九年级数学几何模型压轴题中考真题汇编[解析版]
- 格式:doc
- 大小:1.73 MB
- 文档页数:35
几何模型压轴题章末练习卷(Word版含解析)一、初三数学旋转易错题压轴题(难)1.直线m∥n,点A、B分别在直线m,n上(点A在点B的右侧),点P在直线m上,AP=13AB,连接BP,将线段BP绕点B顺时针旋转60°得到BC,连接AC交直线n于点E,连接PC,且ABE为等边三角形.(1)如图①,当点P在A的右侧时,请直接写出∠ABP与∠EBC的数量关系是,AP 与EC的数量关系是.(2)如图②,当点P在A的左侧时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(3)如图②,当点P在A的左侧时,若△PBC的面积为93,求线段AC的长.【答案】(1)∠ABP=∠EBC,AP=EC;(2)成立,见解析;(3)7 7【解析】【分析】(1)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(2)根据等边三角形的性质得到∠ABE=60°,AB=BE,根据旋转的性质得到∠CBP=60°,BC=BP,根据全等三角形的性质得到结论;(3)过点C作CD⊥m于D,根据旋转的性质得到△PBC是等边三角形,求得PC=3,设AP=CE=t,则AB=AE=3t,得到AC=2t,根据平行线的性质得到∠CAD=∠AEB=60°,解直角三角形即可得到结论.【详解】解:(1)∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;故答案为:∠ABP=∠EBC,AP=EC;(2)成立,理由如下,∵△ABE是等边三角形,∴∠ABE=60°,AB=BE,∵将线段BP绕点B顺时针旋转60°得到BC,∴∠CBP=60°,BC=BP,∴∠ABP=60°﹣∠PBE,∠CBE=60°﹣∠PBE,即∠ABP=∠EBC,∴△ABP≌△EBC(SAS),∴AP=EC;(3)过点C作CD⊥m于D,∵将线段BP绕点B顺时针旋转60°得到BC,∴△PBC是等边三角形,∴3293∴PC=3,设AP=CE=t,则AB=AE=3t,∴AC=2t,∵m∥n,∴∠CAD=∠AEB=60°,∴AD=12AC=t,CD33,∵PD2+CD2=PC2,∴(2t)2+3t2=9,∴t=377(负值舍去),∴AC=2t 67.【点睛】本题主要考查等边三角形的判定及性质、旋转的性质应用、三角形全等的判定及性质、勾股定理等相关知识点,解题关键在于找到图形变化过程中存在的联系,类比推理即可得解.2.在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析【解析】【分析】(1)利用直角三角形斜边的中线等于斜边的一半,即可;(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直角三角形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴PC=PH,∵∠AEF=90°,∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成立,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=⎧⎪∠=∠⎨⎪=⎩∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE.【点睛】此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.3.如图,在矩形ABCD中,6AB cm=,8AD cm=,连接BD,将ABD△绕B点作顺时针方向旋转得到A B D'''△(B′与B重合),且点D'刚好落在BC的延长上,A D''与CD相交于点E.(1)求矩形ABCD与A B D'''△重叠部分(如图1中阴影部分A B CE'')的面积;(2)将A B D'''△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D'''△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm;(2)22331624(0)22588020016(4)3335x x xyx x x⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B''△成为等腰三角形的x的值有:0秒、32秒、695.【解析】【分析】(1)先用勾股定理求出BD的长,再根据旋转的性质得出10B D BD cm''==,2CD B D BC cm'=''-=,利用B D A∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当165x≤<时和当1645x≤≤时,分别列出函数表达式;(3)分类讨论,当AB A B'=''时;当AA A B'=''时;当AB AA'='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm =,8AD cm =,10BD cm ∴=,根据旋转的性质可知10B D BD cm ''==,2CD B D BC cm '=''-=,tan A B CE B D A A D CD '''''∠==''', 682CE ∴=, 32CE cm ∴=, ()28634522222A B CE A B D CED S S S cm ''''''⨯∴==-⨯÷=-; (2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭,解得:x =秒,(x =舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒.综上所述:使得AA B''△成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.4.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(15;(23;(3)存在,63【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=推出16A C EC =,推出A 1C=26n m •,推出BH=A 1C=26n m•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;先证明△FDG ∽△FME ,得到3FG F FM FE D ==,再结合已知条件和解直角三角形求出PM 和FM 的长度,即可得到PF 的最小值.【详解】解:(1)作A 1H ⊥AB 于H ,连接BD ,BD 1,则四边形ADA 1H 是矩形.∴AD=HA 1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2,∴BA 1=2HA 1,∴∠ABA 1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度3055π⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=, ∴16A C EC= ∴A 126n m, ∴BH=A 12226n m n m -=,∴42226nm nm-=⋅,∴m4﹣m2n2=6n4,∴2424 16n nm m-=•,∴33nm=(负根已舍去).(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;由(2)可知,3 BE nBG m==,∵四边形BEFG是矩形,∴33 FGFE=,∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE,∵DF⊥PF,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME,∴△FDG∽△FME,∴33FGFFM FED==,∵∠DFM=90°,tan3FDFMDFM∠==,∴∠FDM=60°,∠FMD=30°,∴3FM DM=;在矩形ABCD中,有33 ADAB=即333=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=33AB =,∴DM=AN=BP=2,∴3323FM DM ==⨯=, ∴63PF PM MF =+=+;【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.5.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠ACB=∠ADE=90°,点F 为BE 的中点,连接CF ,DF .(1)如图1,当点D 在AB 上,点E 在AC 上时①证明:△BFC 是等腰三角形;②请判断线段CF ,DF 的关系?并说明理由;(2)如图2,将图1中的△ADE 绕点A 旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF 且CF ⊥DF .理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF ,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.6.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。
九年级数学上册上册数学压轴题中考真题汇编[解析版]一、压轴题1.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标;(2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.3.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?4.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.5.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F ,①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.6.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 7.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长; (2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.8.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83. (1)求⊙O 的半径OD ;(2)求证:AC 是⊙O 的切线;(3)求图中两阴影部分面积的和.9.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点.(1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.10.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.11.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.12.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE =45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】 解:(1)∵A (﹣5,0),OA =OC ,∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0),∴OB =OC =5,点C (﹣a ,﹣a ﹣1),∴5=()()220+10a a -+-,∴a =3,∴点B (3,4),∴点C (﹣3,﹣4);(2)∵点B (3,4),点C (﹣3,﹣4),点A (﹣5,0),∴BC =10,AB =45 ,AC =25,∵BC 2=100,AB 2+AC 2=80+20=100,∴BC 2=AB 2+AC 2,∴∠BAC =90°,∴AB ⊥AC ;(3)过定点,理由如下:∵将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,∴CO =DO ,又∵CO =BO ,∴DO =BO =CO ,∴△BCD 是直角三角形,∴∠BDC =90°,如图②,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,∵DE 平分∠BDC ,∴∠BDE =∠CDE =45°,∴∠HBC =∠CDE =45°=∠BDE =∠BCH ,∴CH =BH ,∠BHC =90°,∵BC =10,∴BH=CH=,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);②当四边形OP2CQ2为菱形时,OP2=CP2,由C坐标为(0,6),得到Q2纵坐标为3,把y=3代入直线OQ2解析式y=-x中,得:x=-3,此时Q2(-3,3);③当四边形0Q3P3C为菱形时,OC=CP3,则有OQ3=OC=CP3=P3Q3=6,设坐标为(x,-x+6),∵OC=CP3∴x2+x2= CP32= OC2=62解得,2P的坐标为2,2)此时Q322).综上,点Q的坐标是(-3,3)或2,2)或(6,6).【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.3.(1)见解析;(2)DB DF=【解析】【分析】(1)①直接利用三角形的外角性质,即可得到;②过D作DG BC交AB于点G,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC=,DGB FCD∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF,根据题意,可证得BCF BDF A∠=∠=∠,则B、C、D、F四点共圆,即可证明结论成立.