1.3函数的基本性质1.3.1单调性与最大(小)值第一课时函数的单调性学案(含解析)新人教A版必修1
- 格式:doc
- 大小:634.00 KB
- 文档页数:12
1.3函数的基本性质教学设计教案(最终5篇)第一篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;2. 教学重点/难点教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题画出下列函数的图象,并根据图象解答下列问题:1、说出y=f(x)的单调区间,以及在各单调区间上的单调性;2、指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(3)(4)二、新课教学(一)函数最大(小)值定义2)(1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)注意:1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法1)利用二次函数的性质(配方法)求函数的最大(小)值2)利用图象求函数的最大(小)值3)利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1.(教材P30例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为625px的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅馆定价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设为为旅馆一天的客房总收入,元时,住房率为为与房价160相比降低的房价,因此当房价,于是得=150··.由于≤1,可知0≤≤90.的最大值的问题.因此问题转化为:当0≤将≤90时,求的两边同除以一个常数0.75,得1=-2+50x+17600.由于二次函数1在x=25时取得最大值,可知y也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例3.(教材P37例4)求函数解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?在区间[2,6]上的最大值和最小值.课堂小结归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?板书略第二篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.2. 教学重点/难点教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1 随x的增大,y的值有什么变化?2 能否看出函数的最大、最小值?3 函数图象是否具有某种对称性?2.画出下列函数的图象,观察其变化规律: 1.f(x) = x1 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ .2.f(x) = -2x+11 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x21 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .2 在区间____________ 上, f(x)的值随着x的增大而 ________ .二、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1 任取x1,x2∈D,且x12 作差 f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).一、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1任取x1,x2∈D,且x12作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.(教材P34例1)根据函数图象说明函数的单调性.解:(略)巩固练习:课本P38练习第1、2题例2.(教材P34例2)根据函数单调性定义证明函数的单调性.解:(略)巩固练习:1课本P38练习第3题; 2证明函数在(1,+∞)上为增函数.例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间.解:(略)思考:画出反比例函数的图象.1这个函数的定义域是什么?2它在定义域I上的单调性怎样?证明你的结论.说明:本例可利用几何画板、函数图象生成软件等作出函数图象.一、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论二、作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),1求f(0)、f(1)的值;2若f(3)=1,求不等式f(x)+f(x-2)>1的解集.课堂小结1、归纳小结,强化思想2、函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),(1)求f(0)、f(1)的值;(2)若f(3)=1,求不等式f(x)+f(x-2)>1的解集.板书略第三篇:1.3函数的基本性质教学设计1.3 函数的基本性质一、教材分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。
函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。
教学内容:(1) 引入函数单调性的概念。
(2) 讲解函数单调增和单调减的定义。
(3) 举例说明函数单调性的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。
(2) 采用提问法,引导学生思考函数单调性的含义和应用。
教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。
(2) 讲解函数单调增和单调减的定义,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。
(4) 总结函数单调性的应用,如解不等式、求最值等。
1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。
教学内容:(1) 讲解函数单调性的传递性。
(2) 讲解函数单调性的同增异减性质。
(3) 举例说明函数单调性性质的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的性质。
(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。
教学步骤:(1) 讲解函数单调性的传递性,举例说明。
(2) 讲解函数单调性的同增异减性质,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。
(4) 总结函数单调性性质的应用,如解不等式、求最值等。
第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。
教学内容:(1) 讲解导数与函数单调性的关系。
(2) 讲解利用导数判断函数单调性的方法。
(3) 举例说明利用导数判断函数单调性的应用。
教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。
