are measured at the higher swirl level within the primary recirculation zone.The redevelopment of the wake however now exhibits a drastic variation beyond x/D b%5with a strong deficit measured therein for S=0.65while aflow reversal at S=1.0leads to the formation of a free standing central recirculation zone(CRZ) around x/D b%7–8,a feature common to strongly swirled wakes [10,11].Measured center-line distributions of the axial rms velocities for the successive swirl numbers are shown in Fig.4.Maxima of about32%coincide with highest velocity gradients found in the reattachment region of the primary vortex for the lower swirl cases decaying monotonically thereafter.In the higher swirl cases these increase up to40%of U C,while further downstream of x/D b%7–8 the rms values intensify drastically reaching levels of40%in line with the wake deficits discussed in the meanfield[10,12].Radial distributions of the azimuthal swirl velocity,measured at an axial position of x/D b=0.5across the primary toroidal vortex, are shown in Fig.5.Maximum values of0.85,1.7and2.35U C are locally produced with the present swirl number variation.Similar rotations have been measured in unconfined configurations[12] and are somewhat lower than those established under swirl con-finement[11,14].The onset of vortex breakdown in the coldflow was obtained beyond S%0.75,a value somewhat higher than those reported in literature for confinedflows[5,11,12].In unconfinedflows intense swirl is known to promote strong recirculations close to the burner exit.In the present case the placement of the swirling co-flow adja-cent to the annular jet,at this radial distance from the afterbody, allows for interaction with the primary afterbody vortex at a downstream position,thus producing this system of cooperating sequential vortices.The interaction of the primary wake with the downstream axial velocity gradient,induced by the swirl,was gradual at the lower swirl intensities but thereafter developed intoC.Xiouris,P.Koutmos/Experimental Thermal and Fluid Science35(2011)1055–10661059Theflow in the internal cavities is of importance in determining the spatial distribution and thefinal levels of the mixture compo-sition entering the stabilization region.Both cavities are internal to the bluff body,swirl and external pipe air supply systems and opti-cal access to these cavities in the present multi-ducted system is difficult.Flow visualization studies were however performed with the cavities operated only with a plexiglass central air supply tube to obtain information on the internalflow.These studies were also complimented by Large Eddy Simulations[25],and are to be re-ported elsewhere;Fig.7has been obtained from these studies and is displayed here to elucidate the description of these cavity flows.The leading edge of the forebody is occupied by a corner vor-tex of axial length76%of the forebody height.Fuel is injected di-rectly into the primary cavity that is occupied by a confined stable vortex providing initial premixing of the reactants;unlike a trapped vortex combustor reaction is here avoided.To compen-sate for the moderate entrainment rates from the central air supply into the primary cavity a secondary cavity is adopted immediately downstream of thefirst one[22,24].The choice of the length of the secondary cavity gives rise to a system of two corner vortices Fig.6.(a and b)Radial velocity spectra on the center-line wake at x/D b=3.5for cases IS000and IS065.Fig.7.Flow patterns within cavities and primary vortex region.separated by an intermediate recovery region as shown in the streaklines of Fig.7.The fuel injecting disk trailing edge stagnation region extents up to four disk heights,while the afterbody leading corner vortex is only1.15disk putations with differ-ent cavity geometries showed that this arrangement promotes, both a considerable entrainment from the main stream mixture into the secondary cavity and a strong recovery of the resulting annularflow round the stabilizing afterbodyflanks thus preventing flashback under reacting conditions.The cavityflows were basi-cally unaffected by the presence of the swirl co-flow and,to a large extent,by the development of the isothermal or reactingfields in this unconfined experiment;tests under confined reacting wake conditions suggest that the cavityflows become then somewhat more susceptible to wake variations.4.2.ReactingflowThe turbulent velocityfields for the four swirl cases are dis-cussed with the help of center-line distributions of the time-mean axial velocities(Fig.8),the turbulence intensities(Fig.9)and a set of transverse distributions of the mean azimuthal velocity compo-nent(Fig.10).These can be compared directly with the isothermal distributions to assess the impact of reaction and heat release on the wakefields.Under reacting conditions the plain bluff body case LS000pro-duces an increase in primary vortex length and strength of about 22%and25%respectively(Fig.8).The hot wake recovers faster attaining42%higher center-line axial velocity levels in accord with the attendant decrease in density due to combustion.The reacting low swirl case center-line velocity recovers similarly to the isother-mal one up to x/D b=5but thereafter wake development slows down considerably.Under reacting conditions the higher swirl sus-tains a more profound effect on the near wake compared to the counterpart cold case.The measured toroidal recirculation length at S=1.00is about2D b with the recirculation velocities reaching peaks of0.75U C.The center-line velocity deficit is more pro-nounced in LS065leading to a fully formed and extended free standing CRZ vortex beyond about x/D b%7for the LS100configu-ration.Similar elongated standing vortices have frequently been reported in strongly swirled unconfinedflows but in those config-urations these were exploited much closer to the burner exit [12,14].The corresponding axial rms velocity center-line development is illustrated in Fig.9,which indicates maxima associated with large velocity gradients in the primary vortex reattachment region (LS000and LS035cases)and near the retarded wake growth be-yond x/D b%7(in the higher swirl cases).Whilst only a moderate increase in peak values is measured in the lower swirls,a pro-nounced elevation is attained at stronger rotations;these high val-ues are initiated in the vicinity of the imminent vortex breakdown (LS065,x/D b%9–10)and then follow the upstream displacement of the CRZ(LS100at x/D b%8–10).The effect of combustion on the swirling velocity is displayed in Fig.10and this is to be contrasted to Fig.5for the isothermalflow. Evidently heat release and reaction weaken only slightly the resul-tant rotation produced by the swirling co-flow as the effects of expansion are rather reduced in this unconfined geometry,a behavior that has also been found in similar studies[e.g.16,20].The mean and turbulent temperaturefields for the seven inves-tigated reacting cases are displayed in Figs.11–16in the form of radial traverses and center-line profiles along the developing hot wakes.As can be inferred from Table1,the influence of the varia-tion of the surrounding swirl co-flow on the operation of the bur-ner under constant fuel injection and central air supply is studied in thefirst four lean fuel–air ratio swirled cases i.e.LS000,LS035, LS065and LS100.In the next three ultra-lean swirledflames i.e. US000,US035,US065the effect of reducing the fuel injected mass to levels much closer to the lean blow-off limit,whilst retaining constant swirl and central air supply values is examined.As illustrated in Fig.11a–d under both lean and ultra-lean oper-ation jet-like shaped temperature distributions evolve along the wake in a fashion reminiscent of bluff body premixedflames[9]. This is to be contrasted to diffusion or partially premixed swirl sta-bilizedflames exhibiting temperature maxima at off-axis positions close to shear layersflanking the primary recirculation [10,11,14,15].Flow visualization by laser sheet illumination and accompanying computational studies[25],suggest that the pres-ent leanflames(LS000–LS100)do not anchor a short distance downstream of the afterbody trailing edge,a phenomenon fre-quently seen in fully premixedflames stabilized e.g.on thin disks or triangular bluff bodies and termed‘ignition delay’[31].Instead these anchor within the small toroidal side recirculation region that is established adjacent to the afterbodyflanks just upstreamC.Xiouris,P.Koutmos/Experimental Thermal and Fluid Science35(2011)1055–10661061。
专业英语词汇-----分析化学第一章绪论分析化学:analytical chemistry定性分析:qualitative analysis定量分析:quantitative analysis物理分析:physical analysis物理化学分析:physico-chemical analysis仪器分析法:instrumental analysis流动注射分析法:flow injection analysis;FIA顺序注射分析法:sequentical injection analysis;SIA化学计量学:chemometrics第二章误差的分析数据处理绝对误差:absolute error相对误差:relative error系统误差:systematic error可定误差:determinate error随机误差:accidental error不可定误差:indeterminate error准确度:accuracy精确度:precision偏差:debiation,d平均偏差:average debiation相对平均偏差:relative average debiation标准偏差(标准差):standerd deviation;S相对平均偏差:relatibe standard deviation;RSD变异系数:coefficient of variation误差传递:propagation of error有效数字:significant figure置信水平:confidence level显著性水平:level of significance合并标准偏差(组合标准差):pooled standard debiation 舍弃商:rejection quotient ;Q化学定量分析第三章滴定分析概论滴定分析法:titrametric analysis滴定:titration容量分析法:volumetric analysis化学计量点:stoichiometric point等当点:equivalent point电荷平衡:charge balance电荷平衡式:charge balance equation质量平衡:mass balance物料平衡:material balance质量平衡式:mass balance equation第四章酸碱滴定法酸碱滴定法:acid-base titrations 质子自递反应:auto protolysis reaction质子自递常数:autoprotolysis constant质子条件式:proton balance equation酸碱指示剂:acid-base indicator指示剂常数:indicator constant变色范围:colour change interval混合指示剂:mixed indicator双指示剂滴定法:double indicator titration第五章非水滴定法非水滴定法:nonaqueous titrations质子溶剂:protonic solvent酸性溶剂:acid solvent碱性溶剂:basic solvent两性溶剂:amphototeric solvent无质子溶剂:aprotic solvent均化效应:differentiatin g effect区分性溶剂:differentiating solvent离子化:ionization离解:dissociation结晶紫:crystal violet萘酚苯甲醇: α-naphthalphenol benzyl alcohol奎哪啶红:quinadinered百里酚蓝:thymol blue偶氮紫:azo violet溴酚蓝:bromophenol blue第六章配位滴定法配位滴定法:compleximetry乙二胺四乙酸:ethylenediamine