Lect2.1(北大统计与数据分析-概率理论基础之一)
- 格式:pdf
- 大小:1.13 MB
- 文档页数:38
统计概率所有知识点总结一、基本概率论概率论是统计学中最基础的部分,它研究的是随机事件的可能性。
随机事件是不确定的事件,而概率就是描述这种不确定性的量。
在概率论中,经常用到的概念包括事件、概率、样本空间等。
事件是指可能发生或者不发生的事物,而概率则是衡量事件发生可能性的大小。
样本空间是所有可能结果的集合,它包括了所有可能的事件。
二、条件概率条件概率是指在已知某些信息的情况下,另一个事件发生的概率。
条件概率的计算方法通常使用乘法法则。
条件概率在许多领域中都有着广泛的应用,比如医学诊断、市场营销、风险管理等。
三、独立性在概率论中,独立性是一个非常重要的概念。
两个事件如果是独立的,那么它们的发生不会互相影响。
独立性的概念在统计推断中有着广泛的应用,比如在抽样调查中,我们通常要求样本之间是独立的,以保证统计推断的准确性。
四、随机变量随机变量是统计学中的一个重要概念,它是对随机事件的量化描述。
随机变量可以是离散的,也可以是连续的。
对于离散的随机变量,我们通常关心的是它的概率分布;而对于连续的随机变量,我们通常关心的是它的密度函数。
五、概率分布概率分布是描述随机变量取值可能性的函数。
常见的概率分布包括均匀分布、正态分布、泊松分布、指数分布等。
概率分布在统计学中有着广泛的应用,比如在假设检验、参数估计等问题中。
六、抽样分布抽样分布是指统计量在重复抽样过程中的概率分布。
常见的抽样分布包括t 分布、F分布、卡方分布等。
抽样分布在统计推断中有着重要的作用,它可以帮助我们理解样本统计量的性质,从而进行参数估计和假设检验。
七、统计推断统计推断是统计学中一个重要的领域,它研究的是如何通过样本数据对总体特征进行推断。
统计推断通常包括参数估计和假设检验两个部分。
参数估计是指在已知总体分布的情况下,通过样本数据估计总体参数的值;而假设检验是指在总体参数未知的情况下,通过样本数据来对总体特征进行检验。
统计推断在医学、经济学、社会学等领域中有着广泛的应用。
概率与统计简介
概率与统计是数学中的两个重要分支,它们在各个领域中都有广泛的应用。
概率研究随机事件发生的可能性,而统计则研究如何从数据中得出结论。
概率是描述事件发生可能性的一种数学工具。
它用数值来表示事件发生的可能性大小,范围从0到1。
0表示事件不可能发生,1表示事件一定会发生。
概率的计算可以通过经典概率、几何概率和统计概率等方法进行。
统计是收集、分析和解释数据的过程。
统计学使用样本数据来推断总体特征,并通过统计模型和方法来进行推断和预测。
统计学可以帮助我们了解数据的分布、相关性以及可能的趋势和模式。
概率和统计密切相关,它们经常一起使用。
概率提供了统计推断的基础,而统计提供了概率模型的验证和应用。
通过概率和统计的应用,我们可以进行风险评估、决策分析、数据预测等。
在现实生活中,概率和统计广泛应用于各个领域。
在自然科学中,它们用于研究随机现象和实验结果的分析。
在社会科学中,它们用于调查和样本研究。
在工程和经济学中,它们用于风险评估和决策分析。
在医学中,它们用于研究疾病发生的概率和治疗效果的统计分析。
总而言之,概率与统计是数学中的重要分支,它们用于
描述和分析随机事件的可能性和数据的特征。
它们在各个领域中都有广泛的应用,帮助我们做出决策、预测未来、解释现象,并提供科学依据。
北大概率论与数理统计考研北大概率论与数理统计考研内容总结如下:1. 概率论基础知识:包括事件、样本空间、随机变量、概率分布、期望、方差等基本概念,以及常见离散分布(如二项分布、泊松分布)和连续分布(如均匀分布、正态分布)的性质和应用。
2. 数理统计基本概念:研究数据的收集、整理和分析方法,包括参数估计、假设检验和置信区间。
需要熟悉常见分布的参数估计方法(如最大似然估计)以及假设检验的原理和步骤。
3. 抽样理论:深入了解简单随机抽样、分层抽样、整群抽样等抽样方法的原理与应用,了解样本中心极限定理以及样本容量与抽样误差之间的关系。