(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。
教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。
(2) 讲解利用导数判断函数单调性的方法,举例说明。
1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。
三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。
3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。
2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。
1.3 函数的基本性质以初中所学过的一次函数f(x)=x和二次函数f(x)=x2的图象引出函数的单调性.通过具体实例感受函数单调性与函数奇偶性的意义,培养学生的识图能力与数形语言转换的能力.函数的简单性质包括函数的单调性与函数的奇偶性.为了说明函数f(x)在某个区间上不是单调增(减)函数,只需在该区间上找到两个值x1、x2,当x1<x2时,有f(x1)≥f(x2)〔或f(x1)≤f(x2)〕成立.函数的单调性是对定义域内某个区间而言的,它反映的是函数的局部性质,函数在某个区间上单调,并不能说明函数在定义域上也单调.让学生体会函数最大(小)值与单调性之间的关系及其几何意义,引导学生通过函数的单调性研究最大(小)值.通过已学过的函数特别是二次函数,进一步理解函数的单调性、最大(小)值及其几何意义.由实例,通过观察图象,抽象出函数奇偶性的定义.在教学中要注意展现出探索过程,引导学生关注函数图象的对称性与函数奇偶性的关系.只要函数的定义域内有一个x值不满足f(-x)=-f(x)〔或f(-x)=f(x)〕,这个函数就不是奇(偶)函数;或只要函数图象上有一个点不满足“关于原点(或y轴)的对称点都在函数的图象上,”这个函数就不是奇(偶)函数.1.3.1 单调性与最大(小)值(1)从容说课函数的单调性是函数的一个重要性质,在比较几个数大小、对函数作定性分析(求函数的值域、最值,求函数解析式中参数的范围、绘函数的图象)以及与不等式等其他知识的综合应用上都有广泛的应用;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学.学生对于函数的单调性早已有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,授课时需加强对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.由于学生只学过一次函数、正反比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数.从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中需加强.在本节课的教学中以函数的单调性的概念为线,它始终贯穿于整个课堂教学过程.对单调性概念的深入而正确的理解往往是学生认知过程中的难点,因此在课堂上突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用;利用函数的单调性的定义证明具体函数的单调性又是一个难点,使用函数单调性定义证明是对函数单调性概念的深层理解,给出一定的步骤“作差、变形、定号”是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中比较法的基本思路,现在提出要求,对今后的教学作一定的铺垫.三维目标一、知识与技能1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.启发学生能够发现问题和提出问题,培养学生分析问题、认识问题的能力和创造地解决问题的能力.3.通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识.二、过程与方法1.通过渗透数形结合的数学思想,对学生进行辩证唯物主义的思想教育.2.探究与活动,明白考虑问题要细致,说理要明确.三、情感态度与价值观理性描述生活中的增长、递减现象.教学重点领会函数单调性的实质,明确单调性是一个局部概念.教学难点利用函数单调性的定义证明具体函数的单调性.教具准备多媒体课件(PowerPoint).教学过程一、创设情景,引入新课师:我们在初中已经学习了函数图象的画法.为了研究函数的性质,我们分别画函数y=x2和y=x的图象.y=x2的图象如图(1),y=x的图象如图(2).请同学们观察这两个函数图象,然后指出这两个函数图象有什么特点.(1)(2)生:从函数y=x的图象〔图(2)〕看到:图象由左至右是上升的;从函数y=x2的图象〔图(1)〕看到:图象在y轴的右侧部分是上升的,在y轴的左侧部分是下降的.师:对.他(她)答得很好,这正是这两个函数的主要区别.函数图象的“上升”“下降”反映了函数的一个基本性质——单调性.那么如何描述函数图象的“上升”“下降”呢?生:函数y=x2的图象在y轴的左侧“下降”,也就是说当x在区间(-∞,0)上取值时,随着x的增大,相应的y值反而随着减小;图象在y轴的右侧“上升”也就是说当x在区间[0,+∞)上取值时,随着x的增大,相应的y值也随着增大.师:回答的很好.对于y=f(x)=x2,如果取x1、x2∈[0,+∞),得到y1=f(x1),y2=f(x2),那么当x1<x2时,有y1<y2,这时我们就说函数y=f(x)=x2在[0,+∞)上是增函数.当x在区间(-∞,0)上取值时,随着x的增大,相应的y值反而随着减小,即如果取x1、x2∈(-∞,0),得到y1=f(x1),y2=f(x2),那么当x1<x2时,有y1>y2,这时我们就说函数y=f(x)=x2在(-∞,0)上是减函数.函数的这两个性质,就是今天我们要学习研究的.我们曾经根据具体函数(一次函数、二次函数、正比例函数、反比例函数)的图象研究过函数的函数值随自变量的变大而变大或变小的性质,而这些研究结论是直观地由图象得到的,在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意)〔板书课题:单调性与最大(小)值(1)〕二、讲解新课师:请同学们打开课本第33页,大家集体把增函数、减函数、单调区间的定义朗读一遍.(由学生朗读)师:通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义与我们刚才讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减小.师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻画了函数的单调递增或单调递减的性质,数学语言多么精炼简洁,这就是数学的魅力所在!(通过教师的情绪感染学生,激发学生学习数学的兴趣)师:现在请同学们和我一起来看图(3)、图(4),它们分别是函数y=f1(x)和y=f2(x)的图象,体会这种魅力.(3)(4)(指图说明,并板演)师:图(3)中y=f1(x)对于区间[a,b]上的任意x1、x2,当x1<x2时,都有f1(x1)<f1(x2),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图(4)中y=f2(x)对于区间[a,b]上的任意x1、x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师)生:较大的函数值的函数.师:那么减函数呢?生:在相应区间上较大的自变量对应较小的函数值的函数.(学生可能回答得不完整,教师应指导他说完整)师:好.