tetraacetic acid,EDTA 螯合物:chelate compound金属指示剂:metal lochrome indcator第七章氧化还原滴定法氧化还原滴定法:oxidation-reduction titration碘量法:iodimetry溴量法:bromimetry ]溴量法:bromine method铈量法:cerimetry高锰酸钾法:potassium permanganate method条件电位:conditional potential溴酸钾法:potassium bromate method硫酸铈法:cerium sulphate method偏高碘酸:metaperiodic acid高碘酸盐:periodate亚硝酸钠法:sodium nitrite method重氮化反应:diazotization reaction重氮化滴定法:diazotization titration亚硝基化反应:nitrozation reaction亚硝基化滴定法:nitrozation titration外指示剂:external indicator外指示剂:outside indicator重铬酸钾法:potassium dichromate method 第八章沉淀滴定法沉淀滴定法:precipitation titration容量滴定法:volumetric precipitation method 银量法:argentometric method第九章重量分析法重量分析法:gravimetric analysis挥发法:volatilization method引湿水(湿存水):water of hydroscopicity 包埋(藏)水:occluded water吸入水:water of imbibition结晶水:water of crystallization组成水:water of composition液-液萃取法:liquid-liquid extration溶剂萃取法:solvent extration反萃取:counter extraction分配系数:partition coefficient分配比:distribution ratio离子对(离子缔合物):ion pair沉淀形式:precipitation forms称量形式:weighing forms仪器分析概述物理分析:physical analysis物理化学分析:physicochemical analysis仪器分析:instrumental analysis第十章电位法及永停滴定法电化学分析:electrochemical analysis电解法:electrolytic analysis method电重量法:electrogravimetry库仑法:coulo metry库仑滴定法:coulo metric titration电导法:conductometry电导分析法:conductometric analysis电导滴定法:conductometric titration电位法:potentiometry直接电位法:dirext potentiometry电位滴定法:potentiometric titration伏安法:voltammetry极谱法:polarography溶出法:stripping method电流滴定法:amperometric titration化学双电层:chemical double layer相界电位:phase boundary potential 金属电极电位:electrode potential化学电池:chemical cell液接界面:liquid junction boundary原电池:galvanic cell电解池:electrolytic cell负极:cathode正极:anode电池电动势:eletromotive force指示电极:indicator electrode参比电极:reference electroade标准氢电极:standard hydrogen electrode一级参比电极:primary reference electrode饱和甘汞电极:saturated calomel electrode银-氯化银电极:silver silver-chloride electrode液接界面:liquid junction boundary不对称电位:asymmetry potential表观PH值:apparent PH复合PH电极:combination PH electrode离子选择电极:ion selective electrode敏感器:sensor晶体电极:crystalline electrodes均相膜电极:homogeneous membrance electrodes非均相膜电极:heterogeneous membrance electrodes非晶体电极:non- crystalline electrodes刚性基质电极:rigid matrix electrode流流体载动电极:electrode with a mobile carrier气敏电极:gas sensing electrodes酶电极:enzyme electrodes金属氧化物半导体场效应晶体管:MOSFET离子选择场效应管:ISFET总离子强度调节缓冲剂:total ion strength adjustment buffer,TISAB永停滴定法:dead-stop titration双电流滴定法(双安培滴定法):double amperometric titration 第十一章光谱分析法概论普朗克常数:Plank constant电磁波谱:electromagnetic spectrum光谱:spectrum光谱分析法:spectroscopic analysis原子发射光谱法:atomic emission spectroscopy质量谱:mass spectrum质谱法:mass spectroscopy,MS第十二章紫外-可见分光光度法紫外-可见分光光度法:ultraviolet and visible spectrophotometry;UV-vis肩峰:shoulder peak末端吸收:end absorbtion生色团:chromophore助色团:auxochrome红移:red shift长移:bathochromic shift短移:hypsochromic shift蓝(紫)移:blue shift增色效应(浓色效应):hyperchromic effect减色效应(淡色效应):hypochromic effect强带:strong band弱带:weak band吸收带:absorption band透光率:transmitance,T吸光度:absorbance谱带宽度:band width杂散光:stray light噪声:noise暗噪声:dark noise散粒噪声:signal shot noise闪耀光栅:blazed grating全息光栅:holographic grating光二极管阵列检测器:photodiode array detector 偏最小二乘法:partial least squares method ,PLS褶合光谱法:convolution spectrometry褶合变换:convolution transform,CT离散小波变换:wavelet transform,WT多尺度细化分析:multiscale analysis供电子取代基:electron donating group吸电子取代基:electron with-drawing group第十三章荧光分析法荧光:fluorescence荧光分析法:fluorometryX-射线荧光分析法:X-ray fluorometry原子荧光分析法:atomic fluorometry分子荧光分析法:molecular fluorometry振动弛豫:vibrational relaxation内转换:internal conversion外转换:external conversion体系间跨越:intersystem crossing激发光谱:excitation spectrum荧光光谱:fluorescence spectrum斯托克斯位移:Stokes shift荧光寿命:fluorescence life time荧光效率:fluorescence efficiency荧光量子产率:fluorescence quantum yield荧光熄灭法:fluorescence quenching method散射光:scattering light瑞利光:R a yleith scattering light拉曼光:Raman scattering lightAbbe refractometer 阿贝折射仪absorbance 吸收度absorbance ratio 吸收度比值absorption 吸收absorption curve 吸收曲线absorption spectrum 吸收光谱absorptivity 吸收系数accuracy 准确度acid-dye colorimetry 酸性染料比色法acidimetry 酸量法acid-insoluble ash 酸不溶性灰分acidity 酸度activity 活度第十四章色谱法additive 添加剂additivity 加和性adjusted retention time 调整保留时间adsorbent 吸附剂adsorption 吸附affinity chromatography 亲和色谱法aliquot (一)份alkalinity 碱度alumina 氧化铝ambient temperature 室温ammonium thiocyanate 硫氰酸铵analytical quality control(AQC)分析质量控制anhydrous substance 干燥品anionic surfactant titration 阴离子表面活性剂滴定法antibiotics-microbial test 抗生素微生物检定法antioxidant 抗氧剂appendix 附录application of sample 点样area normalization method 面积归一化法argentimetry 银量法arsenic 砷arsenic stain 砷斑ascending development 上行展开ash-free filter paper 无灰滤纸(定量滤纸)assay 含量测定assay tolerance 含量限度atmospheric pressure ionization(API) 大气压离子化attenuation 衰减back extraction 反萃取back titration 回滴法bacterial endotoxins test 细菌内毒素检查法band absorption 谱带吸收baseline correction 基线校正baseline drift 基线漂移batch, lot 批batch(lot) number 批号Benttendorff method 白田道夫(检砷)法between day (day to day, inter-day) precision 日间精密度between run (inter-run) precision 批间精密度biotransformation 生物转化bioavailability test 生物利用度试验bioequivalence test 生物等效试验biopharmaceutical analysis 体内药物分析,生物药物分析blank test 空白试验boiling range 沸程British Pharmacopeia (BP) 英国药典bromate titration 溴酸盐滴定法bromimetry 溴量法bromocresol green 溴甲酚绿bromocresol purple 溴甲酚紫bromophenol blue 溴酚蓝bromothymol blue 溴麝香草酚蓝bulk drug, pharmaceutical product 原料药buret 滴定管by-product 副产物calibration curve 校正曲线calomel electrode 甘汞电极calorimetry 量热分析capacity factor 容量因子capillary zone electrophoresis (CZE) 毛细管区带电泳capillary gas chromatography 毛细管气相色谱法carrier gas 载气cation-exchange resin 阳离子交换树脂ceri(o)metry 铈量法characteristics, description 性状check valve 单向阀chemical shift 化学位移chelate compound 鳌合物chemically bonded phase 化学键合相chemical equivalent 化学当量Chinese Pharmacopeia (ChP) 中国药典Chinese material medicine 中成药Chinese materia medica 中药学Chinese materia medica preparation 中药制剂Chinese Pharmaceutical Association (CPA) 中国药学会chiral 手性的chiral stationary phase (CSP) 手性固定相chiral separation 手性分离chirality 手性chiral carbon atom 手性碳原子chromatogram 色谱图chromatography 色谱法chromatographic column 色谱柱chromatographic condition 色谱条件chromatographic data processor 色谱数据处理机chromatographic work station 色谱工作站clarity 澄清度clathrate, inclusion compound 包合物clearance 清除率clinical pharmacy 临床药学coefficient of distribution 分配系数coefficient of variation 变异系数color change interval (指示剂)变色范围color reaction 显色反应colorimetric analysis 比色分析colorimetry 比色法column capacity 柱容量column dead volume 柱死体积column efficiency 柱效column interstitial volume 柱隙体积column outlet pressure 柱出口压column temperature 柱温column pressure 柱压column volume 柱体积column overload 柱超载column switching 柱切换committee of drug evaluation 药品审评委员会comparative test 比较试验completeness of solution 溶液的澄清度compound medicines 复方药computer-aided pharmaceutical analysis 计算机辅助药物分析concentration-time curve 浓度-时间曲线confidence interval 置信区间confidence level 置信水平confidence limit 置信限congealing point 凝点congo red 刚果红(指示剂)content uniformity 装量差异controlled trial 对照试验correlation coefficient 相关系数contrast test 对照试验counter ion 反离子(平衡离子)cresol red 甲酚红(指示剂)crucible 坩埚crude drug 生药crystal violet 结晶紫(指示剂)cuvette, cell 比色池cyanide 氰化物cyclodextrin 环糊精cylinder, graduate cylinder, measuring cylinder 量筒cylinder-plate assay 管碟测定法daughter ion (质谱)子离子dead space 死体积dead-stop titration 永停滴定法dead time 死时间decolorization 脱色decomposition point 分解点deflection 偏差deflection point 拐点degassing 脱气deionized water 去离子水deliquescence 潮解depressor substances test 降压物质检查法derivative spectrophotometry 导数分光光度法derivatization 衍生化descending development 下行展开desiccant 干燥剂detection 检查detector 检测器developer, developing reagent 展开剂developing chamber 展开室deviation 偏差dextrose 右旋糖,葡萄糖diastereoisomer 非对映异构体diazotization 重氮化2,6-dichlorindophenol titration 2,6-二氯靛酚滴定法differential scanning calorimetry (DSC) 差示扫描热量法differential spectrophotometry 差示分光光度法differential thermal analysis (DTA) 差示热分析differentiating solvent 区分性溶剂diffusion 扩散digestion 消化diphastic titration 双相滴定disintegration test 崩解试验dispersion 分散度dissolubility 溶解度dissolution test 溶出度检查distilling range 馏程distribution chromatography 分配色谱distribution coefficient 分配系数dose 剂量drug control institutions 药检机构drug quality control 药品质量控制drug release 药物释放度drug standard 药品标准drying to constant weight 干燥至恒重dual wavelength spectrophotometry 双波长分光光度法duplicate test 重复试验effective constituent 有效成分effective plate number 有效板数efficiency of column 柱效electron capture detector 电子捕获检测器electron impact ionization 电子轰击离子化electrophoresis 电泳electrospray interface 电喷雾接口electromigration injection 电迁移进样elimination 消除eluate 洗脱液elution 洗脱emission spectrochemical analysis 发射光谱分析enantiomer 对映体end absorption 末端吸收end point correction 终点校正endogenous substances 内源性物质enzyme immunoassay(EIA) 酶免疫分析enzyme drug 酶类药物enzyme induction 酶诱导enzyme inhibition 酶抑制eosin sodium 曙红钠(指示剂)epimer 差向异构体equilibrium constant 平衡常数equivalence point 等当点error in volumetric analysis 容量分析误差excitation spectrum 激发光谱exclusion chromatography 排阻色谱法expiration date 失效期external standard method 外标法extract 提取物extraction gravimetry 提取重量法extraction titration 提取容量法extrapolated method 外插法,外推法factor 系数,因数,因子feature 特征Fehling’s reaction 费林反应field disorption ionization 场解吸离子化field ionization 场致离子化filter 过滤,滤光片filtration 过滤fineness of the particles 颗粒细度flame ionization detector(FID) 火焰离子化检测器flame emission spectrum 火焰发射光谱flask 烧瓶flow cell 流通池flow injection analysis 流动注射分析flow rate 流速fluorescamine 荧胺fluorescence immunoassay(FIA) 荧光免疫分析fluorescence polarization immunoassay(FPIA) 荧光偏振免疫分析fluorescent agent 荧光剂fluorescence spectrophotometry 荧光分光光度法fluorescence detection 荧光检测器fluorimetyr 荧光分析法foreign odor 异臭foreign pigment 有色杂质formulary 处方集fraction 馏分freezing test 结冻试验funnel 漏斗fused peaks, overlapped peaks 重叠峰fused silica 熔融石英gas chromatography(GC) 气相色谱法gas-liquid chromatography(GLC) 气液色谱法gas purifier 气体净化器gel filtration chromatography 凝胶过滤色谱法gel permeation chromatography 凝胶渗透色谱法general identification test 一般鉴别试验general notices (药典)凡例general requirements (药典)通则good clinical practices(GCP) 药品临床管理规范good laboratory practices(GLP) 药品实验室管理规范good manufacturing practices(GMP) 药品生产质量管理规范good supply practices(GSP) 药品供应管理规范gradient elution 梯度洗脱grating 光栅gravimetric method 重量法Gutzeit test 古蔡(检砷)法half peak width 半峰宽[halide] disk method, wafer method, pellet method 压片法head-space concentrating injector 顶空浓缩进样器heavy metal 