【详解】解:(1)①∵BDC A ABD∠=∠+∠,即BDF FDC A ABD∠+∠=∠+∠,∵BDF A∠=∠,∴FDC ADB∠=∠;②过D作DG BC交AB于点G,∴ADG ACB∠=∠,AGD ABC∠=∠,又AB AC=,∴AABC CB=∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,AABC CB=∠∠,∵ECF ACB ∠=∠,∴ABC ECF ∠=∠,∵BC A C A BCF E F =∠+∠∠+∠,∴A BCF ∠=∠,∴BDF A BCF ∠=∠=∠,∴B 、C 、D 、F 四点共圆,∴180DCB DFB ∠+∠=︒,DBF ECF ∠=∠,∴ACB DFB ∠=∠,∵BC EC AC A F B =∠=∠∠,∴DBF DFB ∠=∠,∴DB DF =.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.4.(1)作图见解析;(2)49π. 【解析】试题分析:(1)作出∠B 的角平分线BD ,再过X 作OX ⊥AB ,交BD 于点O ,则O 点即为⊙O 的圆心;(2)由于⊙P 与△ABC 哪两条边相切不能确定,故应分⊙P 与Rt △ABC 的边AB 和BC 相切;⊙P 与Rt △ABC 的边AB 和AC 相切时;⊙P 与Rt △ABC 的边BC 和AC 相切时三种情况进行讨论.试题解析:(1)如图所示:①以B 为圆心,以任意长为半径画圆,分别交BC 、AB 于点G 、H ;②分别以G 、H 为圆心,以大于23GH 为半径画圆,两圆相交于D ,连接BD ;③过X 作OX ⊥AB ,交直线BD 于点O ,则点O 即为⊙O 的圆心. (2)①当⊙P 与Rt △ABC 的边AB 和BC 相切时,由角平分线的性质可知,动点P 是∠ABC 的平分线BM 上的点,如图1,在∠ABC 的平分线BM 上任意确定点P 1(不为∠ABC 的顶点)∵OX=BOsin ∠ABM ,P 1Z=BPsin ∠ABM ,当BP 1>BO 时,P 1Z >OX 即P 与B 的距离越大,⊙P 的面积越大,这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点; 如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上,∴以P为圆心、PC为半径作圆,则⊙P与CB相切于C,与边AB相切于E,即这时⊙P是符合题意的圆,时⊙P的面积就是S的最大值,∵AC=1,BC=2,∴AB=5,设PC=x,则PA=AC-PC=1-x在直角△APE中,PA2=PE2+AE2,∴(1-x)2=x2+(5-2)2,∴x=25-4;②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则(2-y)2=y2+(5-1)2,∴y=51 ;③如图4,同理可得,当⊙P与Rt△ABC的边BC和AC相切时,设PF=z,∵△APF∽△PBE,∴PF:BE=AF:PE,∴,∴z=49. 由①、②、③可知,49>51->∴z >y >x ,∴⊙P 的面积S 的最大值为π.考点:1. 切线的性质;2.角平分线的性质;3.勾股定理;4.作图—复杂作图. 5.(1)详见解析;(2)①详见解析;②8 【解析】 【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度. 【详解】(1)证明: ∵AB 是⊙O 的直径, ∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠, ∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒, ∴90CAB ∠=︒, ∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点, ∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠, ∴CFA CAF ∠=∠ ∴CA CF =;② 设CA CF x ==, 在Rt ABC ∆中,2BC x =+,CA x =,6AB =, 由勾股定理可得222(2)6x x +=+,解得:8x =, ∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可. 6.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒ 62=︒,∵BC BD =,∴1802BBCD BDC ︒-∠∠=∠=180622︒-︒=59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==, ∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =- a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根. ②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+,∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.7.(1)OA =6,AB =10;(2)3011;(3)0<t≤1813或3011<t≤5. 【解析】 【分析】(1)在Rt △AOB 中,tan B =34,OB =8,即可求解; (2)利用△ACD ∽△ABO 、AD +OQ =OA ,即可求解; (3)分QC 与圆P 相切、QC ⊥OA 两种情况,求解即可. 【详解】解:(1)在Rt △AOB 中,tan B =34,OB =8, ∴34OA OB = ,∴OA =6,则AB =10; (2)OP =AP ﹣t ,AC =2t ,∵AC 是圆直径,∴∠CDA =90°,∴CD ∥OB , ∴△ACD ∽△ABO ,∴AC AD AB AO = ,即: 2,106t AD=∴AD =65t , 当Q 与D 重合时,AD +OQ =OA , ∴66,5t t += 30.11t ∴= (3)当QC 与圆P 相切时,∠QAC =90°, ∵OQ =AP =t ,∴AQ =6﹣t ,AC =2t , ∵∠A =∠A ,∠QCA =∠ABO , ∴△AQC ∽△ABO ,∴,AQ ACAB AO= 即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t = ∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解. 8.(1)OD=4, (2)证明过程见详解(3)5043π- 【解析】 【分析】(1)根据AB 与圆O 相切,在Rt △OBD 中运用tan ∠BOD=34,即可求出OD 的长, (2)作辅助线证明四边形ADOG 是矩形,得DO ∥AC,sin ∠OCG=35,在Rt△OCG 中,求出OG 的长等于半径即可解题,(3)利用S 阴影=S Rt △BAC -S 正方形ADOG -14S 圆O ,求出AC 长度即可解题. 【详解】解:(1)∵AB 与圆O 相切, ∴OD ⊥AB,在R t △OBD 中,BD=3,tan ∠BOD=BD OD =34, ∴OD=4,(2)过点O 作OG 垂直AC 于点G , ∵∠A=90°,AB 与圆O 相切, ∴四边形ADOG 是矩形, ∴DO ∥AC,∴∠BOD=∠OCG ,∵tan ∠BOD=BD OD =34, ∴sin ∠OCG=35,∵CF=83,OF=4,∴OG=OGsin ∠OCG=4=r, ∴AC 是⊙O 的切线(3)由前两问可知,四边形ADOG 是边长为4的正方形, 扇形DOE 和扇形GOF 的面积之和是四分之一圆的面积, 在R t △ABC 中,tan ∠C=34,AB=4+3=7, ∴AC=AB tan C ∠=734=283,∴S 阴影=S Rt △BAC -S 正方形ADOG -14S 圆O =212817444234π⨯⨯-⨯-=5043π- 【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.9.(1)2y x 2x 3=-++;(2)3(1,)2;(3)14m <≤或78m = 【解析】 【分析】(1)根据题意可得出点B 的坐标,将点B 、C 的坐标分别代入二次函数解析式,求出b 、c 的值即可.(2)在对称轴上取一点E ,连接EC 、EB 、EA ,要使得EAB 的周长最小,即要使EB+EA 的值最小,即要使EA+EC 的值最小,当点C 、E 、A 三点共线时,EA+EC 最小,求出直线AC 的解析式,最后求出直线AC 与对称轴的交点坐标即可.(3)求出直线CD 以及射线BD 的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B 时,将点B 的坐标代入二次函数解析式,求出m 的值,写出m 的范围即可;②当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得关于x 的一元二次方程,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,即0∆=,列式求出m 的值即可. 【详解】 (1)矩形OABC ,∴OC=AB ,A(2,0),C(0,3),∴OA=2,OC=3, ∴B(2,3),将点B ,C 的坐标分别代入二次函数解析式,4233b c c -++=⎧⎨=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线解析式为:2y x 2x 3=-++.(2)如图,在对称轴上取一点E ,连接EC 、EB 、EA ,当点C 、E 、A 三点共线时,EA+EC 最小,即EAB 的周长最小, 设直线解析式为:y =kx +b , 将点A 、C 的坐标代入可得:203k b b +=⎧⎨=⎩, 解得:323k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:3=32y x -+.2y x 2x 3=-++=2(1)4x -+-, ∴D(1,4),令x =1,y =332-+=32. ∴E(1,32).(3)设直线CD解析式为:y=kx+b,C(0,3),D(1,4),∴43k bb+=⎧⎨=⎩,解得13 kb=⎧⎨=⎩,∴直线CD解析式为:y=x+3,同理求出射线BD的解析式为:y=-x+5(x≤2),设平移后的顶点坐标为(m,m+3),则抛物线解析式为:y=-(x-m)2+m+3,①如图,当抛物线经过点B时,-(2-m)2+m+3=3,解得m=1或4,∴当1<m≤4时,平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得:-(x -m )2+m +3=-x +5, 即x 2-(2m +1)x +m 2-m +2=0,要使平移后的抛物线与射线BD 只有一个公共点, 即要使一元二次方程有两个相等的实数根,∴22[(21)]4(2)0m m m ∆=-+⨯-+=-,解得78m =. 综上所述,14m <≤或78m =时,平移后的抛物线与射线BD 只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.10.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 992m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.11.(1) A(0,2),B(4,0),272 2y x x=-++;(2)当t=2时,MN有最大值4;(3) D点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A、B的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情况,如答图2所示,其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限是直线D1N和D2M的交点,利用直线解析式求得交点坐标即可. 【详解】 解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D不在y轴上时,由图可知D3为D1N与D2M的交点,分别求出D1N的解析式为:162y x=-+,D2M的解析式为:322y x=-,联立两个方程得:D3(4,4),故所求的D点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5【解析】【分析】(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠D=90°,∵AB=CD=2,∴DG22CDCG-2242-3,∴AG=AB﹣BG=4﹣3故答案为:4﹣3.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH22AH AG-22522⎛⎫-⎪⎝⎭32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4545当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=12×2×(55综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。