我们刚刚对增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?(学生思索)学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力.(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示)生:我认为在定义中,有一个词“定义域I 内某个区间D ”是定义中的关键词语.师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.例如,反比例函数y =x1在(-∞,0),(0,+∞)内都是单调递减的,那我们能否说它在定义域上是减函数?生:不能.增函数和减函数都是对定义域内相应的区间而言的,离开了定义域内相应的区间就根本谈不上函数的增减性.师:回答得很到位.函数的单调性是对定义域内相应的区间而言的,所以要受到区间的限制,在不同的区间上增减性是不一样的.请大家继续思考一个问题,我们能否说一个函数在x =5时是递增或递减的?为什么?生:不能.因为此时函数值是一个数.师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化,所以在求单调区间时,若端点在定义域内,包括不包括端点都可以,但要求用闭区间来表示,“能闭则闭”.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?生:不能.比如二次函数y =x 2,在y 轴左侧它是减函数,在y 轴右侧它是增函数.因而我们不能说y =x 2是增函数或是减函数.(在学生回答问题时,教师板演函数y =x 2的图象,从“形”上感知)师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”,这说明函数的单调性是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.师:还有没有其他的关键词语?生:还有定义中的“对于某个区间D 上的任意两个”和“都有”也是关键词语.师:你答的很对.能解释一下为什么吗?(学生不一定能答全,教师应给予必要的提示)师:“对于”是什么意思?生:就是说两个自变量x 1、x 2必须取自给定的区间,不能从其他区间上取.师:如果是闭区间的话,能否取自区间端点?生:可以.师:那么“任意”和“都有”又如何理解?生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x 1<x 2,f (x 1)就必须都小于f (x 2),或f (x 1)都大于f (x 2).师:能不能构造一个反例来说明“任意”呢?(让学生思考片刻)生:可以构造一个反例.考察函数y =x 2,在区间[-2,2]上,如果取两个特定的值x 1=-1,x 2=1,显然x 1<x 2,而f (x 1)=1,f (x 2)=1,有f (x 1)=f (x 2),若由此判定y =x 2是[-2,2]上的减函数,那就错了.师:那么如何来说明“都有”呢?生:y =x 2在[-2,2]上,当x 1=-2,x 2=-1时,有f (x 1)>f (x 2);当x 1=1,x 2=2时,有f (x 1)<f (x 2),这时就不能说y =x 2在[-2,2]上是增函数或减函数.师:好极了!通过分析定义和举反例,我们知道要判断函数y =f (x )在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x 1、x 2,根据它们的函数值f (x 1)和f (x 2)的大小来判定函数的增减性.(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力)师:反过来,如果我们已知f (x )在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小,即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力)例题讲解【例1】 图(5)所示的是定义在闭区间[-5,5]上的函数f (x )的图象,根据图象说出f (x )的单调区间,并回答:在每一个单调区间上,f (x )是增函数还是减函数?(5)生:函数y =f (x )在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y =f (x )的单调减区间;在区间[-2,0],;0,1],[3,5]上是增函数,因此[-2,0],[0,1],[3,5]是函数y =f (x )的单调增区间.师:回答是正确的.但区间[-2,0],[0,1]可以连起来写[-2,1],一般写单调区间遵循“能连则连”原则.生:老师,我有一个问题,[-5,-2]是函数f (x )的单调减区间,那么,是否可认为(-5,-2)也是f (x )的单调减区间呢?师:问得好,这说明你考虑问题很严谨.容易证明:若f (x )在[a ,b ]上单调(增或减),则f (x )在(a ,b )上单调(增或减).反之不然,你能举出反例吗?一般来说,若f (x )在[a ,b ]上单调(增或减),且[a 1,b 1] [a ,b ],则f (x )在[a 1,b 1]上单调(增或减).反之不然.【例2】 物理学中的玻意耳定理p =Vk (k 为正常数)告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大.试用函数的单调性证明之.师:从函数图象上观察函数的单调性固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径(指出用定义证明的必要性).这里由题意,只要证明函数p =Vk 在区间(0,+∞)上是减函数即可.那么,怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较p (V 1)和p (V 2)的大小关系感到无从入手,教师应给以启发)师:对于p (V 1)和p (V 2)我们如何比较它们的大小呢?我们知道对两个实数a 、b ,如果a >b ,那么它们的差a -b 就大于零;如果a =b ,那么它们的差a —b 就等于零;如果a <b ,那么它们的差a -b 就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.生:(板演)设V 1、V 2是定义域(0,+∞)上的任意两个实数,且V 1<V 2,则p (V 1)-p (V 2)=1V k -2V k =k ·2112V V V V . 由V 1、V 2∈(0,+∞),得V 1V 2>0;由V 1<V 2,得V 2-V 1>0.又k >0,于是p (V 1)-p (V 2)>0,即p (V 1)>p (V 2).所以,函数p =Vk ,V ∈(0,+∞)是减函数.也就是说,当体积V 减小时,压强将增大. 师:他的证明思路是清楚的.一开始设V 1、V 2是(0,+∞)内任意两个自变量,并设V 1<V 2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看p (V 1)-p (V 2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注“②→作差,变形”).在这里一定要对变形后的式子说明其符号.应写明“因为V 1、V 2∈(0,+∞),得V 1V 2>0,由V 1<V 2,得V 2-V 1>0.又k >0,于是p (V 1)-p (V 2)>0,即p (V 1)>p (V 2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y =p (V )在给定区间上恒大于零,也可以通过证明当0<V 1<V 2时,)()(21V p V p 大于或小于1来比较p (V 1)与p (V 2)的大小.