4. 统计推断:对数据进行分析得出总体特征的过程,包括点估计和区间估计。
需要了解估计量的性质,如无偏性、一致性以及有效性,能够构造估计量和置信区间。
5. 假设检验:通过对样本数据进行检验,判断总体参数是否满足某种设定。
需要了解假设检验的基本步骤、拒绝域的确定以及错误类型的问题。
还需要掌握常见分布(如t分布、F分布)的应用。
6. 方差分析:研究不同因素对总体差异的贡献程度,进行统计推断。
需要了解单因素方差分析和多因素方差分析的原理和应用,能够进行方差分析表的解读和统计判断。
7. 回归分析:研究自变量与因变量之间的关系,进行参数估计和模型检验。
需要了解简单线性回归和多元线性回归的原理和步骤,能够进行回归模型的构建和参数估计。
8. 相关分析:研究两个变量之间的相关性和线性关系。
需要了解皮尔逊相关系数和秩相关系数的计算和性质,能够进行相关分析的假设检验和解读。
9. 非参数检验:针对总体分布未知或不满足常见分布假设的情况,进行假设检验和区间估计。
需要了解秩和检验、K-S检验、符号检验等非参数方法的基本原理和应用。
总体而言,北大概率论与数理统计考研涵盖了概率论和数理统计的基本理论和方法,考生需要通过对概念、方法和应用的学习掌握,熟练运用各种统计工具进行数据分析和推断。
同时,还需进行大量的练习和实践,加强对各种方法的理解和应用能力。
【北大考研辅导班】北大概率论与数理统计考研科目参考书考研分数线拟录取考研经验一、北大数学科学学院简介-启道数学科学学院下设五个系:数学系、概率统计系、科学与工程计算系、信息科学系和金融数学系,拥有三个本科生专业:数学与应用数学专业、信息与计算科学专业以及统计学专业。
北京大学数学研究所是教育部批准成立的研究单位,与数学科学学院紧密结合,形成院所结合的体制;数学科学学院还拥有“数学及其应用”教育部重点实验室、统计与信息技术教育部-微软重点实验室;国家教委的“高校数学研究与高等人才培养中心”也挂靠在数学科学学院。
数学科学学院学科门类齐全,教学与科研并重,理论与应用并举,是具有重要国际影响的数学科学研究和人才培养基地。
数学科学学院拥有一支实力雄厚的师资队伍,其中包括中科院院士6名,第三世界科学院院士3名,国家级教学名师3名,长江特聘教授和长江讲座教授11名,国家杰出青年基金获得者15名。
他们不仅在数学研究的前沿领域上取得了杰出的成就,还长期坚持在教学岗位上,为国家培养一批又一批高素质、高水平的创新型人才。
1952年以来,数学科学学院先后为国家培养了8000多名毕业生,他们奋斗在国家建设的各条战线上,其中包括30余名两院院士。
获得国家最高科技奖的吴文俊院士和王选院士是数学科学学院校友中的杰出代表。
数学科学学院在2001年获得国家优秀教学成果特等奖,在2002年和2006年教育部数学一级学科评比中名列全国首位。
数学科学学院的四个二级学科全部被评为国家重点学科,为国家承担着培养优秀数学本科生、硕士生、博士生和博士后的重任。
数学科学学院拥有最好的数学生源,来自全国各地的数学尖子和几乎所有取得国际数学奥林匹克竞赛金牌的中国学生均在这里学习和成长。
数学科学学院全力为学生营造一流的学习环境,配备门类齐全的图书资料,充足的计算机数学实验室,覆盖面广的多种类型奖学金和科研资助。
本着加强基础、重视应用、因材施教、分流培养的指导思想,学院实行全院统一招生。
何书元概率引论答案何书元概率引论答案【篇一:课程名称:概率论计划学时45】=txt>上课时间:周二3-4节;周四(单周) 1-2节地点:文史201 任课教师:任艳霞(教授)办公室:理科1号楼1381email:基本目的:1、对随机现象有充分的感性认识和比较准确的理解。
2、联系实际问题,初步掌握处理不确定性事件的理论和方法。
