公式法--北师大版
- 格式:ppt
- 大小:426.00 KB
- 文档页数:11
北师大版数学八年级下册4.3《公式法》教学设计一. 教材分析北师大版数学八年级下册4.3《公式法》是学生在学习了二元一次方程组的解法、一元二次方程的解法等知识后,进一步学习解决实际问题的一种方法。
公式法作为一种解决实际问题的方法,在代数学中占有重要地位。
本节课通过具体实例,让学生掌握公式法的原理和应用,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的解法、二元一次方程组的解法等知识,具备了一定的数学基础。
但学生在解决实际问题时,往往不能灵活运用所学知识。
因此,在教学过程中,需要关注学生的知识基础,引导学生将所学知识应用于实际问题中。
三. 教学目标1.理解公式法的原理,掌握公式法在解决实际问题中的应用。
2.培养学生运用公式法解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重难点:公式法的原理和应用。
2.难点:如何引导学生将所学知识应用于实际问题中。
五. 教学方法采用“问题驱动”的教学方法,通过具体实例,引导学生发现公式法的原理,再通过练习巩固所学知识,最后运用所学知识解决实际问题。
六. 教学准备1.准备相关实例,用于引导学生发现公式法的原理。
2.准备练习题,用于巩固所学知识。
3.准备实际问题,用于培养学生运用公式法解决实际问题的能力。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决此类问题。
例如:某商店举行打折活动,原价100元的商品打8折,求打折后的价格。
2.呈现(10分钟)呈现实例,引导学生发现公式法的原理。
例如:设商品原价为x元,打折后的价格为y元,根据题意可得:y = 0.8x。
引导学生发现,实际问题中往往存在一定的规律,通过找出规律,可以得到解决实际问题的公式。
3.操练(10分钟)让学生分组讨论,尝试用所学知识解决实际问题。
每组选择一个实际问题,运用公式法进行解决。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)呈现练习题,让学生独立完成。
北师大版数学九年级上册2.3《公式法》教案一. 教材分析《北师大版数学九年级上册2.3《公式法》》这一节主要讲述了一元二次方程的解法——公式法。
通过前面的学习,学生已经掌握了一元二次方程的概念和性质,以及配方法解一元二次方程。
本节课通过公式法解一元二次方程,使学生能够更加深入地理解一元二次方程的解法,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念和性质,以及配方法解一元二次方程。
但部分学生对于公式的理解和运用还不够熟练,需要通过本节课的学习,加强学生对公式法的理解和运用。
三. 教学目标1.让学生掌握一元二次方程的公式法解法。
2.培养学生运用公式法解决实际问题的能力。
3.培养学生合作学习、积极探究的学习态度。
四. 教学重难点1.掌握一元二次方程的公式法解法。
2.运用公式法解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生通过自主学习、合作交流,掌握一元二次方程的公式法解法。
六. 教学准备1.PPT课件2.教学案例七. 教学过程1.导入(5分钟)通过复习一元二次方程的配方法解法,引导学生思考:是否有一元二次方程的通用解法?从而引出本节课的内容——公式法。
2.呈现(10分钟)呈现一元二次方程的公式法解法,引导学生理解公式法的原理。
公式法解一元二次方程的步骤:(1)确定方程的系数a、b、c;(2)计算判别式Δ=b²-4ac;(3)根据公式x=(-b±√Δ)/(2a),求出方程的解。
3.操练(10分钟)让学生分组讨论,运用公式法解一元二次方程。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成练习题,巩固公式法解一元二次方程的方法。
5.拓展(10分钟)引导学生思考:公式法解一元二次方程的应用场景。
让学生举例说明,培养学生的应用能力。
6.小结(5分钟)教师引导学生总结本节课的学习内容,使学生对公式法解一元二次方程有一个清晰的认识。
《公式法》教学设计第2课时一、教学目标1.能够理解并熟练运用完全平方公式分解因式,体会转化思想.2.能够综合运用提公因式法、完全平方公式法分解因式.3.经历通过整式乘法公式(a±b)2=a2±2ab+b2的逆向变形得出公式法因式分解的方法的过程,发展逆向思维和推理能力.4.通过对平方差公式特点的辨析过程,培养观察、理解、概括和应用能力、语言表达能力.二、教学重难点重点:理解并熟练运用平方差公式分解因式.难点:能够综合运用提公因式法、平方差公式法分解因式.三、教学用具多媒体等.四、教学过程设计【探究】教师活动:通过观察具体的式子,体验这些多项式所具有的完全平方式的特征,再对比乘法公式,得到因式分解的完全平方式公式.计算下列各式:(1)(x+2)2= ________ ,(2)(2x+1)2= ________,(3)(x-3)2= ________ ,(4)(3x-1)2= ________,预设:(1)x2+4x+4;(2)4x2+4x+1(3)x2-6x+9;(4)9x2-6x+1根据上面算式填空:(1) x2+4x+4=_____________,(2)4x2+4x+1=_____________,(3)x2-6x+9=_______________,(4)9x2-6x+1=_____________.预设:(1)(x+2)2;(2)(2x+1)2;(3)(x-3)2;(4)(3x-1)2.提问:你有什么发现呢?预设:前四个形如(a±b)2=a2±2ab+b2,是整式的乘法,后两个形如a2±2ab+b2=(a±b)2,是因式分解,而且它们是左右调换的.【归纳】完全平方公式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.通常我们把运用乘法公式进行因式分解的方法叫做公式法.【想一想】能用完全平方公式分解因式的多项式的特点?预设:(1)是三项式(或可以看成三项);(2)有两个同号的数或式的平方;(3)中间是这两个数的积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.凡具备这些特点的三项式,就是完全平方式.【做一做】观察下面的拼图过程,验证完全平方和公式是否正确?预设:a2+2ab+b2=(a+b)2),是正确的.提问:你能验证完全平方差公式吗?以思维导图的形式呈现本节课所讲解的内容: 教科书第103页习题4.5 第2、3、4题.。
北师大版八年级数学下册第四章4.1 因式分解公式法
首先要通过Δ=b2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b2-4ac<0时 x无实数根(初中)
2.当Δ=b2-4ac=0时 x有两个相同的实数根即
x1=x2
3.当Δ=b2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b2-4ac)}/2a
来求得方程的根
公式法就是解一元二次方程的万能方法,就是打开关键之门的钥匙。
我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
用公式法解一元二次方程,要先将方程化为一般形式,确定a,b,c的值,然后再计算判别式的值,当判别式的值为非负数时,进一步代入求根公式,如果判别式的值为负,则一元二次方程无实根。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
微课精讲:
知识点精讲:
图文解析:。