(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的)【例3】 能说反比例函数f (x )=x k (k >0)在整个定义域内是单调函数吗?并用定义证明你的结论.师:反比例函数f (x )=x k (k >0)定义域是什么? 生:f (x )=xk (k >0)的定义域是(-∞,0)∪(0,+∞). 师:你的结论是什么呢? 生甲:我认为f (x )=x k (k >0)在(-∞,0)以及(0,+∞)上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x 1∈(-∞,0),取x 2∈(0,+∞),x 1<x 2显然成立,而f (x 1)<0,f (x 2)>0,显然有f (x 1)<f (x 2),而不是f (x 1)>f (x 2),因此它不是定义域内的减函数.师:那能否说明f (x )=xk (k >0)是定义域内的增函数呢? 生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.师:经过刚才的讨论,我们知道f (x )=xk (k >0)既不是定义域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)的每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x =0不是定义域中的元素,此时不要写成闭区间.师:下面请左边三行同学证明函数f (x )=x k (k >0)在(-∞,0)上是减函数,右边三行同学证明f (x )=xk (k >0)在(0,+∞)上是减函数. (教师巡视.对学生证明中出现的问题给予点拨.可依据学生的问题,给出下面的提示:(1)分式问题化简方法一般是通分;(2)要说明三个代数式的符号:k ,x 1·x 2,x 2-x 1.要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视)课后请同学们思考若k ≠0,指出函数f (x )=xk 的单调区间. 【例4】 讨论函数f (x )=x 2-2ax +3在(-2,2)内的单调性.解:∵f (x )=x 2-2ax +3=(x -a )2+3-a 2,对称轴x =a ,∴若a ≤-2,则f (x )=x 2-2ax +3在(-2,2)内是增函数;若-2<a <2,则f (x )=x 2-2ax +3在(-2,a )内是减函数,在[a ,2)内是增函数; 若a ≥2,则f (x )=x 2-2ax +3在(-2,2)内是减函数.三、课堂练习教科书P 38练习1,2,3.答案:1.在一定范围内,生产效率随着工人数的增加而提高,当工人数达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率又随着工人数的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.增区间为[8,12],[13,18];减区间为[12,13],[18,20].3.任取x 1、x 2∈R ,且x 1<x 2,因为f (x 1)-f (x 2)=2(x 2-x 1)>0,所以f (x 1)>f (x 2).所以f (x )=-2x +1在R 上是减函数.四、课堂小结师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?(请一个思路清晰、善于表达的学生口述,教师可从中给予提示)生:这节课我们学习了函数单调性的定义,要特别注意定义中“定义域内某个区间”“属于”“任意”“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤:(1)设x 1、x 2是给定区间内的任意两个值,且x 1<x 2;(2)作差f (x 1)-f (x 2),并将此差式变形(要注意变形的程度);(3)判断f (x 1)-f (x 2)的正负(要注意说理的充分性);(4)根据f (x 1)-f (x 2)的符号确定其增减性.五、布置作业课本P 45习题第1,2,3,4,5题.补充:讨论函数f (x )=21x 的单调性.板书设计1.3.1 单调性与最大(小)值(1)增函数:减函数:单调区间:注意点:例1例2例3例4。
函数的基本性质-单调性教案第一章:函数单调性的概念与定义1.1 引入:通过实际例子,让学生感受函数单调性的存在。
1.2 单调性的定义:函数单调递增和单调递减的定义。
1.3 单调性的表示:用符号表示函数的单调性。
1.4 单调性的性质:单调性的一些基本性质,如传递性、复合函数的单调性等。
第二章:函数单调性的判断与证明2.1 单调性的判断方法:通过导数或者图像来判断函数的单调性。
2.2 单调性的证明:利用导数或者定义来证明函数的单调性。
2.3 单调性的应用:利用单调性解决一些实际问题,如最值问题、不等式问题等。
第三章:函数单调性与极值的关系3.1 极值的概念:函数的极大值和极小值的定义。
3.2 极值与单调性的关系:函数在极值点附近的单调性变化。
3.3 利用单调性求极值:通过单调性来确定函数的极值点。
第四章:函数单调性与图像的关系4.1 图像的单调性:函数图像的单调递增和单调递减。
4.2 单调性与图像的交点:函数图像的交点与单调性的关系。
4.3 利用图像判断单调性:通过观察函数图像来判断函数的单调性。
第五章:函数单调性的应用5.1 函数的单调区间:确定函数的单调递增或单调递减区间。
5.2 单调性与函数值的关系:函数值的变化与单调性的关系。
5.3 应用实例:利用单调性解决实际问题,如最大值、最小值问题等。
第六章:单调性在实际问题中的应用6.1 引言:通过实际问题引入单调性的应用。
6.2 单调性在优化问题中的应用:如最短路径问题、最大收益问题等。
6.3 单调性在经济学中的应用:如市场需求、价格调整等。
第七章:函数单调性的进一步探讨7.1 函数的严格单调性:严格单调递增和严格单调递减的定义。
7.2 单调性的不变性:函数单调性在坐标变换下的性质。
7.3 单调性与连续性的关系:连续函数的单调性性质。
第八章:复合函数的单调性8.1 复合函数的定义:两个函数的组合。
8.2 复合函数的单调性:复合函数单调性的判定方法。
1.3.1 单调性与最大(小)值(2)从容说课最值问题是生产、科学研究和日常生活中常遇到的一类特殊的数学问题,是高中数学的一个重点,它涉及到高中数学知识的各个方面,解决这类问题往往需要综合运用各种技能,灵活选择合理的解题途径.本节课利用单调性求函数的最值,目的是让学生知道学习函数的单调性是为了更好地研究函数.利用单调性不仅仅确定函数的值域、最值,更重要的是在实际应用中求解利润、费用的最大与最小,用料、用时的最少,流量、销量的最大,选取的方法最多、最少等问题.三维目标一、知识与技能1.使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用.2.启发学生学会分析问题、认识问题的能力和创造地解决问题的能力.二、过程与方法1.通过渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.2.探究与活动,明白考虑问题要细致,说理要明确.三、情感态度与价值观理性描述生活中的最大(小)、最多(少)等现象.教学重点领会函数最值的实质,明确它是一个整体概念.教学难点利用函数的单调性求最值.教具准备多媒体课件(PowerPoint).