教材: 何书元,《概率论》, 北京大学出版社2006年参考书1、汪仁官,《概率论引论》,北京大学出版社19942、李贤平,《概率论基础》(第二版),高等教育出版社,19973、钱敏平、叶俊,《随机数学》,高等教育出版社,20044、sheldon ross, a first course in probability (7thedition)教学安排:第一章古典概型与概率空间(10学时)1) 随机事件及古典概型(1.1-1.2节)(2学时)2) 几何概型、概率空间与概率的性质(1.3-1.5节)(2学时)3) 条件概率和乘法公式(1.6节)(2学时)4) 独立性、全概率公式、bayes公式(1.7-1.8节)(3学时)5) 概率模型举例与概率空间续(1.8-1.9节)(1学时)第二章随机变量与概率分布(9学时)1) 一维随机变量定义、离散型随机变量(2.1-2.2节)(2学时)2) 连续型随机变量(2..3节)(2学时)3) 概率分布函数(2.4节)(2学时)4) 随机变量函数的分布(2.5节)(2学时)5) p分位点(2.5节)(1学时)第三章随机向量及其分布(8学时)1) 随机向量及其分布、离散型随机向量及其分布(3.1-3.2节)(2学时)2) 连续型随机向量及其联合密度(3.3节)(2学时)3) 随机向量函数的分布(3.4、3.6节)(2学时)4) 条件分布和条件密度(3.5节)(2学时)第四章数学期望与方差(8学时)1) 数学期望(4.1-4..2节) (3学时)2) 方差(4.3节)(1学时)3) 协方差与相关系数(4.4节)(2学时)4)条件数学期望(2学时)第五章概率极限理论(10学时)1) 概率母函数与特征函数(5.1-5.2节)(2学时)2) 多元正态分布(5.3节)(2学时)3) 大数律(5.4节) (2学时)4)中心极限定理(5.5节)(2学时)5)随机变量收敛性介绍(2学时)【篇二:2011f_master】目)招生简章北京大学数学科学学院金融数学系成立于1997年,目前已形成从本科到硕士和博士的应用数学专业金融数学与精算学方向的较为系统和有品质的培养体系。
概率统计的相关名词解释概率统计是一门研究随机现象的发生规律和统计规律的学科。
它旨在通过收集、分析和解释数据,从而为决策提供科学的依据。
概率统计领域涉及了许多专业术语和名词,本文将对其中一些重要的名词进行解释,帮助读者更好地理解概率统计的基础知识。
1. 概率(Probability)概率是描述事件发生可能性的一种度量方式。
它是一个介于0和1之间的数字,其中0表示事件不可能发生,而1表示事件一定发生。
在概率统计中,我们通过对样本的观察和分析来估计或计算事件发生的概率。
2. 随机变量(Random Variable)随机变量是概率统计中的重要概念,用于描述随机现象的结果。
随机变量可以是离散型的,也可以是连续型的。
离散型随机变量取有限个或可列个值,如掷骰子的点数;而连续型随机变量则可以取无限个值,如测量一个人的身高。
3. 概率分布(Probability Distribution)概率分布详细描述了随机变量取不同值的概率。
对于离散型随机变量,概率分布通过概率质量函数(Probability Mass Function, PMF)来表示;而对于连续型随机变量,概率分布则通过概率密度函数(Probability Density Function, PDF)来表示。
4. 正态分布(Normal Distribution)正态分布又称为高斯分布,是概率统计中最常见的分布之一。
它的概率密度函数是钟形曲线,对称地分布在均值周围。
许多自然现象相对于其平均值的变化可以用正态分布来描述,例如人的身高、考试成绩等。
5. 样本(Sample)在概率统计中,样本是从总体中抽取的一部分数据。
通过对样本的分析,我们可以推断总体的特征。
样本的大小和抽样方式对于结果的准确性有重要影响,因此在进行概率统计研究时,需要按照合适的方法来选择和处理样本。
6. 抽样误差(Sampling Error)抽样误差是由于样本的随机性所引起的估计误差。