重金属heat conductivity 热导率height equivalent to a theoretical plate 理论塔板高度height of an effective plate 有效塔板高度high-performance liquid chromatography (HPLC) 高效液相色谱法high-performance thin-layer chromatography (HPTLC) 高效薄层色谱法hydrate 水合物hydrolysis 水解hydrophilicity 亲水性hydrophobicity 疏水性hydroscopic 吸湿的hydroxyl value 羟值hyperchromic effect 浓色效应hypochromic effect 淡色效应identification 鉴别ignition to constant weight 灼烧至恒重immobile phase 固定相immunoassay 免疫测定impurity 杂质inactivation 失活index 索引indicator 指示剂indicator electrode 指示电极inhibitor 抑制剂injecting septum 进样隔膜胶垫injection valve 进样阀instrumental analysis 仪器分析insulin assay 胰岛素生物检定法integrator 积分仪intercept 截距interface 接口interference filter 干涉滤光片intermediate 中间体internal standard substance 内标物质international unit(IU) 国际单位in vitro 体外in vivo 体内iodide 碘化物iodoform reaction 碘仿反应iodometry 碘量法ion-exchange cellulose 离子交换纤维素ion pair chromatography 离子对色谱ion suppression 离子抑制ionic strength 离子强度ion-pairing agent 离子对试剂ionization 电离,离子化ionization region 离子化区irreversible indicator 不可逆指示剂irreversible potential 不可逆电位isoabsorptive point 等吸收点isocratic elution 等溶剂组成洗脱isoelectric point 等电点isoosmotic solution 等渗溶液isotherm 等温线Karl Fischer titration 卡尔·费歇尔滴定kinematic viscosity 运动黏度Kjeldahl method for nitrogen 凯氏定氮法Kober reagent 科伯试剂Kovats retention index 科瓦茨保留指数labelled amount 标示量leading peak 前延峰least square method 最小二乘法leveling effect 均化效应licensed pharmacist 执业药师limit control 限量控制limit of detection(LOD) 检测限limit of quantitation(LOQ) 定量限limit test (杂质)限度(或限量)试验limutus amebocyte lysate(LAL) 鲎试验linearity and range 线性及范围linearity scanning 线性扫描liquid chromatograph/mass spectrometer (LC/MS) 液质联用仪litmus paper 石蕊试纸loss on drying 干燥失重low pressure gradient pump 低压梯度泵luminescence 发光lyophilization 冷冻干燥main constituent 主成分make-up gas 尾吹气maltol reaction 麦牙酚试验Marquis test 马奎斯试验mass analyzer detector 质量分析检测器mass spectrometric analysis 质谱分析mass spectrum 质谱图mean deviation 平均偏差measuring flask, volumetric flask 量瓶measuring pipet(te) 刻度吸量管medicinal herb 草药melting point 熔点melting range 熔距metabolite 代谢物metastable ion 亚稳离子methyl orange 甲基橙methyl red 甲基红micellar chromatography 胶束色谱法micellar electrokinetic capillary chromatography(MECC, MEKC) 胶束电动毛细管色谱法micelle 胶束microanalysis 微量分析microcrystal 微晶microdialysis 微透析micropacked column 微型填充柱microsome 微粒体microsyringe 微量注射器migration time 迁移时间millipore filtration 微孔过滤minimum fill 最低装量mobile phase 流动相modifier 改性剂,调节剂molecular formula 分子式monitor 检测,监测monochromator 单色器monographs 正文mortar 研钵moving belt interface 传送带接口multidimensional detection 多维检测multiple linear regression 多元线性回归multivariate calibration 多元校正natural product 天然产物Nessler glasses(tube) 奈斯勒比色管Nessler’s r eagent 碱性碘化汞钾试液neutralization 中和nitrogen content 总氮量nonaqueous acid-base titration 非水酸碱滴定nonprescription drug, over the counter drugs (OTC drugs) 非处方药nonproprietary name, generic name 非专有名nonspecific impurity 一般杂质non-volatile matter 不挥发物normal phase 正相normalization 归一化法notice 凡例nujol mull method 石蜡糊法octadecylsilane chemically bonded silica 十八烷基硅烷键合硅胶octylsilane 辛(烷)基硅烷odorless 无臭official name 法定名official specifications 法定标准official test 法定试验on-column detector 柱上检测器on-column injection 柱头进样on-line degasser 在线脱气设备on the dried basis 按干燥品计opalescence 乳浊open tubular column 开管色谱柱optical activity 光学活性optical isomerism 旋光异构optical purity 光学纯度optimization function 优化函数organic volatile impurities 有机挥发性杂质orthogonal function spectrophotometry 正交函数分光光度法orthogonal test 正交试验orthophenanthroline 邻二氮菲outlier 可疑数据,逸出值overtones 倍频峰,泛频峰oxidation-reduction titration 氧化还原滴定oxygen flask combustion 氧瓶燃烧packed column 填充柱packing material 色谱柱填料palladium ion colorimetry 钯离子比色法parallel analysis 平行分析parent ion 母离子particulate matter 不溶性微粒partition coefficient 分配系数parts per million (ppm) 百万分之几pattern recognition 模式识别peak symmetry 峰不对称性peak valley 峰谷peak width at half height 半峰宽percent transmittance 透光百分率pH indicator absorbance ratio method? pH指示剂吸光度比值法pharmaceutical analysis 药物分析pharmacopeia 药典pharmacy 药学phenolphthalein 酚酞photodiode array detector(DAD) 光电二极管阵列检测器photometer 光度计pipeclay triangle 泥三角pipet(te) 吸移管,精密量取planar chromatography 平板色谱法plate storage rack 薄层板贮箱polarimeter 旋光计polarimetry 旋光测定法polarity 极性polyacrylamide gel 聚丙酰胺凝胶polydextran gel 葡聚糖凝胶polystyrene gel 聚苯乙烯凝胶polystyrene film 聚苯乙烯薄膜porous polymer beads 高分子多孔小球post-column derivatization 柱后衍生化potentiometer 电位计potentiometric titration 电位滴定法precipitation form 沉淀形式precision 精密度pre-column derivatization 柱前衍生化preparation 制剂prescription drug 处方药pretreatment 预处理primary standard 基准物质principal component analysis 主成分分析programmed temperature gas chromatography 程序升温气相色谱法prototype drug 原型药物provisions for new drug approval 新药审批办法purification 纯化purity 纯度pyrogen 热原pycnometric method 比重瓶法quality control(QC) 质量控制quality evaluation 质量评价quality standard 质量标准quantitative determination 定量测定quantitative analysis 定量分析quasi-molecular ion 准分子离子racemization 消旋化radioimmunoassay 放射免疫分析法random sampling 随机抽样rational use of drug 合理用药readily carbonizable substance 易炭化物reagent sprayer 试剂喷雾器recovery 回收率reference electrode 参比电极refractive index 折光指数related substance 有关物质relative density 相对密度relative intensity 相对强度repeatability 重复性replicate determination 平行测定reproducibility 重现性residual basic hydrolysis method 剩余碱水解法residual liquid junction potential 残余液接电位residual titration 剩余滴定residue on ignition 炽灼残渣resolution 分辨率,分离度response time 响应时间retention 保留reversed phase chromatography 反相色谱法reverse osmosis 反渗透rider peak 驼峰rinse 清洗,淋洗robustness 可靠性,稳定性routine analysis 常规分析round 修约(数字)ruggedness 耐用性safety 安全性Sakaguchi test 坂口试验salt bridge 盐桥salting out 盐析sample applicator 点样器sample application 点样sample on-line pretreatment 试样在线预处理sampling 取样saponification value 皂化值saturated calomel electrode(SCE) 饱和甘汞电极selectivity 选择性separatory funnel 分液漏斗shoulder peak 肩峰signal to noise ratio 信噪比significant difference 显著性差异significant figure 有效数字significant level 显著性水平significant testing 显著性检验silanophilic interaction 亲硅羟基作用silica gel 硅胶silver chloride electrode 氯化银电极similarity 相似性simultaneous equations method 解线性方程组法size exclusion chromatography(SEC) 空间排阻色谱法sodium dodecylsulfate, SDS 十二烷基硫酸钠sodium hexanesulfonate 己烷磺酸钠sodium taurocholate 牛璜胆酸钠sodium tetraphenylborate 四苯硼钠sodium thiosulphate 硫代硫酸钠solid-phase extraction 固相萃取solubility 溶解度solvent front 溶剂前沿solvophobic interaction 疏溶剂作用specific absorbance 吸收系数specification 规格specificity 专属性specific rotation 比旋度specific weight 比重spiked 加入标准的split injection 分流进样splitless injection 无分流进样spray reagent (平板色谱中的)显色剂spreader 铺板机stability 稳定性standard color solution 标准比色液standard deviation 标准差standardization 标定standard operating procedure(SOP) 标准操作规程standard substance 标准品stationary phase coating 固定相涂布starch indicator 淀粉指示剂statistical error 统计误差sterility test 无菌试验stirring bar 搅拌棒stock solution 储备液stoichiometric point 化学计量点storage 贮藏stray light 杂散光substituent 取代基substrate 底物sulfate 硫酸盐sulphated ash 硫酸盐灰分supercritical fluid chromatography(SFC) 超临界流体色谱法support 载体(担体)suspension 悬浊液swelling degree 膨胀度symmetry factor 对称因子syringe pump 注射泵systematic error 系统误差system model 系统模型system suitability 系统适用性tablet 片剂tailing factor 拖尾因子tailing peak 拖尾峰tailing-suppressing reagent 扫尾剂test of hypothesis 假设检验test solution(TS) 试液tetrazolium colorimetry 四氮唑比色法therapeutic drug monitoring(TDM) 治疗药物监测thermal analysis 热分析法thermal conductivity detector 热导检测器thermocouple detector 热电偶检测器thermogravimetric analysis(TGA) 热重分析法thermospray interface 热喷雾接口The United States Pharmacopoeia(USP) 美国药典The Pharmacopoeia of Japan(JP) 日本药局方thin layer chromatography(TLC) 薄层色谱法thiochrome reaction 硫色素反应three-dimensional chromatogram 三维色谱图thymol 百里酚(麝香草酚)(指示剂)thymolphthalein 百里酚酞(麝香草酚酞)(指示剂)thymolsulfonphthalein ( thymol blue) 百里酚蓝(麝香草酚蓝)(指示剂)titer, titre 滴定度time-resolved fluoroimmunoassay 时间分辨荧光免疫法titrant 滴定剂titration error 滴定误差titrimetric analysis 滴定分析法tolerance 容许限toluene distillation method 甲苯蒸馏法toluidine blue 甲苯胺蓝(指示剂)total ash 总灰分total quality control(TQC) 全面质量控制traditional drugs 传统药traditional Chinese medicine 中药transfer pipet 移液管turbidance 混浊turbidimetric assay 浊度测定法turbidimetry 比浊法turbidity 浊度ultracentrifugation 超速离心ultrasonic mixer 超生混合器ultraviolet irradiation 紫外线照射undue toxicity 异常毒性uniform design 均匀设计uniformity of dosage units 含量均匀度uniformity of volume 装量均匀性(装量差异)uniformity of weight 重量均匀性(片重差异)validity 可靠性variance 方差versus …对…,…与…的关系曲线viscosity 粘度volatile oil determination apparatus 挥发油测定器volatilization 挥发法volumetric analysis 容量分析volumetric solution(VS) 滴定液vortex mixer 涡旋混合器watch glass 表面皿wave length 波长wave number 波数weighing bottle 称量瓶weighing form 称量形式weights 砝码well-closed container 密闭容器xylene cyanol blue FF 二甲苯蓝FF(指示剂)xylenol orange 二甲酚橙(指示剂)zigzag scanning 锯齿扫描zone electrophoresis 区带电泳zwitterions 两性离子zymolysis 酶解作用簡體書目錄Chapter 1 Introduction 緒論1.1 The nature of analytical chemistry 分析化學的性質1.2 The role of analytical chemistry 分析化學的作用1.3 The classification of analytical chemistry分析化學的分類1.4 The total analytical process分析全過程Terms to understand重點內容概述Chapter 2 Errors and Data Treatment in Quantitative Analysis 定量分析中的誤差及數據處理2.1 Fundamental terms of errors誤差的基本術語2.2 Types of errors in experimental data實驗數據中的誤差類型2.2.1 Systematic errors 系統誤差2.2.2 Random errors偶然誤差2.3 Evaluation of analytical data分析數據的評價2.3.1 Tests of significance顯著性檢驗2.3.2 Rejecting data可疑值取捨2.4 Significant figures有效數字ProblemsTerms to understand重點內容概述Chapter 3 Titrimetric Analysis滴定分析法3.1 General principles基本原理3.1.1 Relevant terms of titrimetric analysis滴定分析相關術語3.1.2 The preparation of standard solution and the expression of concentration 標準溶液的配製與濃度表示方法3.1.3 The types of titrimetric reactions滴定反應類型3.2 Acid-base titration酸鹼滴定3.2.1 Acid-base equilibria 酸鹼平衡3.2.2 Titration curves滴定曲線3.2.3 Acid-base indicators酸鹼指示劑3.2.4 Applications of acid-base titration酸鹼滴定的應用3.3 Complexometric titration配位滴定3.3.1 Metal-chelate complexes金屬螯合物3.3.2 EDTA 乙二胺四乙酸3.3.3 EDTA titration curves EDTA滴定曲線3.3.4 Metal Ion indicators金屬離子指示劑3.3.5 Applications of EDTA titration techniques EDTA滴定方法的應用3.4 Oxidation-reduction titration氧化還原滴定3.4.1 Redox reactions氧化還原反應3.4.2 Rate of redox reactions氧化還原反應的速率3.4.3 Titration curves滴定曲線3.4.4 Redox indicators氧化還原指示劑3.4.5 Applications of redox titrations氧化還原滴定的應用3.5 Precipitation titration沉澱滴定3.5.1 Precipitation reactions沉澱滴定反應3.5.2 Titration curves滴定曲線3.5.3 End-point detection終點檢測ProblemsTerms to