初三九年级上册数学压轴题中考真题汇编[解析版]一、压轴题1.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.2.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.3.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?4.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD ⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.5.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).6.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想. 7.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.8.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.9.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则si nα=13BCAB,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.10.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.11.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.12.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】 【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解. 【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ∴BE EF =,80BEF ∠= ∴180502BEFEBF BFE -∠∠=∠== ,即50BFD ∠=∵AB=AC=4,D 是BC 的中点 ∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△ ∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠= ∴50CFD BAD ∠=∠= ∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心 ∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥ ∴9040ABC BAD ∠=-∠= ∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立 (3)由(1)和(2)知,//CF AB ∴点F 的运动路径在CF 上 如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置 ∴故当点E 与点A 重合时,AF 最小 此时AF 1=AB=AC=4,即AF 的最小值为4. 【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.2.(1)12;(2)53;(3)202. 【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=,10AB =, 1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==,2222553522OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====, 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点 PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=, 45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.3.(1)见解析;(2)DB DF=【解析】【分析】(1)①直接利用三角形的外角性质,即可得到;②过D作DG BC交AB于点G,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC=,DGB FCD∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF,根据题意,可证得BCF BDF A∠=∠=∠,则B、C、D、F四点共圆,即可证明结论成立.【详解】解:(1)①∵BDC A ABD∠=∠+∠,即BDF FDC A ABD∠+∠=∠+∠,∵BDF A∠=∠,∴FDC ADB∠=∠;②过D作DG BC交AB于点G,∴ADG ACB∠=∠,AGD ABC∠=∠,又AB AC=,∴AABC CB=∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,A ABC CB =∠∠,∵ECF ACB ∠=∠,∴ABC ECF ∠=∠,∵BC A C A BCF E F =∠+∠∠+∠,∴A BCF ∠=∠,∴BDF A BCF ∠=∠=∠,∴B 、C 、D 、F 四点共圆,∴180DCB DFB ∠+∠=︒,DBF ECF ∠=∠,∴ACB DFB ∠=∠,∵BC EC AC A F B =∠=∠∠,∴DBF DFB ∠=∠,∴DB DF =.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.4.(1)CD 2+BD 2=2AD 2,见解析;(2)BD 2=CD 2+2AD 2,见解析;(3)①2,②最大值为4414710 【解析】【分析】(1)先判断出∠BAD =CAE ,进而得出△ABD ≌△ACE ,得出BD =CE ,∠B =∠ACE ,再根据勾股定理得出DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,即可得出结论;(2)同(1)的方法得,ABD ≌△ACE (SAS ),得出BD =CE ,再用勾股定理的出DE 2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =2,再将AD+BD =14,CD =2代入22AD BD ⎛⎫⋅+ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=72,故答案为72;②∵AD+BD=14,∴CD=72,∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,2AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=710.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质. 5.(1)证明见解析;(2)213;(3)23a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明; (2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==∵BF ⊥EC ,∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M , 由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG , ∴△EBF ∽△EGA ,∴123=11532a BF BE AG EG a a ==+, ∵33AG BG ==, ∴233525BF a a =⨯=, ∴△OFB 的面积=21313225330BF BM a a a ⋅=⨯⨯=. 【点睛】 本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.6.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.7.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC 可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标. 【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E点坐标为(4,0),C点坐标为(4,4),∵∠CDB=∠CEB=90︒,∴B、C、D、E四点共圆,∵CD CD=,∠CBA=45︒,∴∠CED=45︒,∴FE平分∠CEO,过P点作PH⊥CE于H,作PG⊥OE于G,过A点作AK⊥EC于K.∴PH=PQ,∵PA+PQ=PA+PH≥AK=OE,∴OE=4,∴AP+PQ≥4,∴AP+PQ的最小值为4.(2)∵A点坐标为(0,2),C点坐标为(4,4),设直线AC解析式为:y=kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.8.(1)4;(2)2;(3)6002+1).【解析】【分析】(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=2+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=2.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC+BC+BD2+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC是直径,∴BD=AC时,AB+BC+BD的值最大,最大值=6002+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.9.(1)sin2α=429;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴AC=22AB BC-=22(3)x x-=22x,∵12•AC•BC=12•AB•CD,∴CD=223 x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=429.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴22QN MN-=4k,∵1122NMQ S MN MQ NQ MR ∆== ,∴3k•4k=5k•MR ∴MR=12k 5 ,在Rt △MRO 中,sin2β=sin∠MON=122455252k MR k OM ==.考点:圆的综合题.10.(1)2y x 2x 3=-++;(2)3(1,)2;(3)14m <≤或78m =【解析】【分析】(1)根据题意可得出点B 的坐标,将点B 、C 的坐标分别代入二次函数解析式,求出b 、c 的值即可.(2)在对称轴上取一点E ,连接EC 、EB 、EA ,要使得EAB 的周长最小,即要使EB+EA 的值最小,即要使EA+EC 的值最小,当点C 、E 、A 三点共线时,EA+EC 最小,求出直线AC 的解析式,最后求出直线AC 与对称轴的交点坐标即可.(3)求出直线CD 以及射线BD 的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B 时,将点B 的坐标代入二次函数解析式,求出m 的值,写出m 的范围即可;②当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得关于x 的一元二次方程,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,即0∆=,列式求出m 的值即可.【详解】 (1)矩形OABC , ∴OC=AB ,A(2,0),C(0,3),∴OA=2,OC=3,∴B(2,3),将点B ,C 的坐标分别代入二次函数解析式,4233b c c -++=⎧⎨=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线解析式为:2y x 2x 3=-++.(2)如图,在对称轴上取一点E ,连接EC 、EB 、EA ,当点C 、E 、A 三点共线时,EA+EC 最小,即EAB 的周长最小,设直线解析式为:y =kx +b ,将点A 、C 的坐标代入可得:203k b b +=⎧⎨=⎩, 解得:323k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:3=32y x -+. 2y x 2x 3=-++=2(1)4x -+-,∴D(1,4),令x =1,y =332-+=32. ∴E(1,32).(3)设直线CD 解析式为:y =kx +b ,C(0,3),D(1,4),∴43k b b +=⎧⎨=⎩, 解得13k b =⎧⎨=⎩, ∴直线CD 解析式为:y =x +3,同理求出射线BD 的解析式为:y =-x +5(x ≤2),设平移后的顶点坐标为(m ,m +3),则抛物线解析式为:y =-(x -m )2+m +3,①如图,当抛物线经过点B 时,-(2-m )2+m +3=3,解得m =1或4,∴当1<m ≤4时, 平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得:-(x -m )2+m +3=-x +5,即x 2-(2m +1)x +m 2-m +2=0,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,∴22[(21)]4(2)0m m m ∆=-+⨯-+=-,解得78m =. 综上所述,14m <≤或78m =时,平移后的抛物线与射线BD 只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.11.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72,∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.12.(1)45,45;(2)k=33±;(3)y=3x+3﹣2【解析】【分析】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx (k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=3±(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.。