解:X 的分布函数为依题意,当x <0时,当0≤x ≤2时,当x >2时,F (x )=P (X ≤x )F (x )=P (X ≤x )=0F (x )=P (X ≤x )=P (X <0)+P (0≤X ≤x )=0+kx 2=kx 2F (x )=P (X ≤x )=1例1.一个靶子是半径为2米的圆盘,设击中靶上任一同心圆盘上的点的概率与该盘的面积成正比,并设射击都能中靶.以X 表示弹着点与圆心的距离,试求随机变量X 的分布函数.当0≤x ≤2时,F (x )=P (X ≤x )=kx 2另外依题意F (2)=P (X ≤2)=k.22=1所以k 14=x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩10.80.60.40.2-0.2-2-101234解得说明,存在一个非负可积函数f (x ),使得下式成立易知x x F x x x 20,0(),0241,2<⎧⎪⎪=≤≤⎨⎪>⎪⎩x x F x f x ,02()()20⎧≤≤⎪'==⎨⎪⎩其他()()xF x f t dt-∞=⎰1.定义:设随机变量X 的分布函数为F (x ),如果存在一个非负可积函数f (x ),使对任意的实数x ,均有则称X 是连续型随机变量(Continuous Random Variable ),称f (x )是X 的概率密度函数,简称概率密度(Probability Density Function ).()()xF x f t dt-∞=⎰连续型随机变量X的分布函数F(x)和概率密度f(x)统称为X的概率分布,简称X的分布.易知此时分布函数F(x)是连续函数,即连续型随机变量的分布是连续函数.2.概率密度函数的性质(1)f (x ) ≥ 0(2)这两条性质是判定一个函数f (x )是否为某r.v.X 的概率密度函数的充要条件.f (x )xo 面积为1+()1f x dx ∞-∞=⎰(3)P (a <X ≤b )=F (b )-F (a )如 f (x )xo a b (4)()()GP X G f x dx∈=⎰()()b a f x dx f x dx -∞-∞=-⎰⎰()baf x dx =⎰()()a P X a f x dx+∞>=⎰(5)在f (x )的连续点x 处,有f (x )=F '(x )(6)设x 为f (x )的连续点,当∆x 较小,则有P (x< X ≤x+∆x )故X 的密度f (x )在x 这一点的值,恰好是X 落在区间(x ,x +∆x ]上的概率与区间长度∆x 之比.它反映了X 在x 附近单位长区间上取值的概率.x xx f t dt f x x()()+∆=≈⎰∆连续型随机变量密度函数的性质与离散型随机变量分布律的性质非常相似,但是,密度函数不是概率!(7)P (X =x 0)=F (x 0)-F (x 0-0)P (a <X ≤b )=P (a ≤X ≤b )=P (a <X <b )=P (a ≤X <b )密度函数f (x )在某点处a 的函数值f (a ),并不等于X 取值为a 的概率.但是,这个值f (a )越大,则X 在a 附近取值的概率f (a )∆x 就越大.也可以说,在某点密度曲线的函数值反映了概率集中在该点附近的程度,即X 在该点附近取值的密集程度.=0()ba f x dx=⎰=F (b )-F (a )若X 为连续型随机变量,概率密度f (x )唯一确定了分布函数F (x );若随机变量X 的分布函数F (x )满足:(1)F (x )连续;(2)存在x 1<x 2<…<x n (n ≥0),除这些点外,F (x )可导,且导函数F '(x )连续;令F x F x f x F x (),()()0,()''⎧=⎨'⎩当存在当不存在则f (x )必是X 的概率密度.例2.设随机变量X 的概率密度为求(1)常数k 的值;(2)X 的分布函数;(3)P (1<X <7/2).