understand重點內容概述Chapter 4 Potentiometry 電位分析法4.1 Introduction簡介4.1.1 Classes and characteristics分類及性質4.1.2 Definition定義4.2 Types of potentiometric electrodes電極種類4.2.1 Reference electrodes 參比電極4.2.2 Indicator electrodes指示電極4.2.3 Electrode response and selectivity電極響應及選擇性4.3 Potentiometric methods and application電位法及應用4.3.1 Direct potentiometric measurement 直接電位法4.3.2 Potentiometric titrations電位滴定4.3.3 Applications of potentiometry 電位法應用ProblemsTerlns to understand重點內容概述Chapter 5 Chromatography色譜法5.1 An introduction to chromatographic methods色譜法概述5.2 Fundamental theory of gas chromatography氣相色譜基本原理5.2.1 Plate theory塔板理論5.2.2 Kinetic theory(rate theory) 速率理論5.2.3 The resolution Rs as a measure of peak separation 分離度5.3 Gas chromatography 氣相色譜5.3.1 Components of a gas chromatograph 氣相色譜儀的組成5.3.2 Stationary phases for gas-liquid chromatography 氣液色譜固定相5.3.3 Applications of gas-liquid chromatography 氣液色譜的應用5.3.4 Adsorption chromatography 吸附色譜5.4 High performance liquid chromatography 高效液相色譜5.4.1 Instrumentation 儀器組成5.4.2 High-performance partition chromatography 高效分配色譜5.5 Miscellaneous separation methods 其他分離方法5.5.1 High-performance ion-exchange chromatography 高效離子交換色譜5.5.2 Capillary electrophoresis 毛細管電泳5.5.3 Planar chromatography 平板色譜ProblemsTerms to understand重點內容概述Chapter 6 Atomic Absorption Spectrometry原子吸收光譜分析法6.1 Introduction 概述6.2 Principles 原理6.2.1 The process of AAS,resonance line and absorption line 原子吸收光譜法的過程,共振線及吸收線6.2.2 The number of ground atom and the temperature of flame 基態原子數與光焰溫度6.2.3 Quantitative analysis of AAS原子吸收光譜定量分析6.3 Instrumentation 儀器6.3.1 Primary radiation sources 光源6.3.2 Atomizer 原子儀器6.3.3 Optical dispersive systems 分光系統6.3.4 Detectors 檢測器6.3.5 Signal measurements 信號測量6.4 Quantitative measurements and interferences 定量測定及干擾6.4.1 Quantitative measurements 定量測定6.4.2 Interferences 干擾6.4.3 Sensitivity6.5 Applications of AAS原子吸收光譜法的應用ProblemsTerms to understand重點內容概述Chapter 7 Ultraviolet and Visible Spectrophotometry 紫外-可見分光光度法7.1 Introduction簡介7.2 Ultraviolet and visible absorption spectroscopy 紫外-可見吸收光譜7.2.1 Introduction for radiant energy 輻射能簡介7.2.2 Selective absorption of radiation and absorbance spectrum 物質對光的選擇性吸收和吸收光譜7.2.3 Absorbing species and electron transition 吸收物質與電子躍遷7.3 Law of absorption吸收定律7.3.1 Lambert-Beer's law朗伯-比爾定律7.3.2 Absorptivity吸光係數7.3.3 Apparent deviations from Beer's law對比爾定律的明顯偏離7.4 Instruments儀器7.5 General types of spectrophotometer分光光度計種類7.6 Application of UV-Vis absorption spectroscopy 紫外-可見吸收光譜的應用7.6.1 Application of absorption measurement to qualitative analysis 光吸收測定在定性分析上的應用7.6.2 Quantitative analysis by absorption measurements 光吸收測量定量分析法7.6.3 Derivative spectrophotometry 導數分光光度法ProblemsTerms to understand重點內容概述Chapter 8 Infrared Absorption Spectroscopy紅外吸收光譜8.1 Theory of infrared absorption紅外吸收基本原理8.1.1 Dipole changes during vibrations and rotations 振轉運動中的偶極距變化8.1.2 Mechanical model of stretching vibrations 伸縮振動機械模型8.1.3 Quantum treatment of vibrations 振動的量子力學處理、8.1.4 Types of molecular vibrations分子振動形式8.2 Infrared instrument components紅外儀器組成8.2.1 Wavelength selection波長選擇8.2.2 Sampling techniques 採樣技術8.2.3 Infrared spectrophotometers for qualitative analysis 定性分析用紅外分光光度計8.2.4 Other techniques其他技術8.3 The group frequencies of functional groups in organic compounds 有機化合物官能團的特徵頻率8.4 The factors affecting group frequencies 影響基團特徵吸收頻率的因素8.4.1 Adjacent groups 鄰近基團的影響。
DOI:10.7524/j.issn.0254-6108.2022090704张红霞, 张洪昌, 胡双庆, 等. 太浦河水体和沉积物中24种全氟化合物分布特征[J ]. 环境化学, 2024, 43(3): 722-733.ZHANG Hongxia, ZHANG Hongchang, HU Shuangqing, et al. Distribution characteristics of 24 perfluorocarbons in Taipu River and sediments [J ]. Environmental Chemistry, 2024, 43 (3): 722-733.太浦河水体和沉积物中24种全氟化合物分布特征 *张红霞1,2 张洪昌2 胡双庆2 沈根祥2 ** 李贞金2 周萌萌1,2(1. 华东理工大学资源与环境学院,上海,200237;2. 上海市环境科学研究院,国家环境保护新型污染物环境健康影响评价重点实验室,上海,200233)Σ摘 要 本研究以24种全氟化合物(polyfluoroalkyl substances ,PFASs )为研究对象,于冬、夏两季采集了太浦河流域重要点位的水样以及沉积物,并采用固相萃取、液液萃取联合高效液相色谱-串联质谱(HPLC/MS-MS)的方法,探讨PFASs 在太浦河流域水环境中的时空分布特征以及分配行为. 结果显示,水体中PFASs 的总质量浓度范围在114.24—168.62 ng·L −1,主要的污染物为全氟丁酸(PFBA )和全氟辛酸(PFOA ),平均浓度为24.92 ng·L −1和28.18 ng·L −1;沉积物中PFASs 在2.36—4.73 ng·g −1(dw ,干重),主要的污染物为全氟十一酸(PFUdA )和全氟十二酸(PFDoA ),平均浓度为0.78 ng·g −1(dw )和0.52 ng·g −1(dw ). 水样的监测结果显示,各点位PFASs 总浓度波动不大,仅在个别点位出现PFASs 突增的情况. PFASs 在太浦河流段没有明显的季节性差异,这与今年夏季降雨量少的情况有关.PFASs 在沉积物-水的分配行为表明,PFASs 在沉积物-水的分配系数与总有机碳(total organic carbon ,TOC )的含量、PFASs 碳链长度以及PFASs 官能团结构有关. 短链PFASs 主要存在于水体中,长链PFASs 则主要分布在沉积物中;全氟磺酸类(PFSAs )较全氟羧酸类(PFCAs )更易吸附在沉积物中. 对PFASs 来源解析发现:水体中PFASs 的来源包括了外源输入和点源排放,夏季河体内PFASs 主要受到大气远距离传输影响,冬季则与河道周围的工业活动有关.关键词 全氟化合物,太浦河,时空分布,分配系数,来源解析.Distribution characteristics of 24 perfluorocarbons inTaipu River and sedimentsZHANG Hongxia 1,2 ZHANG Hongchang 2 HU Shuangqing 2 SHEN Genxiang 2 ** LI Zhenjin 2 ZHOU Mengmeng 1,2(1. School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237,China ;2. State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of EmergingContaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China )Abstract In this study, the spatial and temporal distribution characteristics and distribution behavior of 24 kinds of perfluoroalkyl substances (PFASs) in the water environment of the Taipu River Basin were explored. Water samples and sediments from important points in the Taipu River Basin were collected in winter and summer. Solid-phase extraction, liquid-liquid extraction and high-performance liquid chromatography tandem mass spectrometry (HPLC/MS-MS) were employed to2022 年 9 月 7 日 收稿(Received :September 7,2022).* 上海市“科技创新行动计划”社会发展科技攻关项目(21DZ1202102)资助.Supported by Shanghai “Science and Technology Innovation Action Plan ” Social Development Science and Technology Research Project (21DZ1202102).* * 通信联系人 Corresponding author ,E-mail :**************.cn3 期张红霞等:太浦河水体和沉积物中24种全氟化合物分布特征723analyzed the target compounds. The results showed that the total mass concentration of PFASs in water ranged from 114.24 ng·L−1 to 168.62 ng·L−1. The dominant pollutants were perfluorobutyric acid (PFBA) and perfluorooctanoic acid (PFOA), with average concentrations of 24.92 ng·L−1 and28.18 ng·L−1 ; In the sediment, PFASs ranged from 2.36 ng·g−1 (dw) to 4.73 ng·g−1 (dw). Thedominant pollutants were perfluorodecanoic acid (PFUdA) and perfluoro dodecanoic acid (PFDoA), with average concentrations of 0.78 ng·g−1 (dw) and 0.52 ng·g−1 (dw). The results of water samples showed that the total concentration of PFASs does not fluctuate much among most points, only a sudden increase occurred at individual points. There was no obvious seasonal difference in PFASs in the Taipu River section, which is related to the low rainfall in this summer. The distribution behavior of PFASs in sediment water showed that the distribution coefficient of PFASs in sediment water is related to the content of total organic carbon (TOC) of the sediment, the carbon chain length of PFASs and the functional group structure of PFASs. Short chain PFASs mainly exists in water, while long chain PFASs mainly in sediments; Compared to perfluorocarboxylic acids (PFCAs), perfluorosulfonic acids (PFSAs) are more easily adsorbed to sediments. The analysis of the source of PFASs shows that the source of PFASs in the water body includes external input and point source discharge. In summer, PFASs in the river is mainly affected by long-distance atmospheric transmission, and in winter, it is related to industrial activities around the river.Keywords perfluorocarbons,Taipu River,spatial and temporal distribution,distribution coefficient,source resolution.全氟化合物(polyfluoroalkyl substances,PFASs)具有良好的疏水疏油性、高活性和热稳定性,被广泛应用于工业生产和民用成品制备[1]. 随着含氟产品的生产、使用和处理,PFASs被释放到周围的环境中. 同时,该物质具有环境持久性、远距离迁移性和生物蓄积性,使得其最终进入到整个生态系统中,作为一类持久性有机污染物对周围的生态环境和生物物种造成潜在风险[2 − 6]. 尽管国内外已经对传统的PFASs做出管控[7 − 8],但鉴于该类物质在生产过程中不可或缺,使得近些年氟化工生产商研制出更多的含氟替代品,用结构类似的以及短链的PFASs[9]代替传统PFASs来满足市场需求. 目前,已有研究表明,这类替代品同样具有环境持久性以及生物毒性,且在环境中已被大量检出[10].工业生产排放是PFASs最主要的来源,目前,关于PFASs进入环境有两种猜想:一种是半挥发性、挥发性PFASs随大气运动远距离传输[11],另一种是水体环流带动离子态PFASs迁移[12]. 河流承载了来自工业生产过程中产生的PFASs,最终进入海洋中[13]. 所以,了解水环境中PFASs在水体与沉积物的分配机制对理解PFASs在环境中的迁移转化规律具有重要意义.太浦河是连接东太湖和黄浦江的重要河段,是上海市重要的饮用水水源地之一,为上海市西南5区提供原水. 目前,太浦河的水质调查多围绕抗生素[14]、重金属[15]等展开,而对于PFASs在太浦河中的时空分布特征以及在沉积物和水中分配规律的了解非常有限. 大量研究表明,PFASs的碳链长度会影响沉积物的吸附量[16 − 17],沉积物本身的理化性质,如总有机碳(total organic carbon,TOC)[18 − 20]也会影响到水环境中PFASs的分配规律. 因此,研究PFASs链长以及太浦河中沉积物的TOC含量对PFASs在水环境中分布特征的影响,可以揭示PFASs在河流中的迁移转化规律.本研究以传统、替代和短链的24种PFASs为研究对象,针对太浦河流域的水体和沉积物,于冬、夏两季采样并分析该河段重要点位的水体和沉积物样品中目标PFASs的污染水平和分布规律,研究该流域目标PFASs季节性变化规律,解析PFASs在太浦河不同介质中的归趋、分布特征和来源,不仅为饮用水安全风险评估提供数据,还可为控制PFASs的排放提供科学依据.1 材料与方法(Materials and methods)1.1 仪器与试剂主要仪器包括:高效液相色谱-串联质谱(Waters公司,美国),全自动氮吹仪(睿科仪器股份有限公司,厦门),超声波清洗器(安谱实验科技股份有限公司,上海),全自动固相萃取仪(睿科仪器股份有限公司,厦门),低温真空冷冻干燥机(昊博低温真空设备有限公司,上海),总有机碳分析仪(耶拿分析仪器股份公司,德国),电子分析天平(岛津实验器材有限公司,上海).实验过程中使用的甲醇、乙腈(色谱纯)购于德国Merck公司,乙酸铵(色谱纯)购于美国ANPEL公司,氨水(>25%)购于上海易恩化学技术有限公司. 标准品(>98%)均购于加拿大惠灵顿公司,具体信息如表1所示.表 1 实验所用标准品Table 1 Standards used in the experiment分类Classification化合物Compounds缩写Abbreviation内部标准品Internal standards碳链长度Carbon chain length全 氟 羧 酸 类(PFCAs)全氟丁酸PFBA MPFBA4全氟戊酸PFPeA M5PFPeA5全氟己酸PFHxA M5PFHxA6全氟庚酸PFHpA M4PFHpA7全氟辛酸PFOA M8PFOA8全氟壬酸PFNA M9PFNA9全氟癸酸PFDA M6PFDA10全氟十一酸PFUdA M7PFUdA11全氟十二酸PFDoA MPFDoA12全氟及多氟聚醚羧酸类(PFECAs)六氟环氧丙烷二聚酸HFPO-DA M5PFHxA5全氟-4-恶戊二酸PF4OPeA M8PFOA4全氟-5-氧代己酸PF5OHxA M5PFHxA5全氟-3,6-二噁庚酸3,6-OPFHpA M5PFHxA5 4,8-二氧-3H-全氟辛酸钠NaDONA M8PFOA7全氟磺酸类(PFSAs)全氟丁烷磺酸盐L-PFBS M3PFBS4全氟-1-戊烷磺酸钠L-PFPeS M8PFOS5全氟己烷磺酸钾PFHxSK M3PFHxS6全氟-1-庚烷磺酸钾L-PFHpS M8PFOA7全氟辛烷磺酸钾PFOSK M8PFOS8氟调聚醇类(PFOH)氟调聚物磺酸盐 4:24:2FTS M8PFOS6氟调聚物磺酸盐 6:26:2FTS M8PFOS8氟调聚物磺酸盐 8:28:2FTS M8PFOS10全氟及多氟聚醚磺酸类(PFESAs)9-氯十六氟-3-氧杂环己酮-1-磺酸钾9Cl-PF3ONS M9PFNA8全氟烷基醚磺酸盐PFEESA M6PFDA41.2 样品采集本研究于2022年1、7月期间采集了太浦河流域的19份水样与6份沉积物样品,具体采样点和采集情况如图1和表2所示. 使用不锈钢采水器采集水面以下0.5—1 m处的水样,装入1 L高密度聚乙烯容器中. 使用不锈钢抓斗式采泥器采集采水处附近1 m2范围内的沉积物样品,并装入不锈钢容器中.对于入河口、航运发达和工业繁华的点位(TPH1、TPH3、TPH4、TPH11),收集两个平行样,混合均匀后进行前处理,以减少采样过程中的随机性. 水样采集后在24 h内完成预处理,沉积物样品冻干并过100目筛(0.15 mm)后,装入聚丙烯袋中于−20 ℃保存,待进一步处理.724环 境 化 学43 卷图 1 太浦河采样点位示意图Fig.1 Schematic diagram of sampling sites of Taipu River表 2 太浦河1、7月份采样情况Table 2 Sampling of Taipu River in January and July 采样时间Sampling time水样Water sample 沉积物Sediment 1月JanuaryTPH1、TPH4—TPH10—7月July TPH1—TPH11TPH1—TPH3、TPH8—TPH101.3 样品处理与分析方法1.3.1 前处理方法水样前处理在刘晓雷等[21]方法上进行了优化,具体过程为:取250 mL 水样,过0.7 μm 的GF/F 玻璃纤维滤膜(Whatman 公司,英国),加入5 ng 内标后混匀待用. 