九年级几何模型压轴题综合测试卷(word含答案)一、初三数学旋转易错题压轴题(难)1.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(17;(25【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP2,BE=BP’=1,勾股定理可求得正方形边长.(17(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′2;连接PP′,在Rt△BP′P中,∵BP=BP′2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP5∵222+,即AP′2+PP′2=AP2;125∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=5;∴∠BPC=135°,正方形边长为5.点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.2.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.【答案】(1)证明见解析;(2)45°或135°;(3).【解析】试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.(3)根据和求解即可.试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.∴∠BAE=∠DAG..∴△ABE≌△ADG(SAS).∴BE=DG..(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.(3)如图3,连接GB、GE.由已知α=45°,可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵,∴GE =8.∴.过点B作BH⊥AE于点H.∵AB=2,∴. ∴..设点G到BE的距离为h.∴.∴.∴点G到BE的距离为.考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.3.边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.4.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.(1)点C的坐标为(,);(2)若二次函数的图象经过点C.①求二次函数的关系式;②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1) ∴点C的坐标为(-3,1) .(2)①∵二次函数的图象经过点C(-3,1),∴.解得∴二次函数的关系式为②当-1≤x≤4时,≤y≤8;③过点C作CD⊥x轴,垂足为D,i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直角三角形,过点作⊥轴,∵=,∠=∠,∠=∠=90°,∴△≌△,∴AE=AD=2,=CD=1,∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证△≌△∴BF =OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△是以AB为直角边的等腰直角三角形.【解析】(1)根据旋转的性质得出C点坐标;(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;③分二种情况进行讨论.5.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现(1)某小组做了有一个角是120︒的等腰三角形DAC和等边三角形GEB纸片,DA DC=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC 和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________; 数学思考(2)在图①的基础上,将GEB 绕着C 点按顺时针方向旋转90︒,如图②,试判断DF 和EF 的数量关系和位置关系,并说明理由; 类比探索(3)①将GEB 绕着点C 任意方向旋转,如图③或图④,请问DF 和EF 的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;②GEB 绕着点C 旋转的过程中,猜想DF 与EF 的数量关系和位置关系,用一句话表述:________.【答案】(1)3EF DF =,DF EF ;(2)3EF DF =,DF EF ,理由见解析;(3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DFEF 始终成立.【解析】 【分析】(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析; (3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立.【详解】解:(1)3EF DF =,DFEF ;如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =. 又点F 为AB 的中点, AF BF ∴=.()12MF CF NC NB AC AM CB MC NC +=++=+=+∴.MF NC NB ∴==,CF CN FN AM +==. 设DM a =,2GB b =,120ADC ∠=︒,DA DC =,3AM a ∴=,3FN a =,MF NC NB b ===. tan 33EGB NE GN GN b =⋅==∠.在DMF 和FNE 中,33DM FN a ==, 33MF NE b==, 又90DMF FNE ∠=∠=︒, DMF FNE ∴∽.MDF NFE ∴∠=∠,3DF DM FE FN ==,即3EF DF =. 90MDF DFM ∠+∠=︒,90DFM NFE ∴∠+∠=︒. 90DFE ∴∠=︒.3EF DF ∴=且DFEF .(2)3EF DF =,DFEF .理由如下:如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90︒时,则90ACB ∠=︒,在Rt ACB △中,点F 是AB 的中点,CF BF ∴=.又CE EB=,EF ∴垂直平分BC.同理,DF 垂直平分AC , ∴四边形LCMF 为矩形, 90DFE ∴∠=︒.DF EF ∴⊥,//AC EF .DA DC =,120ADC =∠︒,30DCA ∴∠=︒. GEB 为等边三角形, 60ECB ∴∠=︒.∴∠DCA+∠ACB+∠ECB=180^∘ ∴D ,C ,E 三点共线.30DCA DEF ∴∠=∠=︒.∴在Rt DEF △中,3tan 33DE DF F F E DF===∠; (3)①3EF DF =,DF EF .选择题图进行证明:如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,在ADF 和BNF 中,AF BF AFD BFN DF NF =⎧⎪∠=∠⎨⎪=⎩, ()SAS ADF BNF ∴≅.AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.18060O ADC ∴∠=︒-∠=︒.又CPO BPE ∠=∠,60O CEB ∠=∠=︒, OCP OBE ∴∠=∠. DCE NBE ∴∠=∠. 又GEB 是等边三角形, GE BE ∴=,又AD BN CD ==,()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠+∠=∠+∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF∴⊥,60FDE∠=︒.tan3E EF DF DFFD∴∠=⋅=.或选择图进行证明,证明如下:如解图,延长DF并延长到点N,使得FN DF=,连接NB,DE,NE,NB与CD 交于点O,EB与CD相交于点J,在ADF 和BNF中,AF BFAFD BFNDF NF=⎧⎪∠=∠⎨⎪=⎩,()SASADF BNF∴≅.AD NB∴=,ADF BNF∠=∠.//AD NB∴.120NOC ADC∴∠=∠=︒.60BOJ∴∠=︒,60JEC∠=︒.又OJB EJC∠=∠,OBE ECJ∴∠=∠.AD CD=,AD NB=,CD NB∴=.又GEB是等边三角形,CE BE∴=.()SASDCE NBE∴≅.DE NE∴=,BEN CED∠=∠.BEN BED CED BED∴∠-∠=∠-∠,即60NED BEC∠=∠=︒.DEN∴是等边三角形.又DF FN=,DF EF ∴⊥,60FDE ∠=︒.tan 3E E F DF DF FD ∴∠=⋅=.②旋转过程中3EF DF =,DFEF 始终成立.【点睛】本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.6.如图1,矩形ABCD 中,E 是AD 的中点,以点E 直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,∠F=30°.(1)求证:BE =CE(2)将△EFG 绕点E 按顺时针方向旋转,当旋转到EF 与AD 重合时停止转动.若EF ,EG 分别与AB ,BC 相交于点M ,N.(如图2)①求证:△BEM≌△CEN;②若AB =2,求△BMN 面积的最大值;③当旋转停止时,点B 恰好在FG 上(如图3),求sin∠EBG 的值.【答案】(1)详见解析;(262+ 【解析】【分析】(1)只要证明△BAE ≌△CDE 即可; (2)①利用(1)可知△EBC 是等腰直角三角形,根据ASA 即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH ⊥BG 于H .设NG=m ,则BG=2m ,3m ,6m .利用面积法求出EH ,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,7.已知,如图:正方形ABCD,将Rt△EFG斜边EG的中点与点A重合,直角顶点F落在正方形的AB边上,Rt△EFG的两直角边分别交AB、AD边于P、Q两点,(点P与点F重合),如图1所示:(1)求证:EP2+GQ2=PQ2;(2)若将Rt△EFG绕着点A逆时针旋转α(0°<α≤90°),两直角边分别交AB、AD边于P、Q两点,如图2所示:判断四条线段EP、PF、FQ、QG之间是否存在什么确定的相等关系?若存在,证明你的结论.若不存在,请说明理由;(3)若将Rt△EFG绕着点A逆时针旋转α(90°<α<180°),两直角边所在的直线分别交BA、AD两边延长线于P、Q两点,并判断四条线段EP、PF、FQ、QG之间存在何种确定的相等关系?按题意完善图3,请直接写出你的结论(不用证明).【答案】(1)见解析;(2)PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【解析】【分析】(1)过点E作EH∥FG,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PQ=PH,在Rt△EPH中,EP2+EH2=PH2,由此可以得到EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,由此可证△EAH≌△GAQ,然后根据全等三角形的性质得到EH=QG,又PH=PQ,在Rt△EPH中,EP2+EH2=PH2,即EP2+GQ2=PH2,在Rt△PFQ中,PF2+FQ2=PQ2,故PF2+FQ2=EP2+GQ2;(3)四条线段EP、PF、FQ、QG之间的关系为PE2+GQ2=PF2+FQ2,证明方法同上.【详解】(1)过点E作EH∥FG,连接AH、FH,如图所示:∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵FA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PQ2;(2)过点E作EH∥FG,交DA的延长线于点H,连接PQ、PH,∵EA=AG,∠HEA=∠AGQ,∠HAE=∠GAD,∴△EAH≌△GAQ,∴EH=QG,HA=AQ,∵PA⊥AD,∴PQ=PH.在Rt△EPH中,∵EP2+EH2=PH2,∴EP2+GQ2=PH2.在Rt△PFQ中,∵PF2+FQ2=PQ2,∴PF2+FQ2=EP2+GQ2.(3)四条线段EP、PF、FQ、QG之间的关系为PF2+GQ2=PE2+FQ2.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,三线合一,勾股定理,正确作出辅助线是解答本题的关键.8.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.二、初三数学 圆易错题压轴题(难)9.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.(1)求证:△ABD ≌△AFE(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.【答案】(1)证明见解析(2)16π<S ≤40π【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围,24S DE π=,所以利用二次函数的性质求出最值.