解:(1)由解得kx x f x x x ,03()2/2,340,≤<⎧⎪=-≤≤⎨⎪⎩其他+1()f x dx ∞-∞=⎰3403(2)2x kxdx dx =+-⎰⎰k 16=k 9124=+解:(2)当x <0时,当0≤x <3时,当3≤x <4时,020()()0612x x t x F x f t dt dt dt -∞-∞==+=⎰⎰⎰03203()()0(2)32624x xt t x F x f t dt dt dt dt x -∞-∞==++-=-+-⎰⎰⎰⎰()()0x F x f t dt -∞==⎰求(2)X 的分布函数;()()xF x f t dt-∞=⎰6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他当x ≥4时,所以()()1xF x f t dt -∞==⎰x x x F x x x x x 220,0/12,03()32/4,341,4<⎧⎪≤<⎪=⎨-+-≤<⎪⎪≥⎩求(2)X 的分布函数;6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他P X F F 7741(1)()(1)2248<<=-=72723113741(1)()(2)26248x x P X f x dx dx dx <<==+-=⎰⎰⎰求(3)P (1<X <7/2)解:(3)6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他在上例中,当x ∉[0,4]时,f (x )=0,所以P (X ∉[0,4])=0,为了方便,我们说X 只在[0,4]上取值.g x a x b f x ()0,()0,>≤≤⎧=⎨⎩其他我们就说X 只在[a , b ]上取值.一般地,若随机变量X 的概率密度f (x )是如下分段函数:6,03()2/2,340,x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他例3.设连续型随机变量X 的分布函数为求(1)常数C 值;(2)X 取值于(0.3,0.7)内的概率;(3)X 的密度函数.解:(1)应用连续型随机变量X 的分布函数的连续性,有所以C =1x F x Cx x x 20,0(),011,1<⎧⎪=≤<⎨⎪≥⎩x F F x C11(1)lim ()→-===x x f x F x 2,01()()0,<<⎧'==⎨⎩其他解:20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩(2)P (0.3<X <0.7)=F (0.7)−F (0.3)=0.72−0.32=0.4求(2)P (0.3<X <0.7);(3)X 的密度函数.(3)随机变量的分类:离散型随机变量连续型随机变量.非离散型随机变量非连续非离散型随机变量.(1)若随机变量X 的概率密度为1.均匀分布(Uniform Distribution )则称X 在[a , b ]上服从均匀分布,记为X~U [a , b ]1,()0,a x b f x b a ⎧≤≤⎪=-⎨⎪⎩其他[,]1a b I b a =-[,][,]1,[,]()0,[,]a b a b x a b I I x x a b ∈⎧==⎨∉⎩区间[a ,b ]上的示性函数类似地,我们可以定义区间[a , b )、(a , b ]和(a , b )上的均匀分布一般地,设D 是数轴上一些不相交的区间之和,若X 的概率密度为x D f x D x D 1()0⎧∈⎪=⎨⎪∉⎩,的长度,则称X 在D 上服从均匀分布.若X ~U [a , b ],X 的分布函数为对于满足a ≤c <d ≤b 的任意的c 、d ,有0(),1,x a x a F x a x bb a<⎧⎪-⎪=≤≤⎨-⎪⎪⎩,其他()d c P c X d b a-<≤=-例1.设公共汽车站从上午7时起每隔15分钟来一班车,如果某乘客到达此站的时间是7:00到7:30之间的均匀随机变量.试求该乘客候车时间不超过5分钟的概率.解:设该乘客于7时X 到达此站,则X 服从[0, 30]上的均匀分布令B ={候车时间不超过5分钟}1530102511130303dx dx =+=⎰⎰()(1015)(2530)P B P X P X =≤≤+≤≤1030()300x f x ⎧≤≤⎪=⎨⎪⎩其它2.