依次用5 mL 0.1%的氨水/甲醇(V:V )溶液以及5 mL 超纯水(Milli-Q )活化Oasis-WAX 固相萃取柱(500 mg ,6 mL ),将水样以3 mL·min −1的流速通过预活化的WAX 小柱富集目标PFASs. 用5 mL 25 mmol 的乙酸铵水溶液和5 mL 80%甲醇/水溶液淋洗小柱,气推除去残余水分. 最后,用10 mL 0.1%的氨水/甲醇溶液和5 mL 0.1%的氨水/乙腈溶液洗脱,气推并收集洗脱液. 洗脱液在水浴加热45 ℃条件下氮吹至近干,用500 μL 的2 mmol·L −1乙酸铵水溶液:甲醇(30:70,V:V )的溶剂复溶,通过0.22 μm PTFE 针式滤器转移至聚丙烯进样小瓶中.沉积物前处理在Shi 等[22]的方法上进行改进:称取1 g 冻干后的沉积物样品,加入5 ng 内标和5 mL 的甲醇溶剂. 涡旋混匀2 min ,在30 ℃下超声20 min ,最后3000 r·min -1离心10 min 后,抽取上清液过0.45 μm 的玻璃纤维针式滤器至另一个50 mL 离心管中. 重复上述提取步骤两次,将提取的上清液合并后氮吹至近干,复溶后将溶液转移至进样小瓶.1.3.2 仪器分析条件×24种PFASs 的分析仪器为Waters Acquity HPLC@I Class 液相色谱仪串联Waters Xevo TQ-XS micro 质谱仪,色谱柱为ACQUITY UPLC®BEH C18(ϕ2.1 mm 100 mm ,1.7 μm ,美国Waters 公司). 流动相A 为5 mmol 的乙酸铵水溶液,流动相B 为乙腈,采用梯度洗脱的方式:0—3.5 min ,10%—50%B ;3.5—6.0 min ,50%—95% B ;6—8 min ,95% B ;8—8.5 min ,95%—10% B ;8.5—10 min ,10% B. 进样量为1 μL ,流速为0.3 mL·min −1,色谱柱柱温为40 ℃.质谱条件为:采用多重反应离子监测模式(MRM ),电喷雾负离子扫描模式(ESI -),离子源温度150 ℃,脱溶剂气温度500 ℃,脱溶剂气流速1000 L·h −1,毛细管电压3 kV ,氮气作为脱溶剂气和锥孔气,氩气作为碰撞气.1.3.3 质量控制和质量保证本研究实验过程中使用的器皿均为聚丙烯材料,使用前用纯水和甲醇润洗并晾干,全自动固相萃取仪使用结束后,用纯水和甲醇对管路进行二次冲洗,每次实验均设置空白对照以及溶剂空白,每个点3 期张红霞等:太浦河水体和沉积物中24种全氟化合物分布特征725位的样品设置3个平行,尽可能减少环境因素对实验结果的影响. 对24种PFASs 在0.14—50 ng·mL −1的浓度区间内配制7个浓度梯度的标曲,加入10 ng·mL −1的内标. 24种PFASs 在此浓度区间内具有良好的线性关系(R 2>0.995). 分别向7个空白样中加入一定量的标准品(250 mL 水样中加0.25 ng 和1 ng 标准品,1 g 沉积物样品中加0.5 ng 和1 ng 标准品),根据7次平行的标准偏差计算方法检出限(MDL ),计算公式为:MDL =t (n -1,α=0.01)×S, t 分布;n 为样品自由度;S为加标样品减去空白样品的标准偏差. 向3个空白样品中分别加入高、中、低浓度(水样:4、20、50 ng·L −1;沉积物:1、5、10 ng·g −1)的混标,得到水和沉积物的加标回收率. 水体中PFASs 的回收率在71.67%—105.33%,相对标准偏差均小于20%;沉积物中PFASs 的回收率在60.17%—149.43%,相对标准偏差均小于20%,PFASs 在水体和沉积物介质中的MDL 分别在0.104—1.006 ng·L −1和0.050—0.131 ng·g −1,均满足痕量分析的要求.1.3.4 数据处理数据处理使用Excel 2016和Origin 2016软件. 统计时,若PFASs 含量<MDL ,数值以0计算. 选取同一点位的水样和沉积物中PFASs 的含量来计算分配系数,计算公式[23]为:K d C s C w K oc f oc 式中,—PFASs 的水-沉积物的分配系数,L·kg −1;—沉积物中PFASs 的含量,μg·kg −1;—水体中PFASs 的含量,μg·L −1;—PFASs 经有机碳校正后的水-沉积物的分配系数,L·kg −1;—沉积物中TOC 的质量分数.2 结果与讨论(Results and discussion)2.1 太浦河表层水体中PFASs 的污染状况与时空变化特征Σ本研究分别在2022年1月份与7月份采集太浦河表层河水并检测,冬、夏季水体中24种目标PFASs 的浓度水平对比和各点位的PFASs 含量见图2和图3. 结果表明,冬季太浦河水体中共检出了20种PFASs ,除3,6-OPFHpA 、4:2FTS 、8:2FTS 和PFEESA 未检出外,其他目标PFASs 检出率在37.5%—100%,说明目标PFASs 在太浦河水体中普遍存在. PFASs 浓度范围在108.67—162.59 ng·L −1,其中PFHxA 和PFOA 的检出浓度较大,平均浓度为22.44 ng·L −1和28.86 ng·L −1,略大于金磊[24]在太浦河流域的调查结果(PFHxA 和PFOA 的平均浓度为18.25 ng·L −1和24.81 ng·L −1),中位数浓度为21.56 ng·L −1和29.26 ng·L −1. 24种目标PFASs中,PFCAs 和PFSAs 的检出率为100%,其他种类的目标PFASs 检出率较小且浓度水平低.726环 境 化 学43 卷图 2 冬、夏季太浦河各点位水体中PFASs 含量对比Fig.2 Comparison of PFASs content in Taipu River in winter and summer图 3 太浦河各点位水体中目标PFASs 的含量变化Fig.3 Changes in the content of target PFASs in water bodies at various points of the Taipu RiverΣ夏季太浦河水体中共检出了21种PFASs ,除3,6-OPFHpA 、4:2FTS 和PFEESA 未检出外,其他目标PFASs 检出率在18.18%—100%. PFASs 浓度范围在114.24—168.62 ng·L −1,其中PFBA 和PFOA 的检出浓度较大,平均浓度为24.92 ng·L −1和28.18 ng·L −1,中位数浓度为24.36 ng·L −1和27.30 ng·L −1. 由图2可以看出,冬、夏两季各点位水体中PFASs 浓度与种类差异较小,没有表现出明显的季节性变化.研究表明,湿沉降是影响河流中PFASs 浓度的一个重要因素[25 − 27],工业生产未能处理的PFASs 随着降3 期张红霞等:太浦河水体和沉积物中24种全氟化合物分布特征727水和地表径流进入周围的水体,会出现湿季(夏季)水体中PFASs 含量、种类高于干季(冬季)的现象.通过查询中国气象局资料发现,太浦河流域2022年1月份的月累积降水量为50—100 mm ,与2022年7月份的数据相同,没有表现出季节性变化特征. 此外,太浦河附近污染源排放较为稳定. 故此次监测结果没有体现出明显差异.ΣΣ由图3可以看出,太浦河各点位水体中PFASs 波动不大,冬季在128 ng·L −1左右,夏季在125 ng·L −1左右,总体低于东太湖水体中PFASs 的含量(176 ng·L −1左右)[28]. 这与太湖流域汇集了来自江苏境内氟化工厂和纺织工业产生的PFASs ,而太浦河附近大型的氟化工厂少有关. 在京杭大运河附近的TPH4和南横港附近的TPH11,水体中PFASs 的总浓度明显高于其他地点的水样. 这两个点位所在河段都是重要的航道,航运活动频繁,船只与码头的防水油脂和保护油漆中的含氟物质会使附近水体中PFASs 突增[29].2.2 沉积物中各PFASs 组分含量和空间分布特征ΣΣ沉积物是持久性有机污染物的一个重要归趋[30],本研究沿太浦河采集了6个点位的沉积物并检测其PFASs 的含量. 除HFPO-DA 、PF4OPeA 、PF5OHxA 、3,6-OPFHpA 、NaDONA 、L-PFBS 、L-PFHpS 、4:2FTS 和PFEESA 外,15种目标PFASs 在太浦河沉积物中都有不同程度的检出,检出率在16.67%—100%,PFASs 在2.36—4.73 ng·g −1(dw ),小于太湖流域沉积物中PFASs 的含量(5.8—35 ng·g −1(dw ))[28].PFUdA 和PFDoA 检出浓度最大,平均浓度为0.78 ng·g −1(dw )和0.52 ng·g −1(dw ),中位数浓度为0.72 ng·L −1(dw )和0.50 ng·L −1(dw ).从各点位沉积物中目标PFASs 的含量变化(图4)可以看出,TPH2和TPH3沉积物中PFASs 的含量较高,其它点位沉积物中PFASs 含量则较少. 调查发现,TPH2和TPH3点位沿岸的纺织业和造纸业发达,而PFASs 在纺织、造纸等领域有着广泛的应用[31 − 32],随着其生产、使用和处置过程,将会有大量的PFASs 进入周围的水环境中,并使得该点位附近沉积物中PFASs 含量增大.图 4 太浦河各点位沉积物中目标PFASs 的含量变化Fig.4 Content changes of target PFASs in sediments at various points of Taipu River2.3 PFASs 在水-沉积物间的分配规律太浦河上游与东太湖相连接,其中PFOA 是太湖中最主要的PFASs [28],本次研究结果也表明太浦河水体中PFOA 浓度最高. 从图5可以看出,除PFOA 外,太浦河表层水体中碳链长度<7的PFASs 含量和检出率明显高于长链PFASs ,短链的PFHxA 、PFBA 和L-PFBS 是水中主要的PFASs ,占比为46.45%,这可能是短链的PFASs 相较于长链PFASs 具有更大的溶解度[33]和更高的迁移率. 水体中检测到浓度最高的PFSAs 是PFBS ,PFOS 对PFASs 的贡献率显著下降,说明《斯德哥尔摩公约》的限制[34]对控制PFOS 的生产排放取得了较好的效果. 而现有的法规也加强了对长链PFASs 的监管,新型的短链PFASs (PFHxA 、PFBA 和L-PFBS )逐渐代替了传统的长链PFASs (PFOA 和PFOS ),并在水环境中被大量检测到[35].728环 境 化 学43 卷图 5 太浦河水体和沉积物中各PFASs 的组成Fig.5 Composition of PFASs in Taipu River water and sediments≥≥Σ长链PFASs 在沉积物中浓度最大,沉积物中长链(依据经济合作与发展组织的准确定义:6个碳原子的PFSAs ,以及7个碳原子的其它PFASs )的PFASs 对PFASs 的贡献率是短链PFASs 的7.76倍,与之前报道的长链PFASs 较短链PFASs 更易吸附在沉积物上一致[36]. 这可能与长链PFASs 化学性质更稳定[37],且水溶性弱有关[38]. 在相同碳链长度情况下,不同官能团的PFASs 在沉积物和水体中分配情况也不相同:沉积物中同碳链长度的PFSAs 浓度普遍大于PFCAs ,与水体中的情况相反,这与Lau 等[38]研究结果一致,说明PFSAs 比PFCAs 更易附着在沉积物上.f oc f oc f oc 影响PFASs 在水环境中分配的因素除了碳链长度外[16],还包括了沉积物中[39]、水的硬度和pH 值[16]. 其中分配作用中起主导作用的是沉积物的有机质与脂肪,它们可作为有机溶剂将水相中溶解度较小的PFASs 萃取到沉积物中,并随着时间推移达到平衡[40]. 本研究选取不同碳链长度的PFCAs 和PFSAs ,研究它们在沉积物和水体间的分配系数lg K d 和lg K oc . 从图6可以看出,PFHxA 、PFHpA 和PFOA 的lg K d 在0.57—1.29,变化趋势较小,但从PFOA 开始到PFUdA ,lg K d 随着碳链长度的增加而呈明显的增长趋势,这与杨洪法等[41]和Wang 等[42]研究结果一致. 与杨洪法等[41]研究得到的PFSAs 的lg K d 随碳链长度增加而增加不同,3种PFSAs 的lg K d 随碳链长度变化趋势不明显,这可能是与沉积物中短链PFSAs 的检出率(67%)低于长链PFSAs 的检出率(100%)有关. 经校正后, 不同PFASs 的lg K oc 变化趋势见图6. 其变化趋势与lg K d 完全一致,除沉积物中存在点位未检出的L-PFPeS 和PFHxSK 外,各PFCAs 和PFSAs 的lg K oc 均比lg K d 高1.69个对数单位. 这表明,在水环境体系中,是影响PFASs 在水体和沉积物中分配情况的重要因素[23]. 除去未检出的情况,相同碳链长度PFCAs 的lg K oc 值均低于PFSAs :PFHxA 比PFHxSK 的lg K oc 值低1个单位左右,PFOA 比 PFOSK 的lg K oc 值低0.8个单位左右,说明PFSAs 较PFCAs 更易吸附在沉积物上.图 6 水环境中10种PFASs 的lg K d 和lg K ocFig.6 Lg K d and lg K oc of 10 PFASs in water environment3 期张红霞等:太浦河水体和沉积物中24种全氟化合物分布特征729730环 境 化 学43 卷2.4 太浦河表层水中PFASs的来源解析太浦河周围水系发达,航运和渔业在发展过程中产生的PFASs将会直接排入周围的水体,除此之外,半挥发态、挥发态的前体物随大气运动以及离子态的PFASs随水流进行远距离输送[11 − 12],都可能是太浦河水环境中PFASs的重要来源. 目前推断水环境中PFASs潜在来源常用的方法是各PFASs间的相关性分析[43],本研究选用1月份水样监测数据进行分析,水体中各PFASs间Spearman相关分析和短/长链的质量分数见图7(a)和图7(b). PFOS与PFHxA呈显著性相关(P<0.01),这与肖少可等研究结论一致[44]. 由图7(a)可知,PFPeA与PFOA、PFHpA、PFHxA、PF4OPeA和PF5OHxA呈显著性正相关(P<0.01),PFHxA与PFOA、6:2FTS、PF4OPeA和PF5OHxA呈显著性正相关(P<0.01),PFHpA与PF5OHxA和PFOA呈显著性正相关(P<0.01),PFOA与PF5OHxA呈显著性正相关(P<0.01),PFUdA 与PFDA呈显著性正相关(P<0.01),PF4OPeA与PF5OHxA呈显著性正相关(P<0.01),说明它们可能具有相同的来源. 还可根据河流方向,不同点位间短/长链的比值,来判断外源输入(短链多)和点源排放(长链多)对水体中PFASs的贡献率[45]. 根据图7(b)可以看出,太浦河水体中短链PFASs与长链PFASs占比相近,且各点变化趋势不大,说明该地区水体中PFASs的来源包括了外源输入和点源排放,且两个来源的贡献值相当.图 7 (a)水体中单个PFASs浓度的Spearman相关系数,(b)水体中短/长链PFASs质量分数Fig.7 (a) Spearman correlation coefficient of single PFASs c oncentration in water, (b) Mass fraction of short / long chainPFASs in water比值法是研究PFASs来源的另一个重要方法,通过分析水样的PFOS/PFOA、PFOA/PFNA和PFHpA/PFOA值来追溯源头. PFOS/PFOA值常用于探讨PFASs的潜在来源,PFOS/PFOA>1说明是PFOS的点源污染,PFOS/PFOA<1则表明是降雨输入[46]. 由图8可知,冬、夏两季各点位PFOS/PFOA值均<1,这与太湖和珠江三角洲地区的研究情况是一致的[47 − 48],说明降雨对太浦河流域PFASs浓度变化的影响较大[46]. 可以根据PFOA/PFNA值来判断PFASs是否来自于大气运输(PFOA/PFNA<7),工厂直排(7<PFOA/PFNA<15)还是前体物降解(PFOA/PFNA>15)[49]. 本研究中PFOA/PFNA值随着季节变化存在很大差异,夏季河体内PFASs主要受到大气远距离传输影响,冬季则与河道周围的工业活动有关.各点位在不同季节的PFHpA/PFOA值均<1,同样说明了太浦河水体中的PFASs与周围工业活动和降雨输入有关[49]. 建议对太浦河中PFASs的污染进行控制,通过加强生产过程和产业排污规范化管理,以减少点源污染.图 8 水样中PFOS/PFOA 、PFOA/PFNA 和PFHpA/PFOA 的比值Fig.8 Ratio of PFOS/PFOA, PFOA/PFNA and PFHpA/PFOA in water samples3 结论(Conclusion)ΣΣ(1)太浦河流域11个点位水体中目标PFASs 普遍检出,PFASs 在114.24—168.62 ng·L −1. 其中PFBA 和PFOA 的检出浓度较大,平均浓度为24.92 ng·L −1和28.18 ng·L −1. 太浦河各点位水体中PFASs 的波动不大,仅在水运发达的点位出现PFASs 突增的情况,且该流域PFASs 季节性规律并不明显.Σ(2)太浦河流域沉积物中目标PFASs 检出的种类较少,检出率和检出浓度较低. 有15种PFASs 被检出,PFASs 在2.36—4.73 ng·g −1(dw ). PFUdA 和PFDoA 检出浓度最大,平均浓度为0.78 ng·g −1(dw )和0.52 ng·g −1(dw ). 沉积物中PFASs 的含量与周围工业发展有关.f oc (3)碳链长度、PFASs 官能团结构和是影响PFASs 在水-沉积物分配的重要因素. 长链PFASs 较短链PFASs 更易吸附在沉积物中,PFCAs 的lg K d 和lg K oc 随着碳链长度的增加而呈明显的增长趋势,在相同碳链长度情况下,PFSAs 较PFCAs 在沉积物中分配系数更大.(4)对水体中各PFASs 间Spearman 相关分析得出,多种PFASs 间呈显著性正相关,它们可能具有相同的来源. 不同点位间短/长链PFASs 的比值相近,说明该地区水体的PFASs 的来源包括了外源输入和点源排放,且两个来源的贡献值相当. 通过PFOS/PFOA 、PFOA/PFNA 和PFHpA/PFOA 值分析发现,降雨与工业活动是造成太浦河流域PFASs 污染的主要因素,夏季河体内PFASs 主要受到大气远距离传输的影响,冬季则与河道周围的工业活动有关.参考文献(References)GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J ]. Environmental Science & Technology, 2001,35(7): 1339-1342.[ 1 ]张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展 [J ]. 生态毒理学报, 2019, 14(3): 30-53.ZHANG M, LOU Q T, SHAO Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment [J ].Asian Journal of Ecotoxicology, 2019, 14(3): 30-53(in Chinese ).[ 2 ]AHRENS L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate [J ]. Journal ofEnvironmental Monitoring, 2011, 13(1): 20-31.[ 3 ]DREYER A, WEINBERG I, TEMME C, et al. Polyfluorinated compounds in the atmosphere of the Atlantic and Southern Oceans:Evidence for a global distribution [J ]. Environmental Science & Technology, 2009, 43(17): 6507-6514.[ 4 ]KIM E J, PARK Y M, PARK J E, et al. Distributions of new stockholm convention POPs in soils across South Korea [J ]. Science ofthe Total Environment, 2014, 476/477: 327-335.[ 5 ]LI F S. Perfluorinated compounds in Haihe River and Dagu drainage canal in Tianjin, China [J ]. Chemosphere, 2011, 84(2): 265-271.[ 6 ]赵永辉, 王以燕, 李富根. 欧盟高度关注物质名单 [J ]. 世界农药, 2014, 36(5): 37-42.ZHAO Y H, WANG Y Y, LI F G. Candidate list of substances of very high concern for authorization in EU [J ]. World Pesticides,[ 7 ]3 期张红霞等:太浦河水体和沉积物中24种全氟化合物分布特征731732环 境 化 学43 卷2014, 36(5): 37-42(in Chinese).[ 8 ]WANG T, WANG Y W, LIAO C Y, et al. Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants [J]. Environmental Science & Technology, 2009, 43(14): 5171-5175.[ 9 ]RITTER S K. Fluorochemicals go short [J]. Chemical & Engineering News Archive, 2010, 88(5): 12-17.SUN M, AREVALO E, STRYNAR M, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants [10]in the Cape Fear River watershed of North Carolina [J]. Environmental Science & Technology Letters, 2016, 3(12): 415-419.[11]ELLIS D A, MARTIN J W, SILVA A O, et al. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids [J]. Environmental Science & Technology, 2004, 38(12): 3316-3321.ARMITAGE J, COUSINS I T, BUCK R C, et al. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct [12]sources [J]. Environmental Science & Technology, 2006, 40(22): 6969-6975.