试题解析:(1)连接EF ,∵△ADE 是等腰直角三角形,AE=AD ,∴∠EAD=90°,∠AED=∠ADE=45°,∵AE AE = ,∴∠ADE=∠AFE=45°,∵∠ABD=45°,∴∠ABD=∠AFE ,∵AF AF =,∴∠AEF=∠ADB ,∵AE=AD , ∴△ABD ≌△AFE ;(2)∵△ABD ≌△AFE ,∴BD=EF ,∠EAF=∠BAD ,∴∠BAF=∠EAD=90°,∵42AB = ,∴BF=42cos cos45AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8, ∵BE 2=EF 2+BF 2, 82<BE ≤413 , ∴128<EF 2+82≤208,∴8<EF ≤12,即8<x ≤12,则()222844S DE x x ππ⎡⎤==+-⎣⎦=()2482x ππ-+, ∵2π>0, ∴抛物线的开口向上,又∵对称轴为直线x=4,∴当8<x ≤12时,S 随x 的增大而增大,∴16π<S ≤40π.点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.10.如图①,一个Rt △DEF 直角边DE 落在AB 上,点D 与点B 重合,过A 点作二射线AC 与斜边EF 平行,己知AB=12,DE=4,DF=3,点P 从A 点出发,沿射线AC 方向以每秒2个单位的速度运动,Q 为AP 中点,设运动时间为t 秒(t >0)•(1)当t=5时,连接QE ,PF ,判断四边形PQEF 的形状;(2)如图②,若在点P 运动时,Rt △DEF 同时沿着BA 方向以每秒1个单位的速度运动,当D 点到A 点时,两个运动都停止,M 为EF 中点,解答下列问题:①当D 、M 、Q 三点在同一直线上时,求运动时间t ;②运动中,是否存在以点Q 为圆心的圆与Rt △DEF 两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.【解析】试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.试题解析:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴.∵AQ=EF=5,∴AH=ED=4.∵AE=12-4=8,∴HE=8-4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12-t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴,∴,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴,∴,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH-DH+DB=12,DB=t,∴-+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.11.已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =;(3)33133122or +- 【解析】【分析】 (1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒=3∵B 为AC 的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD +=(3)①如图3.圆O 与圆D 相内切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即)2222331x x -=-- 解得:331x += ∴AE=3312AF 2=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1∴AD=31-在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+解得:331x -= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.12.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=13CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.(1)直接用含t 的代数式表示BQ 、DF ;(2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解;(3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.13.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)210 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H ∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.14.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O与ABC∆的一边相切有两种情况,先与AC相切,再与BC相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答.(3)①根据旋转的性质可得PF PE=,在Rt EFG∆中根据三角函数可得cos30FG PE︒=⋅,故当E点与C点重合,PE取得最大值时,FG有最大值,解之即可.②明显以E点与C点重合前后为节点,点F的运动轨迹分两部分,第一部分为从P开始运动到E点与C点重合,即图中的12F F,根据1212F F AC AF CF=--求解;第二部分,根据tanEF EPEBFEB EB∠==为定值可知其轨迹为图中的2F B,在2Rt F BC中用勾股定理求解即可.【详解】(1)2222DP mAO=+=+,8BP AB AP m=-=-(2)情况1:与AC相切时,Rt AOH∆中,∵30A∠=︒∴2AO OH=∴22mm+=解得4m=情况2:与BC相切时,Rt BON∆中,∵60B∠=︒∴3cos2ONBOB==即3282mm=-解得348m=(3)①在Rt EFG ∆中,∵30EFG A ∠=∠=︒,90EGF ∠=︒, ∴3cos30cos302FG EF PE EP ︒︒=⋅=⋅=, ∴当FG 最大时即PE 最大当点E 与点C 重合时,PE 的值最大.易知此时53553AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233AF AE EF AD PE =-=-==, 2532CF CP ==, 故1212235311353F F AC AF CF =--== 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,222222535752BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 所经过的路径长是1153762+. 【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.15.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE ∆绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180︒到△1C DE 的位置.(1)求1C 点的坐标;(2)求经过三点O 、A 、1C 的抛物线的解析式;(3)如图③,G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切线BF 的解析式;(4)抛物线上是否存在一点M ,使得:16:3AMF OAB S S ∆∆=.若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)13)C ;(2)23333y x x =-;(3)32333y x =+;(4)1283834,,2,33M M ⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭. 【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F ,B 的坐标即可求出解析式.(4)当M 在x 轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE ∆绕边AB 的中点G 按顺时针方向旋转180︒到△1C DE , 则有,四边形'OAC B 是菱形,所以1C 的横坐标为3,根据等边CDE ∆的边长是2,利用等边三角形的性质可得1C ;(2)抛物线过原点(0,0)O ,设抛物线解析式为2y ax bx =+,把(2,0)A,C '代入,得42093a b a b +=⎧⎪⎨+=⎪⎩解得3a =,b = ∴抛物线解析式为2y x x =-;(3)90ABF ∠=︒,60BAF ∠=︒,30AFB ∴∠=︒,又2AB =,4AF ∴=,2OF ∴=,(2,0)F ∴-, 设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得3k =3b =, ∴直线BF的解析式为y x =+; (4)①当M 在x轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=, 得2280x x --=,解得14x =,22x =-,当14x =时,244y ,。
2021年九年级中考数学试题真题汇编:函数几何综合压轴题1.(14分)(2020•浙江台州)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.【解答】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4(20+m)2,∴当h时,s max=20+m=20+16,∴m=16,此时h18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.2.(12分)(2020•湖北荆门)如图,抛物线L:y x2x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D,求PD+BD的最大值,并求出此时点P的坐标;(3)如图2,将抛物线L:y x2x﹣3向右平移得到抛物线L',直线AB与抛物线L'交于M,N两点,若点A是线段MN的中点,求抛物线L'的解析式.【解答】解:(1)∵抛物线L:y x2x﹣3与x轴正半轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣3),设直线AB解析式为:y=kx﹣3,∴0=4k﹣3,∴k,∴直线AB解析式为:y x﹣3,∵y x2x﹣3(x)2,∴抛物线顶点坐标为(,);(2)∵点A(4,0),点B(0,﹣3),∴OA=4,OB=3,∴AB5,设点P(x,x2x﹣3)(x<4),则点D(x,x﹣3),∴BD x,PD=(x﹣3)﹣(x2x﹣3)x2+2x,∴PD+BD x2+2x x(x)2,∵x<4,0,∴当x时,PD+BD有最大值为,此时,点P(,);(3)设平移后的抛物线L'解析式为y(x﹣m)2,联立方程组可得:,∴x2﹣2(m)x+m20,设点M(x1,y1),点N(x2,y2),∵直线AB与抛物线L'交于M,N两点,∴x1,x2是方程x2﹣2(m)x+m20的两根,∴x1+x2=2(m),∵点A是MN的中点,∴x1+x2=8,∴2(m)=8,∴m,∴平移后的抛物线L'解析式为y(x)2x2x.3.(12分)(2020•山东东营)如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.(1)观察猜想.图1中,线段NM、NP的数量关系是NM=NP,∠MNP的大小为60°.(2)探究证明把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP 的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.【解答】解:(1)∵AB=AC,AD=AE,∴BD=CE,∵点M、N、P分别为DE、BE、BC的中点,∴MN BD,PN CE,MN∥AB,PN∥AC,∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,∴∠MNE+∠ENP=∠ABE+∠AEB,∵∠ABE+∠AEB=180°﹣∠BAE=60°,∴∠MNP=60°,故答案为:NM=NP;60°;(2)△MNP是等边三角形.理由如下:由旋转可得,∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵点M、N、P分别为DE、BE、BC的中点.∴MN BD,PN CE,MN∥BD,PN∥CE,∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,∴△MNP是等边三角形;(3)根据题意得,BD≤AB+AD,即BD≤4,∴MN≤2,∴△MNP的面积,∴△MNP的面积的最大值为.4.