教学过程一、创设情景,引入新课师:前面我们学习了函数的单调性,知道了在函数定义域的某个区间上函数值的变化与自变量增大之间的关系,请大家看某市一天24小时内的气温变化图,说出气温随时间变化的特点.生:从图象上看出0时~4时之间气温下降,4时~14时之间气温逐渐上升,14时~24时气温逐渐下降.师:好,请继续回答.某市这一天何时的气温最高和何时的气温最低?生:14时气温达到最高,4时气温达到最低.师:从图象上看出14时的气温为全天的最高气温,它表示在0~24时之间,气温于14时达到最大值,从图象上看出,图象在这一点的位置最高.这就是本节课我们要研究函数的最大、最小值问题.〔点明本节课的内容,并板书课题:单调性与最大(小)值(2)〕二、讲解新课师:上面我们从直观的感受知道了最值的概念,下面给出严格的定义(一起看课件). 一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值,记为y max =f (x 0).师:定义中的两个条件缺一不可,只有(1)没有(2)不存在最大值点,而只有(2)没有(1),M 不一定是函数y =f (x )的最大值.比照最大值的定义,哪位同学说出最小值的定义?生:我们只需把“f (x )≤M ”改为“f (x )≥M ”,然后将最大值改为最小值即可. 师:回答的简洁而正确.(点击课件,读一遍最小值的定义) (1)对于任意的x ∈I ,都有f (x )≥M ;(2)存在x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值,记为y min=f (x 0).师:函数的最大值从图象上看是在指定的区间里最高位置对应的点的纵坐标,好像有一种一览众山小的情景.同样函数的最小值从图象上看是在指定的区间里最低位置对应的点的纵坐标,好像有一种坐井观天的情景.请大家思考,是否每个函数都有最大值、最小值?举例说明.生:一个函数不一定有最值,例如y =x1在定义域内没有最大值也没有最小值. 师:对,有的函数可能只有一个最大(或小)值,例如y =3x +2,x ∈[0,3).如果一个函数存在最值,那么函数的最大值和最小值都是唯一的,但取最值时的自变量可以有多个,如y =x 2,x ∈[-2,2],最大值只有一个为4,而取最大值的x 有两个x =±2. (让学生自己出一些函数题给同桌解,加深对最值的理解)(接下来看函数最值的应用)【例1】 “菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点(大约是在距地面高度25 m 到30 m 处)时爆裂.如果在距地面高度18 m 的地方点火,并且烟花冲出的速度是14.7 m/s.(1)写出烟花距地面的高度与时间之间的关系式.(2)烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1 m ) 方法引导:这是物理中的上抛运动,s =v 0t +21at 2,又v 0与重力加速度g 的方向相反,所以s =v 0t -21gt 2. 解:(1)设烟花在t s 时距地面的高度为h m ,则由物体运动原理可知 h (t )=-4.9t 2+14.7t +18.(2)作出函数h (t )=-4.9t 2+14.7t +18的图象(图略).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t )=-4.9t 2+14.7t +18,我们有:当t =-)9.4(27.14-⨯=1.5时,函数有最大值,h =)9.4(47.1418)9.4(42-⨯-⨯-⨯≈29.于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29 m. 注:(1)此题利用数学模型解决物理问题;(2)需由已知条件先确定函数式;(3)此题实质为已知二次函数,求其定义域上的最大值.三、课堂练习1.求下列函数的最值:(1)y =x 2-2x +3,x ∈R ; (2)y =x 2-2x +3,x ∈[2,5];(3)y =x 2-2x +3,x ∈[-2,0]; (4)y =x 2-2x +3,x ∈[-2,4].让学生讨论、求解,并结合图象说明理由,总结归纳求解这类问题的一般方法.(作图要求:在坐标系内画出y =x 2-2x +3完整的图象,但定义域内的部分用实线画出,其余部分用虚线画出)答案:(1)x =1时,y min =2.(2)x =2时,y min =3;x =5时,y max =18. (3)x =0时,y min =3;x =-2时,y max =11. (4)x =1时,y min =2;x =-2或4时,y max =11.求二次函数在闭区间上最值问题的方法,是弄清对称轴与区间的相互位置、利用图象,结合单调性求解.课后研究:求下列函数的最值: (1)y =x 2-3x +1,x ∈[t ,t +1],t ∈R ; (2)y =x 2-2ax +5,x ∈[-2,3],a ∈R .【例2】 求函数y =12-x 在区间[2,6]上的最大值和最小值. 方法引导:由函数y =12-x (x ∈[2,6])的图象可知,函数y =12-x 在区间[2,6]上递减.所以,函数y =12-x 在区间[2,6]的两个端点上分别取得最大值和最小值.解:设x 1、x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=121-x -122-x =)1)(1()]1()1[(22112-----x x x x =)1)(1()(22112---x x x x . 由2≤x 1<x 2≤6,得x 2-x 1>0,(x 1-1)(x 2-1)>0,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以,函数y =12-x 是区间[2,6]上的减函数. 因此,函数y =12-x 在区间[2,6]的两个端点上分别取得最大值与最小值,即在x =2时取得最大值,最大值是2,在x =6时取得最小值,最小值是0.4.注:闭区间上的单调函数的最值在区间的端点处取得.2.北京市的一家报刊摊点,从报社买进《北京晚报》的价格是每份是0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(按30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元.解:若设每天从报社买进x (250≤x ≤400,x ∈N )份,则每月共可销售(20x +10×250)份,每份可获利润0.10元,退回报社10(x -250)份,每份亏损0.15元,建立月纯利润函数f (x ),再求f (x )的最大值,可得一个月的最大利润.设每天从报社买进x 份报纸,每月获得的总利润为y 元,则依题意,得y =0.10(20x +10×250)-0.15×10(x -250)=0.5x +625,x ∈[250,400]. ∵函数y 在[250,400]上单调递增, ∴x =400时,y max =825(元),即摊主每天从报社买进400份时,每月所获得的利润最大,最大利润为825元. 四、课堂小结师:请同学小结一下这节课的主要内容.(请一个思路清晰、善于表达的学生口述,教师可从中给予提示)生甲:这节课我们学习了函数最值的定义,定义中两点是缺一不可的.另外,若函数的最大值和最小值存在,则都是唯一的,但取最值时的自变量可以有多个.有些函数不一定有最值,有最值的不一定同时有最大值最小值.生乙:今天学了两类函数的最值的求法;二次函数在闭区间上最值问题,关键是弄清对称轴与区间的相互位置;利用图象、结合单调性求解;单调函数在闭区间上的最值,关键是先判断函数的单调性,然后在区间的端点处取得.五、布置作业1.课本P 45习题1.3 A 组第6,7,8题,B 组第3题.2.(补充)某鱼塘目前鱼群总量为x 千克,经过一年的成长与繁殖,第二年鱼群的总量变为h 千克,反映x 与h 间的函数关系为h (x )=rx (1-Nx ),其中常数r (r >1)是鱼群的增长系数,N (N >0)是该鱼塘环境所能负荷的最大鱼群重量(千克).如果该鱼塘最多能负荷20万千克的鱼群,还知道有一年这鱼塘养了8万千克鱼群,第二年鱼塘鱼群总量达19.2万千克,为了保持每年鱼塘中鱼群量的稳定,捕鱼时必须适度捕捞.问这个鱼塘应保持鱼群量为多少时,才能从第二年起每年都有持续的最大捕鱼量?每年持续的最大捕鱼量是多少千克?板书设计1.3.1 单调性与最大(小)值(2)最大值: 最小值: 例1 例2 例3 例4。