[13]PREVEDOUROS K, COUSINS I T, BUCK R C, et al. Sources, fate and transport of perfluorocarboxylates [J]. Environmental Science & Technology, 2006, 40: 32-44.[14]程铭, 张波, 何义亮, 等. 太浦河金泽水源地抗生素抗性基因赋存特征 [J]. 环境化学, 2019, 38(11): 2405-2414.CHENG M, ZHANG B, HE Y L, et al. Occurrence and distribution of antibiotic resistance genes in Jinze Reservoir and surrounding area of Taipu River [J]. Environmental Chemistry, 2019, 38(11): 2405-2414(in Chinese).孙晓宇, 杨雾晨, 唐晓迪, 等. 太浦河流域锑污染环境风险评估 [J]. 环境保护科学, 2017, 43(3): 120-124.[15]SUN X Y, YANG W C, TANG X D, et al. Environmental risk assessment of antimony pollution in Taipu River Basin [J].Environmental Protection Science, 2017, 43(3): 120-124(in Chinese).[16]HIGGINS C P, LUTHY R G. Sorption of perfluorinated surfactants on sediments [J]. Environmental Science & Technology, 2006, 40(23): 7251-7256.[17]赵振国. 吸附作用应用原理 [J]. 热能动力工程, 2005, 20(6): 631.ZHAO Z G. Application principle of adsorption [J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(6): 631(in Chinese).[18]ZHAO L X, ZHU L Y, YANG L P, et al. Distribution and desorption of perfluorinated compounds in fractionated sediments [J].Chemosphere, 2012, 88(11): 1390-1397.[19]YOU C, JIA C X, PAN G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface [J]. Environmental Pollution, 2010, 158(5): 1343-1347.[20]ZHANG Y, MENG W, GUO C S, et al. Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China [J]. Chemosphere, 2012, 88(11): 1292-1299.刘晓雷, 刘婕, 郭睿, 等. 超高效液相色谱-串联质谱法测定表层水中全氟及多氟化合物 [J]. 分析化学, 2018, 46(9): 1400-[21]1407.LIU X L, LIU J, GUO R, et al. Ultra performance liquid chromatography-tandem mass spectrometry for determination of per-and polyfluorinated compounds in surface water [J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1400-1407(in Chinese).[22]SHI Y L, PAN Y Y, WANG J M, et al. Distribution of perfluorinated compounds in water, sediment, biota and floating plants in Baiyangdian Lake, China [J]. Journal of Environmental Monitoring:JEM, 2012, 14(2): 636-642.AHRENS L, TANIYASU S, YEUNG L W Y, et al. Distribution of polyfluoroalkyl compounds in water, suspended particulate matter [23]and sediment from Tokyo Bay, Japan [J]. Chemosphere, 2010, 79(3): 266-272.金磊. 黄浦江上游太浦河水源水体中全氟化合物赋存特征及风险评价 [J]. 净水技术, 2021, 40(1): 54-59.[24]JIN L. Risk assessment and occurrence characteristics of PFCs in water body of Taipu water source in upstream of Huangpu River [J].Water Purification Technology, 2021, 40(1): 54-59(in Chinese).[25]ZHAO L J, ZHOU M, ZHANG T, et al. Polyfluorinated and perfluorinated chemicals in precipitation and runoff from cities across eastern and central China [J]. Archives of Environmental Contamination and Toxicology, 2013, 64(2): 198-207.LIU W, JIN Y H, QUAN X, et al. Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China [J]. Environment [26]International, 2009, 35(4): 737-742.[27]TANIYASU S, YAMASHITA N, MOON H B, et al. Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances? [J]. Environment International, 2013, 55: 25-32.[28]PAN G, ZHOU Q, LUAN X, et al. Distribution of perfluorinated compounds in Lake Taihu (China): Impact to human health and water standards [J]. Science of the Total Environment, 2014, 487: 778-784.[29]PAUL A G, JONES K C, SWEETMAN A J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate [J]. Environmental Science & Technology, 2009, 43(2): 386-392.[30]CHAPMAN P M, POWER E A, DEXTER R N, et al. Evaluation of effects associated with an oil platform, using the sediment quality triad [J]. Environmental Toxicology and Chemistry, 1991, 10(3): 407-424.[31]KISSA E. Fluorinated surfactants: Synthesis, properties, applications[M]. M. Dekker, 1994.。
Chinese JIAOLONG’s First Scientific Cruise in 2013LI Xiang-yang 1,LIU Feng2,HU Zhe n3,ZHOU Huai-yang 4,WANG Chun-sheng 5,CHE N Cun-ben 6(1.C hina Ocean Mineral R esources R&D Association(C OM RA),B eijing10083,C hina;2.C hina National DeepSea C enter,Qingdao266061,C hina;3.C hina Ship S cientific R esearch C enter,Wuxi214082,China;4.TongjiUniversity,S hanghai200092,C hina;5.The S econd Institute of Oceanography,State Oceanic Administration,Hangzhou310012,C hina;6.Northsea B ranch of State Oceanic Administration,Qingdao266000,China)A b s tr a c t:A f te r the successful sea tria l in Maria na Tre nch last year,JIAOLONG conducte d its m a id-en s c i e nti f i c c ruis e f rom Jun e 10th to S e pt20th,2013.Th e c ruis e w a s c ompos e d o f thr ee l e gs in South Chin a S e a,Cl a rion-Clipp e rton Fr ac tur e Zon e o f North ea st P ac i f i c a nd c ob a lt-ri c h c rust s ea mounts of Northw e st P ac i f i c r e sp ec tiv e ly.This p a p e r will m a inly pr e s e nt JIAOLONG’s positioning syst e m s ea tria l results,the sam pling in dives a nd pre limina ry sc ie nti f i c re sults a t two sites of South China Sea,f our site s of Cla rion-Clippe rton Frac tur e Zone and two coba lt-ric h crust seam ounts of NorthwestPac i f ic.The a dvanta ges of JIAOLONG on the i n-situ sam pling ar e shown well.K e y wo rd s:JI A OLONG;s ubmersible; s eep;s eamoun t; Clarion-Clipperton Fracture Zon eCLC number: P74D ocumen t cod e:A doi: 10.3969/j.issn.1007-7294.2014.03.0121 I n t r oduc t ionJIAOLONG conducte d her maiden cruise f rom June10th to September20th,2013a f ter the success f ul sea trial in Mariana Trenc h where the submersible dive d to a depth o f7062m in June,2012[1-3].The whole cruise o f2013was compose d o f three legs respective ly,the f irst in South China Sea emphasized on the positioning system sea tria l,the geology and environment survey at a cold seep site and a seamount(see Fig.1),the second in Clarion-C lipperton Frac-ture Zone o f Northeast Paci f ic(see Fig.2)on the resources,biodiversity and environment sur- vey,and the third in cobalt-r ic h crust seamounts o f North w est Pac i f ic(see Fig.3)on the re- sources,biodiversity and environme nt survey.The pa per w ill give a brie f summa ry o f JIAO- LONG’s positioning system sea trial and will mainly f ocus on the21dives made in di ff ere nt areas,some pre limina ry scienti f ic results are obtaine d.2 JI AOLONG’s posi t ioning sys t em se a t r i a lThe South China Sea leg,the f irst leg o f2013cruise,is mostly targeted to test the under-Re ce ive d da t e:2014-01-13Foundation item:S ponsored by C hina Ocean Mineral R esources S urvey&Developm ent Program Biography:LI Xiang-yang(1978-),m ale,P h.D.,senior engineer of COMR A,E-m ail:lixy@com ;LIU F eng(1962-),m ale,researcher of C NDSC.w ater positioning systems,which inc ludes the Ultra-Short Base Line(USBL)positioning sys- tem and the ne wly-insta lle d Long Base Line(LBL)positioning system.On June12-20, 2013,the USBL-Box software was upda ted,and some interior parame- ters of USBL-Box software were modified.After testing,the data validity of USBL raise d from 45%-80%to above95%.The inclined dista nce error of USBL positioning is calcula ted0.41%. USBL in each dive o f the f irst leg w as tracke d to the submersible position o f descending,bottom sampling and ascending.The positioning results of USBL in Dive60is shown in Fig.4,the da- ta validity is above85%.Fig.1JIAOLONG’s surv e y a re a s in South Chin a S eaFour transponders,positione d and de pth-me asure d by USBL,are laid on the flat seabe d of the adjace nt JIAOLONG Seamount na me d by the cruise team in the South China Sea.The repeatability,continuity and accuracy are tested in Dive57.The variance of positioning in still status is calculated2cm and w ell-r epeatedly,the root mean square error o f positioning original trac k and smoothed positioning trac k in sailing status is calcula te d1.3meters,and the conti-nuity is validate d(see Fig.5).It is proven that the LBL system is satisfied with the tec hnical specifications a nd ca n support the submersible positioning accurately in the application dives.Fig.2JIAOLONG’s surv e y a re a s in Cl a rion-Cl ipp e rton Fra c ture Zon e o f North ea st Pa c i f i c3 JIAOLONG’s dives3.1First legIn the first leg,two diving locations w e re carefully selec te d ba se d on geological di ff er- ences,a cold seep na med as JIAOLONG Seep No.1(22°07′N,119°17′E)by the cruise team, and a small but rather steep seamount named as JIAOLONG Seamount(17°35′N,117°47′E). Six dives w e re conducted at the JIAOLONG See p No.1,w hile four dives at the JIAOLONG Seamount.The cruising paths of total ten dives are shown in Fig.1,geological and biological samples were obtaine d(See Tab.1),and the samples and the underwater pic tures take n during the dives and are shown in Fig.6.Fig.3JIAOLONG’s survey a reas in cobalt-rich crust seam ounts of Northwest Pac ificFig.4The results of USBL positioning in Dive60Fig.5 Contrast of LBL and USBL positioning resultsMussels and porcelain crabs Porcelain crab MusselsSponges Spider crab Sea cucumbers and coralCarbonate rock with chimne Carbonate rock with mussels Nodules and sedimentFig.6 Samples and pictures taken during the first legAt the top o f the cold see p site,sea li f e community o f a bout40×40square meters w ith abunda nce of different fauna was recorde d and sample d in the province.A small area in the neighbouring was disc overe d with‘bamboo shoots sha ped’sponges of about half meter grown with an interval of about5-10 meters on the sedime nt bed.3.2Second legThe second leg loca ted in the Clarion-Clipperton Fracture Zone is targete d to conduc t sea be d vide o profiling and sampling to evalua te the resource abunda nce by calc ula ting the nodule coverage in a designa ted Poly-metallic Nodules Exploration Contract Area of China Ocea n Mineral Resources R&D Association(COMRA PLOT),and to assess the biological and environmental distribution.Four typica l sites in different ge ological formations were carefully selected as diving locations.It was serious to fulfil COMRA’s obligation under the Exploration Contract with Interna tional Seabe d Authority(ISA).Meanwhile,comparison of megafauna dis- tribution was made to evaluate the environmental impacts on the benthos community when dee p sea mining operation occ urs.The diving cruising trac ks are shown in Fig.2.S ea c u c umb e rs S ea st a rsBrittl e st a r Spong e s S ea a n e mon eCora l Octopus Shrim p XenophyophoreFig.7M