(10分)(2020•广西)如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)s关于t的函数解析式为s,其图象如图2所示,结合图1、2的信息,求出a与b的值;(3)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【解答】解:(1)如图1,连接AG,当t=2时,A(﹣2,2),在y=x+1中,当x=0时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2)2+(x+1﹣2)2+x2+(x+1﹣1)2=(﹣2)2+(2﹣1)2,解得:x1=0(舍),x2,∴B(,);(2)如图2可知:当t=7时,s=4,把(7,4)代入s中得:7b4,解得:b=﹣1,如图3,过B作BH∥y轴,交AC于H,由(1)知:当t=2时,A(﹣2,2),B(,),设AC的解析式为:y=kx+b,则,解得,∴AC的解析式为:y x+3,∴H(,),∴BH,∴s,把(2,)代入s=a(t+1)(t﹣5)得:a(2+1)(2﹣5),解得:a;(3)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(﹣2,1),∵D(﹣2,﹣1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1﹣1)2+(x+2)2+(x+1+1)2=22,解得:x1=﹣1,x2=﹣2(舍),∴B(﹣1,0),即B在x轴上,∴AB,AC2,∴S△ABC2;②当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(﹣2,t),D(﹣2,﹣1),∴(x+2)2+(x+1﹣t)2=(x+2)2+(x+1+1)2,(x+1﹣t)2=(x+2)2,x+1﹣t=x+2或x+1﹣t=﹣x﹣2,解得:t=﹣1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(﹣2)2+(t﹣3)2+x2+(x+1﹣3)2=(x+2)2+(x+1﹣t)2,把t=2x+3代入得:x2﹣3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(﹣2,9),B(3,4),∴AC2,BC,∴S△ABC10;当t=0时,如图6,此时,A(﹣2,3),AC=2,BC=2,∴S△ABC2.5.(12分)(2020•浙江湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c (c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【解答】解:(1)①∵AC∥x轴,点A(﹣2,1),∴C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,∴,∴抛物线的解析式为y=﹣x2﹣2x+1;②如图1,过点D作DE⊥x轴于E,交AB于点F,∵AC∥x轴,∴EF=OC=c,∵点D是抛物线的顶点坐标,∴D(,c),∴DF=DE﹣EF=c c,∵四边形AOBD是平行四边形,∴AD=DO,AD∥OB,∴∠DAF=∠OBC,∵∠AFD=∠BCO=90°,∴△AFD≌△BCO(AAS),∴DF=OC,∴c,即b2=4c;(2)如图2,∵b=﹣2.∴抛物线的解析式为y=﹣x2﹣2x+c,∴顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,设点A(m,﹣m2﹣2m+c)(m<0),过点D作DE⊥x轴于点E,交AB于F,∴∠AFD=∠EFC=∠BCO,∵四边形AOBD是平行四边形,∴AD=BO,AD∥OB,∴∠DAF=∠OBC,∴△AFD≌△BCO(AAS),∴AF=BC,DF=OC,过点A作AM⊥y轴于M,交DE于N,∴DE∥CO,∴△ANF∽△AMC,∴,∵AM=﹣m,AN=AM﹣NM=﹣m﹣1,∴,∴,∴点A的纵坐标为﹣()2﹣2×()+c=c c,∵AM∥x轴,∴点M的坐标为(0,c),N(﹣1,c),∴CM=c﹣(c),∵点D的坐标为(﹣1,c+1),∴DN=(c+1)﹣(c),∵DF=OC=c,∴FN=DN﹣DF c,∵,∴,∴c,∴c,∴点A纵坐标为,∴A(,),∴存在这样的点A,使四边形AOBD是平行四边形.6.(2020•辽宁锦州)在平面直角坐标系中,抛物线y x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式;(2)如图,直线y与抛物线交于A,D两点,与直线BC交于点E.若M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当点F在直线AD上方的抛物线上,且S△EFG S△OEG时,求m的值;②在平面内是否在点P,使四边形EFHP为正方形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y x2+bx+c交x轴于A(﹣3,0),B(4,0)两点,∴y(x+3)(x﹣4);(2)①如图1,∵B(4,0),C(0,4),∴设BC的解析式为:y=kx+b,则,解得,∴BC的解析式为:y=﹣x+4,∴﹣x+4,解得:x=1,∴E(1,3),∵M(m,0),且MH⊥x轴,∴G(m,),F(m,),∵S△EFG S△OEG,∴,[()﹣()](1﹣m),解得:m1,m2=﹣2;②存在,由①知:E(1,3),∵四边形EFHP是正方形,∴FH=EF,∠EFH=∠FHP=∠HPE=90°,∵M(m,0),且MH⊥x轴,∴H(m,﹣m+4),F(m,),分两种情况:i)当﹣3≤m<1时,如图2,点F在EP的左侧,∴FH=(﹣m+4)﹣(),∵EF=FH,∴,解得:m1(舍),m2,∴H(,),∴P(1,),ii)当1<m<4时,点F在PE的右边,如图3,同理得m﹣1,解得:m1,m2(舍),同理得P(1,);综上,点P的坐标为:或.7.(11分)(2020•河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为等腰直角三角形,连接BD,可求出的值为;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.【解答】解:(1)∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD﹣∠BAB'=90°﹣60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D75°,∴∠DB'E=180°﹣60°﹣75°=45°,∵DE⊥B'E,∴∠B'DE=90°﹣45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°,∴∠EB'D=∠AB'D﹣∠AB'B=135°45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②3或1.若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D B'E,由(2)①可知△BDB'∽△CDE,且BB'CE.∴1111=3.若CD为平行四边形的一边,如图3,点E与点A重合,∴1.综合以上可得3或1.8.(14分)(2020•四川绵阳)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD 的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.【解答】解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC AC,OB=OD BD,AC=BD,∴AC=BD10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴,即,解得:AI t,∴(3t)2t×10,解得:t,即存在时刻t s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴,∴HN OM=3,∴DH=HN﹣DN=34,∴AH=AD﹣DH=12﹣3,∴t4,即当△OFH为正三角形时,t的值为(4)s.9.(12分)(2020•内蒙古包头)如图,在平面直角坐标系中,抛物线y x2﹣2x经过坐标原点,与x轴正半轴交于点A,该抛物线的顶点为M,直线y x+b经过点A,与y轴交于点B,连接OM.(1)求b的值及点M的坐标;(2)将直线AB向下平移,得到过点M的直线y=mx+n,且与x轴负半轴交于点C,取点D(2,0),连接DM,求证:∠ADM﹣∠ACM=45°;(3)点E是线段AB上一动点,点F是线段OA上一动点,连接EF,线段EF的延长线与线段OM交于点G.当∠BEF=2∠BAO时,是否存在点E,使得3GF=4EF?若存在,求出点E的坐标;若不存在,请说明理由.【解答】(1)解:对于抛物线y x2﹣2x,令y=0,得到x2﹣2x=0,解得x=0或6,∴A(6,0),∵直线y x+b经过点A,∴0=﹣3+b,∴b=3,∵y x2﹣2x(x﹣3)2﹣3,∴M(3,﹣3).(2)证明:如图1中,设平移后的直线的解析式y x+n.∵平移后的直线经过M(3,﹣3),∴﹣3n,∴n,∴平移后的直线的解析式为y x,过点D(2,0)作DH⊥MC于H,则直线DH的解析式为y=2x﹣4,由,解得,∴H(1,﹣2),∵D(2,0),M(3,﹣3),∴DH,HM,∴DH=HM.∴∠DMC=45°,∵∠ADM=∠DMC+∠ACM,∴∠ADM﹣∠ACM=45°.(3)解:如图2中,过点G作GH⊥OA于H,过点E作EK⊥OA于K.∵∠BEF=2∠BAO,∠BEF=∠BAO+∠EF A,∴∠EF A=∠BAO,∵∠EF A=∠GFH,tan∠BAO,∴tan∠GFH=tan∠EFK,∵GH∥EK,∴,设GH=4k,EK=3k,则OH=HG=4k,FH=8k,FK=AK=6k,∴OF=AF=12k=3,∴k,∴OF=3,FK=AK,EK,∴OK,∴E(,).10.(13分)(2020•湖北孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a >0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A(﹣3,0),B(﹣1,0),C(0,18),D(﹣2,﹣6);(2)如图1,直线DC交x轴于点E,若tan∠AED,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P 的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x2,故点E(2,0),则OE2,tan∠AED,解得:a,故点C、E的坐标分别为(0,)、(,0),则CE;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y x2x,故点A、C的坐标分别为(﹣5,0)、(0,),则点N(0,),由点A、N的坐标得,直线AN的表达式为:y x;设点P(t,t2t),则点F(t,t);则PF t2﹣3t,由点E(,0)、C的坐标得,直线CE的表达式为:y x,则点J(t,t),故FJ t,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH,f=PF+FH t2﹣3t(﹣t+1)t2﹣4t;②f t2﹣4t(t+3)2(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,f max m2﹣4m;当﹣3≤m<0时,f max.11.(12分)(2020•四川达州)如图,在平面直角坐标系xOy中,已知直线y x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C (﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△P AB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN ON的最小值.【解答】解:(1)∵直线y x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a,∴抛物线解析式为:y(x+1)(x﹣4)x2x﹣2;(2)如图,当点P在直线AB上方时,过点O作OP∥AB,交抛物线与点P,∵OP∥AB,∴△ABP和△ABP是等底等高的两个三角形,∴S△P AB=S△ABO,∵OP∥AB,∴直线PO的解析式为y x,联立方程组可得,解得:或,∴点P(2+2,1)或(2﹣2,1);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',∴AB∥EP''∥OP,OB=BE,∴S△ABP''=S△ABO,∵EP''∥AB,且过点E(0,﹣4),∴直线EP''解析式为y x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1)或(2﹣2,1)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2m﹣2),则点F(m,m﹣2),∴MF m﹣2﹣(m2m﹣2)(m﹣2)2+2,∴△MAB的面积4×[(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MR⊥OK于R,延长MF交直线KO于Q,∵∠KOB=30°,KN⊥OK,∴KN ON,∴MN ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN ON有最小值,即最小值为MP,∵∠KOB=30°,∴直线OK解析式为y x,当x=2时,点Q(2,2),∴QM=23,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM QM,∴MN ON的最小值为.12.(12分)(2020•山东威海)发现规律(1)如图①,△ABC与△ADE都是等边三角形,直线BD,CE交于点F.直线BD,AC交于点H.求∠BFC的度数.(2)已知:△ABC与△ADE的位置如图②所示,直线BD,CE交于点F.直线BD,AC 交于点H.若∠ABC=∠ADE=α,∠ACB=∠AED=β,求∠BFC的度数.应用结论(3)如图③,在平面直角坐标系中,点O的坐标为(0,0),点M的坐标为(3,0),N 为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转60°得到线段MK,连接NK,OK.求线段OK长度的最小值.【解答】解:(1)如图①,∵△ABC,△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°=∠ABC=∠ACB,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABD+∠EBC=∠ABC=60°,∴∠ACE+∠EBC=60°,∴∠BFC=180°﹣∠EBC﹣∠ACE﹣∠ACB=60°;(2)如图②,∵∠ABC=∠ADE=α,∠ACB=∠AED=β,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠BAD=∠CAE,,∴△ABD∽△ACE,∴∠ABD=∠ACE,∵∠BHC=∠ABD+∠BAC=∠BFC+∠ACE,∴∠BFC=∠BAC,∵∠BAC+∠ABC+∠ACB=180°,∴∠BFC+α+β=180°,∴∠BFC=180°﹣α﹣β;(3)∵将线段MN绕点M逆时针旋转60°得到线段MK,∴MN=NK,∠MNK=60°,∴△MNK是等边三角形,∴MK=MN=NK,∠NMK=∠NKM=∠KNM=60°,如图③,将△MOK绕点M顺时针旋转60°,得到△MQN,连接OQ,∴△MOK≌△MQN,∠OMQ=60°,∴OK=NQ,MO=MQ,∴△MOQ是等边三角形,∴∠QOM=60°,∴∠NOQ=30°,∵OK=NQ,∴当NQ为最小值时,OK有最小值,由垂线段最短可得:当QN⊥y轴时,NQ有最小值,此时,QN⊥y轴,∠NOQ=30°,∴NQ OQ,∴线段OK长度的最小值为.。