§1.3.1 函数的单调性【学习目标】1.知识与技能:能从形与数两方面理解函数单调性的概念,掌握判别函数单调性的方法;2.过程与方法:通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法。
3.情感态度与价值观:通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量。
【学习重难点】重点:函数单调性的概念;难点:函数单调性概念的形成过程。
【学习探究过程】(一)创设情境,引入课题实例: 请观察江津区四面山某日24小时内的气温变化图,你能说出这一天的气温变化趋势吗?(二)引导探索,生成概念问题1:任意写出一个函数的解析式及定义域(1) 列出一些自变量x 的值,计算相应的y 值;(2) 画出草图,观察图像的上升、下降趋势,并指出y 值随x 的增大如何变化。
问题2:(1)如何用数学符号描述函数图象的“上升”特征,即“y 随x 的增大而增大..”?(2)已知12a x x b <<<,若有12()()()()f a f x f x f b <<<。
能保证函数()y f x =在区间[,]a b 上递增吗?(3)已知123a x x x b <<<<,若有123()()()()()f a f x f x f x f b <<<<,能保证函数()y f x =在区间[,]a b 上递增吗?(4)已知1234a x x x x b <<<<<⋅⋅⋅<,若有1234()()()()()()f a f x f x f x f x f b <<<<<⋅⋅⋅<,能保证函数()y f x =在区间[,]a b 上递增吗?问题3:对于一般的函数()y f x =定义域为I ,在区间D 上,我们应当如何给增函数下定义?问题4:类比增函数的定义,对于一般的函数()y f x =,我们应当如何给减函数下定义?(三) 学以致用,理解感悟例1. 下图是定义在区间[]5,5-上的函数()y f x =,根据函数图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?例2.反比例函数1y x =的单调性x y y=f(x)–1–2–3–4–512345–1–2123O①画出反比例函数1y x=的图象,并说出函数的定义域I 是什么? ②它在定义域I 上的单调性是怎样的?证明你的结论.思考:物理学中的玻意耳定律k p V=(k 为正常数)告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大.试用函数的单调性证明之.(四)回顾反思,深化认识课堂小结: 通过本节课的学习,你的主要收获有哪些?(五)布置作业1.基础达标:第39页习题1.3 A 组:1、2;2.思考探究:函数()y f x =定义域内的某个区间D 上任意两个自变量12,x x 的值,当12x x <时,都有()()12120f x f x x x -<-,则函数()y f x =在区间D 上是 .(填“增函数”或“减函数”)。
《函数的单调性与最大(小)值》教学设计(第1课时)一.教材地位分析《单调性与最大(小)值(1)》系新课标实验教材必修Ⅰ第一章第三节内容,该节中内容包括:函数的单调性、函数的奇偶性。
它是在学习了函数的基础上进一步研究函数必不可少的一部分内容。
二.教学目标设计1.知识与技能:1)使学生理解函数单调性的的概念,并能判断一些简单函数在给定区间上的单调性。
2)启发学生能够发现问题、提出问题,培养学生分析问题、认识问题的能力和创造的解决问题的能力。
3)通过观察—猜想—推理—证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
{2.过程与方法:1)通过渗透数形结合的数学思想,对学生进行辨证唯物注意的思想教育。
2)探究与活动,明白考虑问题要细致,说理要明确。
3.情感态度与价值观:营造亲切、活跃的课堂气氛,实施多元化评价,激励学生,使学生尝试成功,以点燃学生的学习热情,理性认识生活中的增长、递减现象。
三.教学重点和难点设计教学重点:领会函数单调性的实质,明确单调性是一个局部概念。
教学难点:利用函数的单调性的定义证明具体函数的单调性。
`四.学情、教法分析及教材处理按现行新教材结构体系,学生只学过一次函数、反比例函数、正比例函数、二次函数,所以对函数的单调性研究也只能限于这几种函数。
学生的现有认知结构中能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势;同时,学生在概念的掌握上缺少系统性、严谨性,在教学中须加强。
根据以上分析本节课教学方法以在多媒体辅助下的启发式教学为主。
五.教具准备多媒体课件(Ppowerpoint)六.教学流程设计<:七.教学情境设计 1.【情景导入】2.【新课探究】3.【讲解例1】4.【知识迁移】5.【讲解例2】6.【知识巩固】7.【课堂小结】(通过提问的形式,让学生总结)八.情景设计说明1.注重创设问题情景,通过学生观察,提出问题并建立数学模型解决问题,让学生了解数学的实际应用。
1.3.1 单调性与最大(小)值第一课时函数的单调性[提出问题]观察下列函数图象:问题1:从图象上看,自变量x增大时,函数f(x)的值如何变化?提示:甲图中,函数f(x)的值随x增大而增大.乙图中,函数f(x)的值随x增大而减小.丙图中,在y轴左侧,函数f(x)的值随x的增大而减小;在y轴右侧,函数f(x)的值随x的增大而增大.问题2:甲、乙图中,若x1<x2,则f(x1)与f(x2)的大小关系是什么?提示:甲图中,若x1<x2,则f(x1)<f(x2);乙图中,若x1<x2,则f(x1)>f(x2).问题3:丙图中,若x1<x2,f(x1)<f(x2),则自变量x属于哪个区间?提示:(0,+∞).[导入新知]1.定义域为I的函数f(x)的增减性2.单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.[化解疑难]1.x 1,x 2的三个特征(1)任意性,即x 1,x 2是在某一区间上的任意两个值,不能以特殊值代换; (2)有大小,即确定的两个值x 1,x 2必须区分大小,一般令x 1<x 2; (3)同属一个单调区间.2.理解函数的单调性应注意的问题(1)函数的单调性是函数的局部性质,体现在函数的定义域或其子区间上,所以函数的单调区间是其定义域的子集.(2)函数的单调性是对某个区间而言的,在某一点上不存在单调性.(3)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.如函数y =1x 在(-∞,0)和(0,+∞)上单调递减,却不能表述为:函数y =1x在(-∞,0)∪(0,+∞)上单调递减.(4)并非所有的函数都具有单调性.如函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数,0,x 是无理数就不具有单调性.