指数分布(Exponential Distribution )若随机变量X 的概率密度为其中常数λ>0,则称X 服从参数为λ的指数分布.,0()0,0x e x f x x λλ-⎧>=⎨≤⎩易求得X 的分布函数为1,0()0,0x e x F x x λ-⎧->=⎨≤⎩指数分布的另一种等价定义定义:设连续型随机变量X 的概率密度为1,0()0,0x e x f x x θθ-⎧>⎪=⎨⎪≤⎩其中θ>0为常数,则称X 服从参数为θ的指数分布.服从指数分布的随机变量X 具有以下性质:事实上无记忆性或无后效性(|)()P X s t X s P X t >+>=>(,)(|)()P X s t X s P X s t X s P X s >+>>+>=>()()P X s t P X s >+=>1()1()F s t F s -+=-()s t t s e e e λλλ-+--==1()()F t P X t =-=>1,0()0,0x e x F x x λ-⎧->=⎨≤⎩即对于任意s , t >0,有如果X 表示某仪器的工作寿命,无后效性的解释是:当仪器工作了s 小时后再能继续工作t 小时的概率等于该仪器刚开始就能工作t 小时的概率.说明该仪器的使用寿命不随使用时间的增加发生变化,或说仪器是“永葆青春”的.(|)()P X s t X s P X t >+>=>一般来说,电子元件等具备这种性质,它们本身的老化是可以忽略不计的,造成损坏的原因是意外的高电压等等.3.正态分布(Normal Distribution )若随机变量X 的概率密度为其中μ, σ均为常数,且σ>0,则称X 服从参数为μ和σ的正态分布.记作X ~N (μ, σ2)正态分布最初由高斯(Gauss )在研究偏差理论时发现,又叫高斯分布.22()21(),2x f x e x μσσπ--=-∞<<∞X 的分布函数为22()21()2t xF x e dtμσσπ---∞=⎰N (10, 32)0-50.10.20.30.40.50.60.70.80.910510152025正态分布N(μ,σ2)密度函数图形的特点f(x)μa.正态分布的密度曲线是一条关于μ对称的钟形曲线.f(μ+c)=f(μ−c )特点是“两头小,中间大,左右对称”.b .μ决定了图形的中心位置,称为位置参数;σ决定了图形中峰的陡峭程度,称为形状参数或者刻度参数μ2μ1μ3x f (x )f (x )0xc .在x =μ处达到最大值:1()2f μπσ=d .曲线f (x )向左右伸展时,越来越贴近x 轴,即f (x )以x 轴为渐近线.当x →±∞时,f (x )→0e .x=μ±σ为f (x )的两个拐点的横坐标.说明X 落在μ附件的概率最大,或者说X 的取值在μ附件最密集.22()21(),2x f x e x μσσπ--=-∞<<∞μf (x )年降雨量、同龄人身高、在正常条件下各种产品的质量指标——如零件的尺寸;纤维的强度和张力、农作物的产量,小麦的穗长、株高、测量误差、射击目标的水平或垂直偏差、信号噪声等等,都服从或近似服从正态分布.标准正态分布(Standard Normal Distribution )μ=0,σ=1的正态分布称为标准正态分布.其密度函数和分布函数常用φ(x )和Ф(x )表示:)(x Φ)(x ϕ221(),2x x e x ϕπ-=-∞<<∞221()2t x x e dt π--∞Φ=⎰注意:Φ(0)=0.5,Φ(-x )=1-Φ(x )若X ~N (0, 1),对任意的实数x 1,x 2(x 1< x 2),有人们已编制了Φ(x )的函数表,可供查用.P (X≤x 1)=Φ(x 1)P (X>x 1)=1-Φ(x 1)P (x 1≤X≤x 2)=Φ(x 2)-Φ(x 1)221()2x t x e dt π--∞Φ=⎰−x x Φ(x )x4-40.40.2正态分布的计算()x μσ-=Φ对任意的实数x 1,x 2(x 1< x 2),有211221()()()()()x x P x X x F x F x μμσσ--<≤=-=Φ-Φ222()()22()22x t xu F x e dt e du μσμσπσπ-----∞-∞==⎰⎰111()()()x P X x F x μσ-≤==Φ111()1()1()x P X x F x μσ->=-=-Φ例2.