中考数学几何综合压轴题初三难题训练1. (2015金华中考)如图,正方形 ABCD 和正三角形 AEF 都内接于eO , EF 与BC , CD 分别相交 于点G , H ,则-EF 的值是()GHA.——B. 2C. . 3D. 222.(2015遵义中考)将正方形 ABCD 绕点A 按逆时针方向旋转 30°,得正方形 AB 1GD 1,B^!交CD 于点E , AB 3,则四边形A^ED 的内切圆半径为()D ,E 分别是OA ,OB 的中点,则图中影阴部分的面积为 ___________ cm 2 .A. D.3. (2015遵义中考)如图,在圆心角为90°的扇形OAB 中,半径 OA 2cm ,C 为弧AB 的中点,6Di到E ,且有 EBD CAB • (1) 求证:BE 是eO 的切线;(2 )若BC 3 , AC 5,求圆的直径 AD 及切线BE 的长.5. (2016岳阳中考)数学活动 旋转变换(1) 如图①,在 VABC 中, ABC 130°,将VABC 绕点C 逆时针旋转500得到VABC ,连接 BB ,求ABB 的大小;(2) 如图②,在 VABC 中, ABC 150° , AB 3, BC 5,将VABC 绕点C 逆时针旋转 60° 得到VABC ,连接BB ,以A 为圆心,AB 长为半径作圆.(I)猜想:直线 BB 与e A 的位置关系,并证明你的结论; (H)连接AB ,求线段AB 的长度;(3)如图③,在 VABC 中, ABC 90° 180° , AB m , BC n ,将VABC 绕点 C 逆180°得到VABC ,连接AB 和BB ,以A 为圆心,AB 长为半与角 满足什么条件时,直线 BB 与e A 相切,请说明理由,并求此条件下线段AB 的长度(结果用角或角 的三角函数及字母 m , n 所组成的式子表示)时针旋转2角度0° 2径作圆,问:角6. (2016成都中考)如图,在RtVABC中,ABC 90°,以CB为半径作eC,交AC于点D,交AC 的延长线于点E,连接BD , BE .(1)求证:VABD s VAEB ;AB 4(2)当一—时,求tanE ;BC 3BE父于点F .(3 )在(2 )的条件下,作BAC的平分线,与7. (2016苏州中考)如图,在矩形ABCD中,AB 6cm , AD 8cm •点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作圆O,点P与点O同时出发,设它们的运动时间为t (单位:s)(0 t 8)•3(1)如图,连接DQ,当DQ平分BDC时,t的值为.(2)如图,连接CM,若VCMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续连行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与圆O相切时,求t的值;并判断此时PM与圆O是否也相切?说明理由.8. (2015扬州中考)如图,已知 eO 的直径AB 12cm , AC 是eO 的弦,过点 延长线于点P ,连接BC •(1) 求证: PCA B ;(2) 已知 P 400 ,点Q 在优弧ABC 上,从点A 开始逆时针运动到点 重合),当VABQ 与VABC 的面积相等时,求动点 Q 所经过的弧长.C 作eO 的切线交BA 的C 停止(点Q 与点C 不9. ( 2015大庆中考)如图, 四边形ABCD 内接于eO ,ADPBC P 为BD 上一点,APB BAD . (1) 证明:AB CD ;(2) 证明:DP BD AD BC ; (3) 证明:BD 2 AB 2 AD BC .10. (2015武汉中考)如图,AB是eO的直径,ABT 4^ , AT AB •(1)求证:AT是eO的切线;(2)连接OT交e O于点C,连接AC,求tan TAC的值.11. (2016随州中考)如图,AB是eO的弦,点C为半径OA的中点,过点C作CD OA交弦AB 于点E,连接BD,且DE DB •(1)判断BD与eO的位置关系,并说明理由;5(2)若CD 15 , BE 10 , ta nA -,求eO 的直径.1212. (2015德州中考)如图,eO的半径为1 , A, P , B , C是eO上的四个点, APC CPB 60°•(1) 判断VABC的形状:;(2) 试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3) 当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.13. (2016淮安中考)问题背景:如图1,在四边形 ADBC 中, ACB形,所以CE . 2CD ,从而得出结论:AC BC . 2CD •(1) 简单应用:在图1中,若AC 2 , BC 2 2,则CD •(2) 如图3, AB 是eO 的直径,点 C 、D 在e 上,AD BD ,若AB 13, BC 12,求CD 的 长. (3) 拓展规律:如图 4 , ACB ADB 90° , AD BD ,若 AC m , BC n m n ,求 CD 的长(用含m , n 的代数式表示)1(4 )如图5 , ACB 90° , AC BC ,点P 为AB 的中点,若点E 满足AE 1AC ,3CE CA ,点Q 为AE 的中点,则线段 PQ 与AC 的数量关系是.ADB 90° , A D BD ,探究线段 AC,BC,CD 之间的数量关系•小吴同学探究此问题的思路是:将 VBCD 绕点D ,逆时针旋转 90°到 VAED 处,点 B,C 分别落在点 A,E 处(如图2),易证点 C,A,E 在同一条直线上,并且VCDE 是等腰直角三角li14. (2015宜昌中考)如图,四边形ABCD为菱形,对角线AC , BD相交于点E , F是边BA延长线上一点,连接EF,以EF为直径作eO,交边DC于D,G两点,AD分别与EF,GF交于I , H两占八、、♦(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,(i)求证:FD FI ;(ii)设AC 2m, BD 2n,求eO的面积与菱形ABCD的面积之比.15. (2015株洲中考)已知AB是圆O的切线,切点为B,直线AO交圆O于C , D两点,CD 2 , DAB 30°,动点P在直线AB上运动,PC交圆O于另一点Q .(1)当点P运动到使Q , C两点重合时(如图1),求AP的长;(2)点P在运动过程中,有几个位置(几种情况)使VCQD的面积为丄?(直接写出答案)21(3)当使VCQD的面积为丄,且Q位于以CD为直径的的上半圆上,CQ QD时(如图2),2求AP的长.第11页(共29页)第12页(共29页)第一部分 1.C【解析】如图,连接 AC 、BD 、OF ,其中AC 与EF 交于点I . QAO 是EAF 的角平分线,OAF 60o 2 30o .QOA OF ,OFA OAF 30° ,COF 60° ,BD CO 2 1 1 GH BD 2r r , 2 2竺3 3 .GH r作 DAB 1与 AB 1C 1的角平分线交于点 O ,过O 作OF AB 1 , 则 OAF 30° , AB 1O 4^ ,答案EF 3 o r 2 23r . QAO 2OI ,OI -r , CI 21 r r2 FI r sin60°GH CI 11 r , 22.B 【解析】设eO 的半径为r ,则 OF r ,第13页(共29页)故B i FOF 〔OA , 2 设B i Fx , 则AF :丄3 x , 故 3 2 x 2 2 x 2 2x ,解得x3 -,负值舍去. 2 四边形AB iE D 的内切圆半径为宁-第二部分3. n 1二2 2 2 【解析】连接0C ,过C 点作CF OA 于F •Q 半径OA 2cm , C 为A B 的中点,D 、E 分别是OA 、OB 的中点, OD OE 1cm , OC 2cm , AOC 4^ •CF . 2 • 鸟白图形ACDS 扇形OACS VOCD 2 45 n 221 2 1 23601 n2 2 cm . 2 2Q S VODE 〔OD 2 1 OE cm 2 2S 阴影S 扇形OAB S 空白图形ACD S VODE90 n 221 2 1—n ------ —360 2 2 21 —n _! 12 cm . 2 2 2第三部分4. (1)如图,连接OB .第14页(共29页)QBD BC ,CAB BAD .Q EBD CAB ,BAD EBD .QAD 是eO 的直径,ABD 90o , OA BO .BAD ABO .EBD ABO .OBE EBD OBD ABD OBD ABD 90°.Q 点B 在e O 上,BE 是eO 的切线.(2)如图,设圆的半径为 R ,连接CD .QAD 为eO 的直径,ACCD 90° .QBC BD ,OB CD .OB PAC .QOA OD ,1 5 OF AC .2 2Q 四边形ACBD 是圆内接四边形,BDE ACB .Q DBE ACB ,VDBE s VCAB . DB DEAC BC .3DE 5 3 .DEQ OBE OFD 90 ,DF PBE .QR 0 ,R 3.QBE 是eO 的切线,5. (1)如图①中, QVA BC 是由VABC 旋转得到,ABC ABC 130°,CB CBCBB CBB ,Q BCB 50o ,CBB CB B 650,ABB ABC BB C 65° .(2 )(1)结论:直线 BB ,是e A 的切线. 理由:如图②中,150°,CB CB ,Q ABC ABC CBB CBB ,Q BCB 60° ,CBB CB B 60° ,ABB ABC BBC 90° .AB BB ,直线BB ,是e A 的切线.(H) Q 在 RtVABB 中,Q AB B 90° , BB BC 5 , AB AB 3,AB AB 2 BB 2 34 .(3 )如图③中,当 180°时,直线BB ,是e A 的切线 理由:Q ABC ABC ,CB CB ,OF OB ODOEBE JDE AE * 2 3 3\5 5 3 115(3)解法一:在 RtVABC 中, -AC 2 BG -AB 2 11BG 即 5x BG 4x 3x ,解得BG 2 2 12 x . 590°.AB BB ,直线BB ,是e A 的切线.在VCBB 中QCB CB n , BCB 2 ,BB 2 nsin ,在 RtVA BB 中,AB . BB 2 AB 2 ,m 2 4n 2si n 26. (1) QDE 为e C 的直径,DBE 90° . 又 Q ABC 90° ,DBE DBC 90° , CBE DBC 90° ,ABD CBE .又QCB CE ,CBE E , ABD E .又 Q BAD EAB ,VABD ^VAEB .(2 )由(1)知,VABD s VAEB 在 RtVDBE 中,BD 1 tanEBE 2CBB CBB ,Q BCB 2 ,CBB ABB CB B 180° 2-------------? 2ABC BBC90°180° 90°BD BE ABAEABQ - BC设 AB 4x ,贝U CE 在 RtVABC 中,AB CB 3x .5x ,AE AC CE 5x 3x 8x BD BE AB AE 4x8xQAF 是 BAC 的平分线, BF AB 4x 1 FHEF 2BG BE 32 2 12 8FH BG一x x3 3 5 5 1又 Qta nE2EH 2FH 16 x ,5AM AE EM24 x ・ 5 在 RtVAHF 中, 2 2 AH HF AF 1 2 3即 224 x5e C 的半径是3xQAF 平分 BAC , FE AE 8x 2AE 于 H , 【解析】解法二:如图 2过点A 作EB 延长线的垂线,垂足为点在 VBAE 中,有 1 2 3 E 180°90° 90° , 4 2 E 45 ,VGAF 为等腰直角三角形8.5 L ,AFeC 的半径是NG BN a ,CG 3 a ,4 NC BC 9 a,4BH 9a, 5AB 3a , AC AG 3a ,tan NAC NG AG sin NAC 10105a ,4 15 a,4 13由( 2) 可知, AE 8x , tanEAG AE 于点M , 解法三:AE 于点G ,FM BAC 的平分线,QAF 是AE 10 .在 RtVDBE 中,设 BP 4t ,则 PQ 3t , BQ 5t .Q DQ 平分 BDC , QC CD , QP BD .CQ PQ 3t .QCQ 8 5t.3t 8 5t ,即 t 1.(2)如图,过点M 作ME BC 于点E .在 RtVAFM 中, FM AF sin NAC 2 卫互,AM 10 5 3 10 5 在 RtVEFM 中, EM FM tanE2 10 QBH a,5 EH 18 a, 5 DE 9 a ,2 DC 9 a ,4 AD 3 a,2 又QAE DE3 a 2 9 a2 9a,10 106DC 3.1087. (1)【解析】由题意可VBPQ s VBCD .DH AE10 ,a在 RtVABD 中,AB 6cm , AD 8cm ,BD 10cm .