[例1]A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4](2)画出函数y =-x 2+2|x |+1的图象并写出函数的单调区间.[解] (1)选C 根据函数单调性定义及函数图象知f (x )在[-3,1]上单调递增.(2)y =⎩⎪⎨⎪⎧-x 2+2x +1, x ≥0,-x 2-2x +1, x <0,即y =⎩⎪⎨⎪⎧-x -2+2, x ≥0,-x +2+2, x <0,函数图象如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0],[1,+∞).[类题通法]由图象确定函数单调性的方法及注意事项(1)图象从左向右上升,则函数递增;图象从左向右下降,则函数递减.(2)单调区间必须是函数定义域的子集,单调区间之间不能用“∪”,而应用“,”将它们隔开或用“和”字连接.[活学活用]求下列函数的单调区间. (1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|.解:(1)f (x )=3|x |=⎩⎪⎨⎪⎧3x ,x ≥0,-3x ,x <0.图象如图所示.f (x )的单调递减区间为(-∞,0],单调递增区间为[0,+∞).(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示.由图象易得函数的递增区间是[-3,-1],[1,+∞);函数的递减区间是(-∞,-3],[-1,1].[例2] 求证:函数f (x )=1x2在(0,+∞)上是减函数,在(-∞,0)上是增函数.[解] 证明:对于任意的x 1,x 2∈(-∞,0),且x 1<x 2, 有f (x 1)-f (x 2)=1x 21-1x 22=x 22-x 21x 21x 22=x 2-x 1x 2+x 1x 21x 22. ∵x 1<x 2<0,∴x 2-x 1>0,x 1+x 2<0,x 21x 22>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴函数f (x )=1x2在(-∞,0)上是增函数.对于任意的x 1,x 2∈(0,+∞),且x 1<x 2,有f (x 1)-f (x 2)=x 2-x 1x 2+x 1x 21x22.∵0<x 1<x 2,∴x 2-x 1>0,x 2+x 1>0,x 21x 22>0. ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )=1x2在(0,+∞)上是减函数.[类题通法]利用定义证明函数单调性的步骤[活学活用]求证:函数f (x )=-x 在其定义域上是减函数. 证明:f (x )=-x 的定义域为[0,+∞). 设0≤x 1<x 2,则x 1-x 2<0, 且f (x 2)-f (x 1)=(-x 2)-(-x 1) =x 1-x 2=x 1-x 2x 1+x 2x 1+x 2=x 1-x 2x 1+x 2.∵x 1-x 2<0,x 1+x 2>0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1).∴f (x )=-x 在它的定义域[0,+∞)上是减函数.[例3] 1),则a 的取值范围是________.(2)已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,求实数a 的取值范围.[解] (1)由题意可知⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,解得0<a <1. ①又∵f (x )在(-1,1)上是减函数, 且f (1-a )<f (2a -1), ∴1-a >2a -1, 即a <23. ②由①②可知0<a <23,即所求a 的取值范围是⎝ ⎛⎭⎪⎫0,23. (2)函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上分别单调,因此要使函数f (x )在区间[1,2]上单调,只需a ≤1或a ≥2(其中当a ≤1时,函数f (x )在区间[1,2]上单调递增;当a ≥2时,函数f (x )在区间[1,2]上单调递减),从而a ∈(-∞,1]∪[2,+∞).[答案] (1)⎝ ⎛⎭⎪⎫0,23[类题通法]“函数的单调区间为I ”与“函数在区间I 上单调”的区别单调区间是一个整体概念,说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I .而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确条件含义.[活学活用]若f (x )=-x 2+2ax 与g (x )=a x在区间[1,2] 上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∩(0,1) C .(0,1)D .(0,1]解析:选D 因为g (x )=ax在区间[1,2]上是减函数,所以a >0.因为函数f (x )=-x 2+2ax 的图象开口向下,对称轴为直线x =a ,且函数f (x )在区间[1,2]上为减函数,所以a ≤1.故满足题意的a 的取值范围是(0,1].4.研究函数的单调性易忽视定义域[典例] 已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)<f (1-x ),则x 的取值范围为________.[解析] 由题意,得⎩⎪⎨⎪⎧-1≤x -2≤1,-1≤1-x ≤1,解得1≤x ≤2. ①因为f (x )是定义在区间[-1,1]上的增函数, 且f (x -2)<f (1-x ),所以x -2<1-x , 解得x <32. ②由①②得1≤x <32.[答案] ⎣⎢⎡⎭⎪⎫1,32 [类题通法]1.上题易忽视函数的定义域为[-1,1],直接利用单调性得到不等式x -2<1-x ,从而得出x <32的错误答案.2.解决此类问题的关键是利用单调性“脱去”函数符号“f ”,从而转化为熟悉的不等式.若函数y =f (x )在区间D 上是增函数,则对任意x 1,x 2∈D ,且f (x 1)<f (x 2),有x 1<x 2;若函数y =f (x )在区间D 上是减函数,则对任意x 1,x 2∈D ,且f (x 1)<f (x 2),有x 1>x 2.需要注意的是,不要忘记函数的定义域.[成功破障]函数y =x +1的单调递增区间为________. 解析:∵x +1≥0,∴x ≥-1,∴函数y =x +1的单调递增区间为[-1,+∞). 答案:[-1,+∞)[随堂即时演练]1.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f x 1-f x 2x 1-x 2>0”的是( )A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3 D .f (x )=x +1x解析:选Cf x 1-f x 2x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x及f (x )=-3x +1在(0,+∞)上均为减函数,故A ,B 错误;f (x )=x +1x在(0,1)上递减,在[1,+∞)上递增,故D 错误;f (x )=x 2+4x +3=x 2+4x +4-1=(x +2)2-1,所以f (x )在[-2,+∞)上递增,故只有C 正确.2.函数f (x )=|x |,g (x )=x (2-x )的递增区间依次是( ) A .(-∞,0],(-∞,1] B .(-∞,0],(1,+∞) C .[0,+∞),(-∞,1]D .