设X ~N (μ,σ2),求P (|X −μ|<k σ)的值,k =1, 2, 3.解:当k =1时当k =2时当k =3时(||)()P X k P k X k μσμσμσ-<=-<<+()()F k F k μσμσ=+--()()k k μσμμσμσσ+---=Φ-Φ()()k k =Φ-Φ-()[1()]2()1k k k =Φ--Φ=Φ-(||)2(1)10.6826P X μσ-<=Φ-=(||2)2(2)10.9544P X μσ-<=Φ-=(||3)2(3)10.9974P X μσ-<=Φ-=质量控制中的3σ原则设在正常生产的情况下,某零件的尺寸X服从正态分布N(μ,σ2),为了在生产过程中随时检查有无系统性误差出现,人们画了一个质量控制图.每隔一定时间,对产品尺寸进行检查,测量的产品的尺寸应落在上、下控制线之内.如果超出控制线,则很有可能是生产出现了异常情况,应该暂停生产进行检查.当然也可能虚报,但虚报的可能性比较小.214y x=π因此,需要求某些随机变量的函数的分布.在某些实际问题中,我们所关心的随机变量不能直接测量得到,而它却是某个能够直接测量的随机变量的函数.例如,考察一批圆轴的截面面积Y ,我们能够直接测量的是直径X ,且当直径X 取x 值时,截面面积Y 的取值为一般地,设X、Y是两个随机变量,y=g(x)是一个已知函数,如果当X取值x时,Y取值为g(x),则称Y是随机变量X的函数,记为Y=g(X).问题是:如何由已知的随机变量X的概率分布去求它的函数Y=g(X)的概率分布.解:求Y =(X –1)2的分布律.Y 所有可能的取值为0,1,4,而且(0)(1)0.1P Y P X ====(1)(0)(2)0.7P Y P X P X ===+==(4)(1)0.2P Y P X ===-=例1.设随机变量X 的分布律为X −10 1 2P0.20.3 0.1 0.4一、离散型随机变量X 的函数Y =g (X )的分布所以,Y 的分布律为Y0 1 4P0.10.7 0.2X−1 0 1 2 Y= (X–1)24101 P0.20.3 0.1 0.4所以,Y 的分布律为Y0 1 4P0.10.7 0.2一般地,若X 的分布律为则Y =g (X )的分布律为如果g (x k )中有一些值是相等的,则它们是Y 可能取的同一个值.此时,在Y 的分布律中,只需列出一个,然后把对应于这些相同值的概率相加,作为Y 取这个可能值的概率.X x 1 x 2 … x k …Pp 1 p 2 … p k…Y g (x 1) g (x 2)… g (x k ) …Pp 1 p 2 … p k…二、连续型随机变量X 的函数Y =g (X )的分布例2.设随机变量X 的概率密度为令求Y 的分布.解:2,01()0,x x f x <<⎧=⎨⎩其他1,1/20,1/2X Y X ≤⎧=⎨>⎩(1)P Y =(1/2)P X =≤1/2124xdx ==⎰所以Y 的分布为13(0)1(1)144P Y P Y ==-==-=Y0 1P 3/4 1/4例3.设连续型随机变量X 的概率密度函数为求Y =2X +8的概率密度.解:设X 和Y 的分布函数分别为F X (x )和F Y (y ).F Y (y )=P (Y≤y )=P (2X +8≤y )于是Y 的密度函数/8,04()0,X x x f x <<⎧=⎨⎩其它88()()22X y y P X F --=≤=()81()()22Y Y X dF y y f y f dy -==⋅故当8<y <16时,当y ≤8或y ≥16时,81()()22Y X y f y f -=⋅/8,04()0,X x x f x <<⎧=⎨⎩其它88()216X y y f --=8()02X y f -=8,816()320,Y y y f y -⎧<<⎪=⎨⎪⎩其它方法:1.先求Y=g(X)分布函数F(y);Y2.求分布函数F Y (y)的导数,即为密度函数f Y(y).关键步骤:F(y)=P(Y≤y)=P(g(X)≤y)=P(X∈D)Y。