a in sp ec i e s o f d ee p-s ea m e g a f a un a in COMRA PLOTIn COMRA PLOT,three dives(Nos.63,64and65)were ma de emphasized on the nodule abundance evaluation and biodiversity at a designated survey plot,including a dive climbing a little hill,a dive cruising over the pla in seabe d and a dive climbing a small cliff.Videos,pic- tures,biological and geological samples w ere taken along the tracks.The other three dives were carrie d out in the WEIYUAN seamount in COMRA PLOT,the area of Partic ular Environmen- tal Interest(PEI)of ISA and the vicinity to the west of PEI.The performance in dives is liste din Tab.1,the megafauna pictures ta ke n underwater in COMRA PLOT are shown in Fig.7.Fig.8M a in sp ec i e s o f d ee p-s ea m e g a f a un a on CAIWE I Se a mount(A:Spong e a nd s ea st a rs;B:Spong e;C:Spong e,Cor a ls a nd Shrimp;D:Spong e a nd s ea lily;E:Spong e a nd Shrim p;F:Spong e;G\H:Se a a n e mon e s;I:Cora ls on th e Ro c ks;J:Cora ls a nd s ea st a rs)3.3Third legCAIWEI and CAIQI seamount in the COMRA cobalt-rich crust contract application area w ere selected in the third leg.Three dives w ere pro f ile d along the northeast hillside o f CAIWEISt.,and the distribution of cobalt ric h crust and biodiversity were recorde d and sampled.The other two dives were made individually in the west hillside of CAIWEI St.and south hillside o f CAIQI St..The similar tasks are conducte d simulta ne ously.The bottom cruising pa ths are shown in Fig.3.The diving performa nce is liste d in Tab.1and the pictures of typical c reatures on the CAIWEI St.are shown in Fig.8.Tab.1 All dive results in2013Dive Loc.&No.Max.depth(m)Dive perform ance Samples collectedEngineering dive:F unction verification.LBLJIAOLONG S eepNo.153JIAOLONG S eepNo.154JIAOLONG S eepNo.155JIAOLONG S eepNo.156JIAOLONG Seamount57JIAOLONG Seamount58JIAOLONG Seamount59JIAOLONG Seamount60JIAOLONG S eepNo.161150913261326135039063573361637441371testing,climbing350m high,clim bing dist-ance2000m,cold seep biological and ge-ological sam plingScientific Dive:First Chinese scientist diving.LBL verification,bathym etric m apping,clim-bing200m high,dive m ark deploying,videorecording,seep biological and geological sa-mplingScientific Dive:First HongKong scientist di-ving.Cruising and video recording,dive m arkdeploying,seep biological and geological sa-mplingScientific Dive:First fem ale scientist diving.Cruising and video recording,B athym etricm appingEngineering Dive:Cruising with a constantheight,constant spe ed,constant direction,video recording,biological and geologicalsam pling,LBL verifyingScientific Dive:Clim bing the cliff of300m,recording of volcano rock,ferrom anganesenodule and abysm al anim al,sedim ent sam-pling,bathym etric m apping,S cientific Dive:C ruising,recording in thevolcano vent,biological and geological sa-mplingScientific Dive:CCTV fem ale journalist dive.Cruising,recording at a sm all hill in the northof the JIAOLONG seam ount,biological andgeological sam plingScientific Dive:Cruising and video recording,seep biological and geological sam pling,se-abed therm al probe m easuring4pieces of chim ney-s hapedcarbonate rocks with m usselsadhered;15m usselsCarbonate rocks with m usselsand sponges adhered;62m u-ssels;16porcelain crabs;7capmussels4pushcorers of sedim ent;1kgcarbonate rocks;80m ussels;26porcelain crabs;1sponge;1spider crab;1coral;2shr-im ps;1polychaete1pushcorer of sedim ent1pushcorer of sedim ent;8ferrom anganese nodules1purple sea cucum ber;1redsea cucum ber;1white sea c-ucum ber;1sponge;1bryozo-an;10shrim ps;1lily1purple sea cucum ber;1redsea cucum ber;1sponge2pieces carbonate rock;2p-ushcorers of sedim ents;16p-orcelain crabs;68m ussels;1coral;1shrim p;2sea lily;10cap shells;1polychaetes wormcontinu e Tab.1 Dive Loc.&No.Max.depth(m)Dive perform ance Sam ples collectedJIAOLONG S eepNo.162COMR APLOT63COMR APLOT64COMR APLOT65WEIYUANSt.66P EI67WES T TOP EI68Northeast of CAIWEI St.69Northeast of CAIWEI St.70129152685268527249305226512245782722Scientific Dive:C ruising and video recording,operation in the sponge areaEngineering Dive:C ruising and seabed ob-serving,bathym etric m apping,video recor-ding,pictures taking,shearing stress mea-suringScientific Dive:Cruising and seabed observing,video recording and picture taking,dive m arkdeploying,biological and geological samplingScientific Dive:Cruising and seabed observing,video recording and picture taking,biologicaland geological samplingScientific Dive:Climbing540m high,videorecording and picture taking,biological andgeological samplingScientific Dive:C ruising and seabed obser v-ing,video recording and picture taking,basketlost during deployingScientific Dive:Cruising and seabed observing,video recording and picture taking,biologicaland geological samplingScientific Dive:Clim bing420m high and s e-abed observing,video recording and picturetaking,biological and geological sam plingS cientific Dive:C limbing830m high andseabed observing,video recording and p ic-ture taking,biological and geological sam-pling,bottom water sam pling,bathym etricm appingNoneNone11m egafauna,6pushcorers ofsedim ent,5pieces of basalt,10nodules5m egafauna,4push corers ofsedim ent5m egafauna,4pushcorers ofsedim ent,12pieces of rocksfrom the seam ountNone8m egafauna,2pushcorers ofsedim ent,5pieces of nodules1m egafauna,2pushcorers ofsedim ent,4pieces of rocks,1piece of cobalt-r ich crust9megafauna,8L bottom water,9pieces of rocks,9piece ofcobalt-r ich crust,1piece ofrocksNortheast of CAIWEI St.712008S cientific Dive:C limbing600m high andseabed observing,video recording and p ic-ture taking,biological and geological sam-pling,bottom water sam pling,bathym etricm apping5m egafauna,1push-corer ofsedim ent,8L bottom water,1piece of rockWest of CAIWEI St.72South of CAIQI St.7327742418Scientific Dive:Bottom cruising,video r ec-ording and picture taking,biological and g-eological sampling,bottom water sam plingS cientific Dive:B ottom cruising,videorecording and picture taking,biologicaland geological sampling,bottom water sa-m pling8L bottom water,11piecesof basalts and phosphates,2p ush-cor ers of sedim ent,12m egafauna8L bottom water,6pieces ofcobalt-r ich crust,10mega-fauna4 Preliminary results4.1In South China SeaThrough6dives at the JIAOLONG Seep No.1,an active cold seep scattered in a direction2of NWW with the water de pth of about1120m and an area of about2000m was precisely ide ntified.It was found tha t a musse l and porcelain crab dominated life community flourishe d on the carbonate rocks w ith the exude d methane f rom a geological cranny as their nourishment. It w as also f ound that an array o f‘bamboo shoots shaped’sponges lies in a vicinity slope.It is shown that the species and biodiversity in the vicinity o f the JIAOLONG St.are much ric her than those on the sedime nts of the dee p sea basin.On the sediment be d of the volcanic vent lie a bundance of polymetallic nodules.The fresh rock samples take n during the dives may provide an opportunity to fulfill the targe ts set in‘The South China Sea Deep’.4.2In Clario n-Cl i pperton fracture zoneOn detaile d investigation to the different geological formations suc h as a plain in COM- RA PLOT,WEIYUAN seamount,the area of PEI a nd the west vicinity to PEI,the comparison shows tha t the spec ies composition of the different sites is essentially the same and megafauna are confirme d with geologicals broa d distribution.At the same time,the abunda nce varied dis- tinctly in a small geological scale.Evidence shows that benthos on a hill is higher tha n that in a vicinity basin.Video and pic tures show tha t its abundance and species are similar to those of the basin although the me gafauna abundance on WEIYUAN seamount is not as high as that on the hill of COMRA PLOT.Therefore,it is suggeste d tha t seamounts,seamounts chains or neighboring areas unfavorable for mining could be set as environmental preservation reference zone.In-situ investigation shows tha t about50%of nodule coverage is comparatively stable in the plain in COMRA PLOT.Besides,the coverage in the dee p flat basin is slightly lower than tha t on the slope of the hillside.Topography varies dramatically with se veral te ns of meter cliffs rising abruptly in a small scale.Therefore,high resolution mapping is very necessary before mining operation.4.3In Cobal t-ri ch Ferromanganese crus t s eamount sIn CAIWEI St.,distinct geological phe nomena indica te that the east sa nd wave de duc e d from the stronger bottom curre nt in east side,while the bottom c urre nt is very weak in the w est side.The east cobalt-ric h ferroma nga ne se crust grows w e ll,thic k a nd pla nk-sha pe d in the depth o f2500m to the peak,w hile the w est covered large scale sediments w ith rare thick crust in the de pth of2750m to2100m.The rocks surfaced a thin crust are mainly phosphate in- dicating a phospha ted phase.The bottom megafauna distribution in the east side a nd the west side of CAIWEI St sho w s differe nce in the geological formation and bottom curre nt.In west side,a high megafauna bio- diversity is found where the species include not only the creatures suc h as sponges,corals andso on,but also the sedime nt-eating creatures such as sea cucumbers.However,the abunda nce in w est side is low,the dominative species are not f ound and the species w ith higher abunda nce are corals,sponges,fishes and sea cuc umbers.In east side,the megafauna abunda nce is high- er than that in west side,whose dominative species include cold corals,sponges and sea lilies. The seamount creature shows zonal distribution as well as the land mountain.In east,the rich- est cold corals live in the de pth o f2350-2250m,the sponges and sea lilie s live mainly in upper2250m,the fishes and shrimps dominate d on the top,and the starfishes appea r in the each de pth.In the south slope of CAIQI St.,sediment in the de pth of2418-1800m is rarely found, but sand waves are distinc t on the sediment which indicate d the bottom curre nt is relatively strong.The diverse and abunda nt sponges dominate in the species,especially the high abun- da nce community of sponges in the de pth of2150-1 800m.5ConclusionJIAOLONG’s stability,maneuvera bility,capability and positioning ability were very well demonstrate d during the dives in the first South China Sea leg.Some preliminary scientific re- sults base d on the initia l report are obtaine d firstly.With scientist in-situ, JIAOLONG’s great adva ntages over the other dee p sea facilities have bee n fully reveale d in the seabed investiga- tion.In the future,JIAOLONG will pla y more important roles in the dee p sea scie ntific explo- ration and other applications.AcknowledgementTha nks for funding support from COMRA to the whole cruise.Disc overies and recogni- tions discussed in this paper are the crystallization of wisdom from the JIAOLONG team and cruise scie ntists of different spec iality.We w ould like to show spec ial tha nks to Prof.Teng Zuwen,Pilots Ye Cong,Fu Wentao and Tang Jialing who ha ve ma de great contribution to the success of the cruise.Thanks also given to Dr.Yang Yaomin and Zhu Puqiang who is an eli- tist in illustration drawings.References[1]C ui W C,Liu F,Hu Zh.On7,000m sea trials of the M anned S ubm ersible JIAOLONG[J].M arine Technology SocietyJournal,2013,47(1): 67-81.