[0,+∞),[1,+∞)解析:选C 分别作出f (x ) 与g (x )的图象(图略)得:f (x )在[0,+∞)上递增,g (x )在(-∞,1]上递增,选C.3.已知函数f (x )是(0,+∞)上的减函数,则f (a 2-a +1)与f ⎝ ⎛⎭⎪⎫34的大小关系是________________________________________________________________________.解析:∵a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,又∵f (x )是(0,+∞)上的减函数,∴f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫34.答案:f (a 2-a +1)≤f ⎝ ⎛⎭⎪⎫344.已知函数f (x )=x 2-2(1-a )x +2在(-∞,4]上是减函数,则实数a 的取值范围为________.解析:∵f (x )=x 2-2(1-a )x +2 =[x -(1-a )]2+2-(1-a )2,∴f (x )的单调递减区间是(-∞,1-a ]. 又∵函数f (x )在(-∞,4]上是减函数, ∴1-a ≥4,即a ≤-3.∴所求实数a 的取值范围是(-∞,-3]. 答案:(-∞,-3] 5.求证:函数y =1x -1在区间(1,+∞)上为单调减函数. 证明:任取x 1,x 2∈(1,+∞),且x 1<x 2,则y1-y 2=1x 1-1-1x 2-1=x 2--x 1-x 1-x 2-=x 2-x 1x 1-x 2-.∵x 2>x 1>1,∴x 1-1>0,x 2-1>0,x 2-x 1>0, ∴x 2-x 1x 1-x 2->0,∴y 1>y 2, ∴函数y =1x -1在区间(1,+∞)上为单调减函数. [课时达标检测]一、选择题1.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性解析:选D 函数在区间(a ,b )∪(b ,c )上无法确定单调性.如y =-1x在(0,+∞)上是增函数,在(-∞,0)上也是增函数,但在(-∞,0)∪(0,+∞)上并不具有单调性.2.设(a ,b ),(c ,d )都是f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定解析:选D 根据单调函数的定义,所取两个自变量必须是同一单调区间内的任意两个自变量,才能由该区间上函数的单调性来比较出函数值的大小,而本题中的x 1,x 2不在同一单调区间,故f (x 1)与f (x 2)的大小不能确定,选D.3.设f (x )=(2a -1)x +b 在R 上是减函数,则有( ) A .a ≥12B .a ≤12C .a >-12D .a <12解析:选D ∵f (x )在R 上是减函数,故2a -1<0,即a <12.4.下列四个函数在(-∞,0)上为增函数的是( ) ①y =|x |+1;②y =|x |x ;③y =-x2|x |;④y =x +x|x |.A .①②B .②③C .③④D .①④解析:选C ①y =|x |+1=-x +1(x <0)在(-∞,0)上为减函数;②y =|x |x=-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数.5.已知函数f (x )=⎩⎪⎨⎪⎧a -x +5,x ≤1,2ax,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]解析:选D 依题意得实数a 满足⎩⎪⎨⎪⎧a -3<0,2a >0,a -+5≥2a ,解得0<a ≤2.二、填空题6.函数f (x )=|x -1|+2的单调递增区间为________.解析:f (x )=⎩⎪⎨⎪⎧x +1,x ≥1,3-x ,x <1,显然函数f (x )在x ≥1时单调递增.答案:[1,+∞)7.如果二次函数f (x )=x 2-(a -1)x +5在区间⎝ ⎛⎭⎪⎫12,1上是增函数,则实数a 的取值范围为________.解析:∵函数f (x )=x 2-(a -1)x +5的对称轴为x =a -12且在区间⎝ ⎛⎭⎪⎫12,1上是增函数,∴a -12≤12,即a ≤2.答案:(-∞,2]8.函数f (x )是定义域上的单调递减函数,且过点(-3,2)和(1,-2),则使|f (x )|<2的自变量x 的取值范围是________.解析:∵f (x )是定义域上的减函数,f (-3)=2,f (1)=-2,∴当x >-3时,f (x )<2,当x <1时,f (x )>-2,则当-3<x <1时,|f (x )|<2.答案:(-3,1) 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧-x +3-3a ,x <0,-x 2+a ,x ≥0满足对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0,求a 的取值范围.解:由对任意的x 1,x 2∈R ,(x 1-x 2)[f (x 1)-f (x 2)]<0知函数f (x )在R 上为减函数.当x <0时,函数f (x )=-x +3-3a 为一次函数,且为减函数,则此时f (x )>f (0)=3-3a ;当x ≥0时,函数f (x )=-x 2+a 为二次函数,也为减函数,且有f (x )≤f (0)=a .要使函数f (x )在R 上为减函数,则有a ≤3-3a ,解得a ≤34.所以a 的取值范围是⎝⎛⎦⎥⎤-∞,34.10.已知函数f (x )=1x 2-1. (1)设f (x )的定义域为A ,求集合A ;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义加以证明. 解:(1)由x 2-1≠0,得x ≠±1,所以函数f (x )=1x 2-1的定义域为A ={x ∈R|x ≠±1}. (2)函数f (x )=1x 2-1在(1,+∞)上单调递减. 证明:任取x 1,x 2∈(1,+∞),设x 1<x 2, 则Δx =x 2-x 1>0,Δy =y 2-y 1=1x 22-1-1x 21-1=x 1-x 2x 1+x 2x 21-x 22-, ∵x 1>1,x 2>1,∴x 21-1>0,x 22-1>0,x 1+x 2>0.又x 1<x 2,所以x 1-x 2<0,故Δy <0.因此,函数f (x )=1x 2-1在(1,+∞)上单调递减.11.讨论函数f (x )=x +a x (a >0)的单调性.解:f (x )=x +a x (a >0).∵定义域为{x |x ∈R ,且x ≠0},∴可分开证明,设x 1>x 2>0,则f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2. 当0<x 2<x 1≤a 时,恒有a x 1x 2>1, 则f (x 1)-f (x 2)<0,故f (x )在(0,a ]上是减函数;当x 1>x 2>a 时,恒有0<a x 1x 2<1, 则f (x 1)-f (x 2)>0,故f (x )在(a ,+∞)上是增函数.同理可证f (x )在(-∞,-a )上是增函数,在[-a ,0)上是减函数.综上所述,f (x )在(-∞,-a ),(a ,+∞)上是增函数,在[-a ,0),(0,a ]上是减函数.12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.解:(1)证明: 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述a 的取值范围是(0,1].。