高中数学中的概率统计与数据分析在高中数学课程中,概率统计与数据分析是一个重要的学习内容。
概率统计是研究随机事件发生的可能性的一门学科,而数据分析则是通过收集、整理、分析和解释数据来确定模式和趋势的过程。
本文将介绍高中数学中的概率统计与数据分析的基本概念和方法。
一、概率统计概率统计是指通过分析各种随机事件的可能性来进行预测和决策的一门学科。
在概率统计中,我们常常使用一些术语来描述概率事件的特性,例如概率、样本空间、事件以及条件概率等。
1. 概率概率是指一个事件发生的可能性大小,用一个介于0和1之间的数来表示。
具体来说,如果一个事件的概率为0,那么它是不可能发生的;如果一个事件的概率为1,那么它是肯定会发生的;而如果一个事件的概率介于0和1之间,那么它是可能发生的。
2. 样本空间样本空间是指一个随机试验中所有可能结果的集合。
例如,当我们投掷一枚骰子时,样本空间包括1、2、3、4、5、6这六个结果。
3. 事件事件是样本空间中的一个子集,它是指我们感兴趣的、有具体含义的结果。
例如,当我们投掷一枚骰子时,事件可以是“出现奇数点数”或者“出现小于等于3的点数”。
4. 条件概率条件概率是指在已知某一事件发生的前提下,另一个事件发生的概率。
它可以用符号P(A|B)表示,其中A和B分别表示两个事件。
例如,当我们已知一枚骰子出现的点数小于等于3时,出现奇数点数的条件概率可以表示为P(奇数|小于等于3)。
二、数据分析数据分析是指通过收集、整理、分析和解释数据来确定模式和趋势的过程。
在数据分析中,我们常常使用一些基本的统计方法和图表来整理和展示数据。
1. 统计方法在数据分析中,常用的统计方法包括描述性统计和推断性统计。
描述性统计是指通过各种统计指标来描述和总结数据的特征,例如平均数、中位数、众数、方差和标准差等;推断性统计是指通过从样本中抽取数据进行推断来对总体进行推断和决策,例如假设检验和置信区间等。
2. 统计图表统计图表是一种直观、清晰地展示数据分布和变化规律的方式。
概率统计二级结论-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下角度进行展开:概率统计是一门研究随机现象规律的学科,它是数学的一个重要分支,也是现代科学领域中不可或缺的一部分。
其主要研究对象为随机事件的出现规律和概率分布以及基于概率的推断和决策方法。
通过统计概率,我们可以揭示自然界和社会现象中的客观规律,并为科学研究提供重要的工具和方法。
概率统计的发展可以追溯到17世纪,伽利略和费马等伟大科学家对概率问题进行了初步研究,随后由拉普拉斯、贝叶斯等人的贡献,使概率统计学逐渐形成独立的理论体系,并在各个学科领域中得到广泛应用。
概率统计通过建立数学模型来描述和分析随机现象,通过收集样本数据进行推断和预测,从而对不确定性进行量化和控制。
在概率统计的研究中,我们普遍使用统计模型、概率分布和统计方法等工具来分析和解决实际问题。
通过对概率统计的学习和应用,我们可以了解和理解事件发生的可能性,并通过样本数据的收集和分析,得出结论并做出决策。
概率统计的应用广泛涉及自然科学、社会科学、工程技术等众多领域,如风险管理、市场调查、质量控制等。
本文主要围绕概率统计的二级结论展开,通过引言给读者提供一个全面而清晰的概述,介绍概率统计的基本概念、历史发展以及应用领域,为读者提供一个全面理解概率统计的基础。
接下来的章节将分析和总结概率统计的关键要点,并给出相应的结论,以进一步巩固读者对概率统计的理解和应用能力。
通过本文的阅读,我们将能够更深入地了解概率统计的核心观点和方法,为我们在实际问题中的决策和推断提供一种科学且可靠的工具。
最后,本文还将总结概率统计的核心要点,并展望它在未来的发展前景。
1.2文章结构文章结构是指文章的组织和安排方式,它是整篇文章的骨架和框架,决定了文章内容的展开和发展。
良好的文章结构能够使读者更好地理解作者的观点和思路。
本文的结构包括引言、正文和结论三个部分。
引言部分主要是对文章主题进行概述,从宏观角度对读者进行引导和导入,使其了解文章的目的和意义。