[2]Liu F,Cui W C,Li X Y.C hina’s first deep m anned subm ersible,JIAOLONG[J].S cience China:Earth S ciences.2010,53:1407-1410.[3]Li X Y,Liu F.Developm ent of m anned subm ersible JIAOLONG and organization of its sea trials[J].Journal of C entralSouth University(S cience and Technology),2011,42(2):10-12.2013 年蛟龙号首个试验性应用航次李向阳1,刘峰2,胡震3,周怀阳4,王春生5,陈存本6(1中国大洋矿产资源研究开发协会,北京100083;2国家深海基地管理中心,山东青岛266061;3中国船舶科学研究中心,江苏无锡214082;4同济大学,上海200092;5国家海洋局第二海洋研究所,杭州;6国家海洋局北海分局,山东青岛,266000)摘要:蛟龙号载人潜水器于2012年在马里亚纳海沟完成了7000m级海上试验,2013年6月10日至9月20日,蛟龙号载人潜水器分别在中国南海、东北太平洋克拉里昂—克里伯顿断裂区、西北太平洋富钴结壳海山区开展了三个航段的首次科学应用航次。
Flow Cytometry:From Basic Concept To Advanced Sorting2013. 07. 26㈜파멥신/ 한국화학연구원김중규Contents1. Basic Introduction and Application of Flow Cytometry2. Choosing Antibody, Compensation, and Controls3. Sorting4-1. Basic principles of cell sorting4-2. Advanced understanding of sorting4-3. Sample prep and other things influencing sorting02004006008001000 FSCSheathSampleSheathSampleSamplepressure low, small core stream. Good for DNA analysis High sample pressure, broader core stream.Bad for DNA analysisLOW HIGHHydrodynamic focussing in the cuvette (fluidics)Using Multi-Laser: Time delay mattersExamples of optical filters in flow cytometry460 500 540500 LP500/50460 500 540500 SP 460 500 540Long pass(LP)Short pass(SP)Band pass(BP)ElectronicsLaserLaserLaserTimeV o l t a g eTimeV o l t a g eTimeV o l t a g eTimeSSCTime FSCTime FL1Time FL2TimeFL3Voltage PulseTime FL4Pulse AreaP u l s e H e i g h tPulse WidthPulse analysisData processingP EFITCS S CFSC A P CPerCP-Cy5.5Application of Flow Cytometry✓Surface phenotyping: Ab against cell surface Ag, MHC tetramer etc ✓Staining of intracellular protein after cell permeabilization✓ICS (intracellular cytokine staining) with brefeldin A/monensin✓Detection of phosphorylated protein✓Cell proliferation(CFSE, BrdU etc)✓Analysis of intracellular ion concentration✓Analysis of reduction/oxidation (redox) potential✓Cell cycle analysis (by using DNA-binding dye)✓Apoptosis analysis (annexin V, TUNEL etc)✓Cytokine secretion assay (& subsequent isolation)✓CBA (cytometric bead array) -Multiplex proteins assay✓SortingWestern vs Flow CytometryIn the case of therapeutic Ab development, why we need flow cytometry?mRNA and IHC info shows different results,and not compatible with FACS data (ex. MDA-MB-231)!From Broad-Novartis Cancer Cell Line Encyclopedia (CCLE)0.0001.0002.0003.0004.0005.0006.0007.0008.000KDRDLL4Notch1EGFRKDR DLL4Notch1EGFRU87MG_CNS 5.067 6.380 5.556 7.312MDAMB231_BREAST 4.633 6.131 6.055 7.642MCF7_BREAST 4.114 6.178 6.159 5.543COLO205_COLON 4.106 7.455 7.138 6.136A549_LUNG 4.052 6.410 5.616 7.357HUVEC MDA.MB.231Notch1KDREGFRNotch1hIgGTanibirumabIsotypeEGFRDLL4Notch1Contents1. Basic Introduction and Application of Flow Cytometry2. Choosing Antibody, Compensation, and Controls3. Sorting4-1. Basic principles of cell sorting4-2. Advanced understanding of sorting4-3. Sample prep and other things influencing sortingThree Categories for Antigens1. Primary Ags: On/Off (e.g. CD3, CD4, CD8, CD14, CD19,CD20..)2. Secondary Ags: Continuum (e.g. CD27, CD28, CD45RA/RO, IFN-g, Perforin..)3. Tertiary Ags: low level or low population, (e.g. CD25, Chemokine receptors)or unknown/most important AgBasic rule for Ab combinationBrighter Abs for Tertiary > Secondary > PrimaryBrightness = Resolution SensitivityStain Index = D / WWhere D = difference between positive and negative peak medians W = 2 x rSD(robust standard deviation)Holden Maecker& Joe Trotter, Nature Methods5, (2008)Let’s think about Ab concentration!You are staining CD4 (100,000/cell) on 1 x 106cells.You are using anti-CD4 Ab at 2ug/ml conc., and the staining volume is 0.1ml How many anti-CD4 antibodies are there for one CD4 molecule?Spillover also affects resolution sensitivity Without CD45 AmCyan:With CD45 AmCyan:CD19 FITCNote that this is only an issue when the two markers (CD45 and CD19) are co-expressed on the same cell population.CompensationTo compensate FITC overlap in FL2Subtract x% of FL1from FL2600700Laser488 nm 500To compensate PE overlap in FL1Subtract x% of FL2from FL1FITC PECompensation -too little,too muchThree categories of controls1. Instrument set-up and validation controls (commercial)2. Gating controls –including FMO(Fluorescence-Minus-One)3. Biological controls –e.g. co-stimulation only•All controls except commercial beads should be treated as same as the experimental samples –e.g. fix/perm, incubation…Use of FMO(Fluorescence Minus One) controlsPerfetto SP, Chattopadhyay PK, Nat Rev Immunol. 2004Contents1. Basic Introduction and Application of Flow Cytometry2. Choosing Antibody, Compensation, and Controls3. Sorting4-1. Basic principles of cell sorting4-2. Advanced understanding of sorting4-3. Sample prep and other things influencing sortingCuvette NozzleWhat is drop delay?CuvettePoint ofanalysisNozzle Drop DelaySort pulse(Drop Charge)Practically important points✓Sort FAST✓Sort PURE✓Sort with a high YIELDANDAND!!Purity –the realityPurity -gating strategy for singlet, live target cells*Mahnke YD, Roederer M, Clin Lab Med., 2007Contents1. Basic Introduction and Application of Flow Cytometry2. Choosing Antibody, Compensation, and Controls3. Sorting4-1. Basic principles of cell sorting4-2. Advanced understanding of sorting4-3. Sample prep and other things influencing sortingWhat can I expect from a sorter ?•Depends on what you want:–Purity–YieldSpeed !!–Count accuracy–ViabilitySorting in short✓Cell sorters cannot sort cells, they sort droplets→They always sort the last attached droplet✓You better make sure the cells of interest are in those droplets →And, if you want purity, that no others are in there✓Catch all of them in the appropriate tube✓Count them correctly✓What you find in your tube is exactly what you asked for →And some cross-contamination if you don’t take carePurity and sort coincidencePurity is also maintained by detecting sort coincidence.Sort coincidence –two or moreparticles are too close togetherto be separated in two individualdropsSort decisions✓ A sort decision must be made for each particle✓The sort decision is based on the sort gate AND sort mask.✓Sort masks can be defined based on the purpose of the sort.✓There is a tradeoff between purity and yield.✓The effect of this tradeoff is dependent on sort speed and the frequency of the cells of interest.1616 Sort Sort1616 Sort SortSummary▪Yield mask to recover cells that would be lost due to position uncertainty▪Purity mask to avoid contamination▪Phase mask for 100% count accuracySpeed–Purity–Yield tradeoffThe purity/yield tradeoff increases in importance with increasing sort speed80.000 Hz 20.000 ev/s 80.000 Hz 80.000 ev/s80.000 Hz 20.000 ev/s 80.000 Hz 80.000 ev/sConflict ResolutionNo.Particles1,00010,00020,00030,000 098%82%67%55%12%16%27%33%20%2%5%10%30%0%1%2%40%0%0%0%50%0%0%0%% 1 particle100898273 Table 1. Probability of having n particles in a drop for four different event rates at a drop frequency of 50 kHzContents1. Basic Introduction and Application of Flow Cytometry2. Choosing Antibody, Compensation, and Controls3. Sorting4-1. Basic principles of cell sorting4-2. Advanced understanding of sorting4-3. Sample prep and other things influencing sortingBasic considerations for Ab staining✓Most Abs bind well at RT or 4o C, for 10-15min.✓In some cases, 37o C more preferable, but be sure that the cells are rather active at this temperature than RT or 4o C✓Chemokines and their receptors –exceptionally sensitive to variations in cell isolation and staining techniques✓Do not ignore the specified/complicated staining protocols for some special cases –they deserve it.But if you want to test, go ahead for your efficiency.Additional considerations for sample preparation ✓Dead cell discrimination necessary-DNA-intercalating dyes (EMA, PI, 7-AAD, DAPI)-Phosphatidylserine-binding reagents (annexin V)-Amine reactive dyes (UViD, ViViD, GrViD, OrViD)✓Qdot and tandem dye(PE-Cy5.5, PE-Cy7, PerCP-Cy5.5…)→be aware of aggregation and decay, respectively!✓Consider specific situation-e.g, CD3 down-regulation upon T-cell stimulation✓Be meticulous! It will eventually save a lot of your time and energy!ReferencesSingle-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Bendall et al. Science. 2011 May 6;332(6030):687-96.Flow cytometry, amped up. Benoist and Hacohen. Science. 2011 May 6;332(6030):677-8A flow cytometry revolution.Doerr A. Nat Methods. 2011 Jul;8(7):531.Optimizing a multicolor immunophenotyping assay.Mahnke and Roederer. Clin Lab Med.2007 Sep;27(3):469-85.2007.Modern flow cytometry: a practical approach. Tung et al. Clin Lab Med 2007 Sep;27(3):453-68.Flow cytometry controls, instrument setup, and the determination of positivity.Maecker and Trotter. 2006. Cytometry A69: 1037.Seventeen-colour flow cytometry: unravelling the immune system.Perfetto et al. 2004. Nat Rev Immunol.Aug;4(8):648-55.Selecting fluorochrome conjugates for maximum sensitivity. Maecker et al. 2004. Cytometry A62: 169.… And various online sites including BD, Stanford, Purdue university, NIH…Thanks! ******************。