由 BPQ BCD , QBP DBC ,得 VPBQ ^VCBD .PB PQ BQBC CD BD .Q PB 4t ,PQ 3t , BQ 5t .Q MQ MC ,1 1 QE CE —QC - 8 5t2 2Q VMEQ s VDCB , EQ BCMQ BD1 -8 5t 23t40t 49(3)如图1,设QM 所在直线交CD 于点F . ① Q VQCF s VBCD , CF CDCQ CB CF 68 5t 8E15 -t , DF 4 又DO 3t , DO DF CF 6 ,即点O 始终在QM 所在直线的左侧.②如图,设MQ与eO相切时,切点我G,连接OG ,OG BCOF BD,0.88吗3t 10,4丄4t3当t -时,正方形PQMN的边长为3解法一:连接MO并延长交PQ于点贝U VMOG s VMHQ ,OG MGHQ MQ,260.815HQ4,HQ241328PH13 °HK14 213HK HQ .点O不在PMQ的平分线上,当QM1与eO相切时,PM与eO【解析】解法二:连接OM , OP ,Q SVMPQ SVMOQ S VPOQ S VPOM ,则VOGF s VBCD ,534 , QF-,FG3 5 .H,过点H作HK PM于点K不相切.OQ,设点O到MP的距离为h ,1 4 0.8 1 344142 h 8 .2 2 152h7 20.8 .15当QM与eO相切时,PM与eO不相切QAB是eO的直径,ACB 1 2 90o,又PC是eO的切线,PCO PCA 1 90°,2 PCA.又OC OB .2 B,PCA B .(2) Q P 40°,AOC 50°.QAB 12,AO 6 .AOQ 130°时,VABQ与VABC的面积相等,优弧ABQ所对的圆心角为230°时,VABQ与VABC的面积相等,13n31803180当BOQ 50°时,即9. (1) Q AD PBC ,ADB DBC ,AB DC ,AB CD .(2) Q APB BAD , BAD BCD 180° , APBBCD APD ,Q ADB CBD .VADPWDBC ,AD DPBD BC ,DP BD AD BC .QBD 2DE 2 BE 2, DE 2 CD 2 CE 2 ,2 BD 2CD 2 BE 2 CE 2AB 2 BE CE BE CEAB 2 AD BC.10. (1) QAB AT ,ATB B 45°.BAT 90° .AT 是eO 的切线.(2 )设eO 半径为r ,延长TO 交eO 于D ,连接AD .点Q 所经过的弧长 230 n 6 180 23 n3AAPD 180° , (3)如图,过点D 作DE BC 交BC 于E .QCD是直径,CAD BAT 90°.TAC OAD D . 又ATC DTA,VTAC s VTDA.TA TCTD AT .TA2TC TD , 即4r2 TC TC 2r 解得TC 5 1r.tan TAC tan DACADTCAT.5 1 r2r51211. (1)连接OB .QOB OA, DE DB ,A OBA, DEB ABD.QCD OA,A AEC A DEB 90°,OBA ABD 90°,OB BD ,BD是eO的切线;(2)如图,过点D作DG BE于G .QDE DB,1EG -BE 5,2GDE A,VACE s VDGE,QVACE s VDGE12. (1)等边三角形(2) PA PB PC .证明:如图,在PC上截取PD PA,连接AD .PA AD , PAD 60o.Q BAC 60o,PAB DAC .Q APC 60o,VPAD是等边三角形.Q ACE DGE 90°, AEC GED ,tan EDG tanAEGDG5—,即DG 12 .12在RtVEDG 中,DE .DG2 EG213. QCD 15, DECE 2 .13 ,ACDGCEGE,AC CE DGGE245e O的直径2OA 4AD96QAB AC ,VPAB 也VDAC .PB DC .QPD DC PC ,PA PB PC .(3)当点P 为A B 的中点时,四边形 APBC 面积最大.理由如下:如图,过点 P 作PE AB ,垂足为E , 过点C 作CF AB ,垂足为F ,四边形APBC 面积最大. Qe O 的半径为1,其内接正三角形的边长AB 31S 四边形APBC 匚 2 32 3 . 13. (1) CD 3(2)连接 AC 、BD 、AD ,Q AB 是eO 的直径,ADB ACB 90° ,Q A D B D ,AD BD ,将VBCD 绕点D ,逆时针旋转90°到VAED 处,如图3 ,EADDBC , Q DBCDAC 180° , EADDAC 180° , E 、A 、C 三点共线,Q AB 13,BC 12,由勾股定理可求得: AC 5 ,Q BC AE ,CE AE AC 17,2 AB PE ,S VABC 1AB CF . 2S 四边形APBC 1 — AB PE 2 Q 当点P 为A B 的中点时, CF . PE CF PC , PC 为eO 直径, Q S VPABQ EDA CDB ,EDA ADC CDB ADC ,即 EDCADB 90° ,Q CD ED , VEDC 是等腰直角三角形,CE 2CD ,17近 CD 2(3)以AB 为直径作eO ,连接OD 并延长交eO 于点D 1 , 连接D 1A ,D 1B , D 1C ,如图D 1C又Q 0D 是eO 的直径,DCD 1 90o ,Q AC m , BC n由勾股定理可求得: 2 2 DQ AB2 n22PQ = -^」AC • 614.( 1)QEF 为eO 的直径,FDE 90° .(2)四边形FACD 为平行四边形•理由如下:QABCD 为菱形,AB PCD , AC BD ,AEB 90° • 又 FDE 90o ,AC PFD •四边形FACD 为平行四边形.(3)(i )如图,连接GE •由(2)的证明过程可知: ACBC ■ 2D 1C ,ABm 2 2 Q D 1C 2 CD 2 2 D 1D 2CD m 2 n 2CD (4)Q 在RtVDEC 中,G 为CD 的中点,EG DG ,弧DG 弧EG ,1 2.又EF 为eO 的直径,FGE 90° ,FG EG .QG 为DC 中点,E 为AC 中点,GE 为VDAC 的中位线,EG PAD . FGADF l HDFHI 90o . 1 3 24 90o , 3 4 ,FD FI .(ii ) Q 菱形ABCD , AE CE m , BE DE nQ 四边形FACD 为平行四边形,FD AC 2m FIQ FD PAC , 3 8 .又34 7, 78 , EI EA m . 在 RtVFDE 中,FE 2 FD 2 DE 2 ,3m $ 2m $ n 2,解得,n 5m .2 3m9 2 1 S eo n 测,S 菱形ABCD — 2m 2n 2mn 2 4 2 S e O : S 菱形ABCD 9 n m 2:2 5m 2葺5. 4 4015. (1) QAB 是圆O 的切线,OBA 90o .2 5m 2 ,QRtVOBA中,CD 2, DAB 30°,OB 1 ,OB OC AC 1 .Q当点P , C运动到Q , C两点重合时,PC为圆O的切线,PCA 90°,Q DAB 30°, AC 1 ,AP -A/3•3(2)有4个位置使VCQD的面积为-•21【解析】由于CD的长度2,而S VCQD1, 故CD上的高的长度为-,从而如下图,我们可得到答案.2(3)过点Q作QN AD于点N,过点P作PM AD于点M •QNQCD是圆O的直径,CQD 90°• 易证VQCN s VDQN •QN CNDN QNQN2 CN DN .1x 2 x4解得X i 2 3, x22QCQ QD ,CNCNQN易证VPMC s VQNC .易得列空2 3MP QNCM 2 3 MP .在RtVAMP中易得AM 3MP , QAM CM AC 1,2,3 MP . 3MP 1 ,MP 3 14 ,薦1AP2MP21 2.又QCB CE,3 E .。
九年级数学几何模型压轴题专题练习(解析版)一、初三数学旋转易错题压轴题(难)1.如图 1,在 Rt∆ΛSC 中,Z4 = 90o, AB=AC f点 D, E 分别在边 AB, AC 上,AD=AE f连接DC,点M, P, N分别为DE, DC, BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是_,位置关系是_;(2〉探究证明:把AADF绕点A逆时针方向旋转到图2的位置,连接BD, CE,判断APMN的形状,并说明理由;(3)拓展延伸:把AADF绕点A在平面内自由旋转,若AD=4, AB=IO f请直接写出APMN面积的最人值.【答案】(I)PM=PΛ∕, PM丄PN;(2) APMN是等腰直角三角形.理由见解析;(3)49 S A.PMN⅜⅛大=.【解析】【分析】(1)由已知易得加=C利用三角形的中位线得出PM = ;CE , PN = ;BD,即可2 2得出数量关系,再利用三角形的中位线得出PM//CE得出ZDPM = ZDc4,最后用互余即可得出位置关系;(2)先判断出MBQ三AACE,得出皮) = CE,同(1)的方法得出PM=-BD i2PN = LBD t即可得出PM = PN,同(1)的方法由2ZMPN = ZDCE+ ZDCB+ ZDBC= ZACB+ ZABC ,即可得出结论;(3〉方法1:先判断出MN最人时,APMN的面积最大,进而求出AN, AM,即可得出MN最)<=AM + AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,WMN的面积最大,而Br)最人是AB + AD = 14,即可得出结论.【详解】解:(1)•••点P, N是BC, CD的中点,.∙.PN□BD, PN = -BD,2•••点P, M是CD,DE的中点,..PM//CE9 PM=丄CE ,2∙.∙AB=AC, AD=AE^:.BD = CE ,:.PM = PN,-PN//BD f.∙. ZDPN = ZADC,':PMIlCE.:.ZDPM = ZDCA,∙.∙ ZfiAC = 90。
九年级几何模型压轴题专题练习(解析版)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF . 则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE , ∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°, ∴∠FAD=∠DAE=45°, 在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD , ∴DF=DE , 设DE=x ,则DF=x , ∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x , ∵∠FBA=45°,∠ABC=45°, ∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+,解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.已知抛物线y=ax 2+bx-3a-5经过点A(2,5) (1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7) ①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8+),F 1(,,G 2,F 2,) 【解析】 【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131t -4+=,2t -4=,分两类讨论,分别求出G 、F 坐标。
人教版九年级上册数学 圆 几何综合中考真题汇编[解析版]一、初三数学 圆易错题压轴题(难)1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。
(1)求这条抛物线的解析式; (2)求点E 的坐标;(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由【答案】(1)y=x 2+2x-8(2)(-1,-72)(3)(-8,40),(-154,-1316),(-174,-2516) 【解析】分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,从而求出点E 的坐标;(3)设点P (a , a 2+2a -8), 则228,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.详解:(1)把(),9m m 代入解析式,得:22289m m m m -+= 解得:121,0m m =-=(舍去) ∴228y x x =+-(2)由(1)可得:228y x x =+-,当0y =时,124,2x x =-=;∵点A 在点B 的左边 ∴42OA OB ,== , ∴6AB OA OB =+=, 当0x =时,8y =-, ∴8OC =过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,,则116322AG AB ==⨯= ,设,则, 在Rt AGE ∆中,,在中,()222218CE EF CF a =+=+-,∵AE CE = ,∴()22918a a +=+- ,解得:72a =, ∴712E ⎛⎫-- ⎪⎝⎭,; (3)设点()2,28a a a P +-,则228,2PQ a a BQ a =+-=-, a.当PBQ ∆∽CBO ∆时,PQ COBQ OB =,即228822a a a +-=-, 解得:10a =(舍去);22a =(舍去);38a =- ,∴()18,40P - ;b.当PBQ ∆∽BCO ∆时,PQ BOBQ CO =,即228228a a a +-=-, 解得:12a =(舍去),2154a =-;3174a =- , ∴21523,416P ⎛⎫-- ⎪⎝⎭;31725416P ⎛⎫- ⎪⎝⎭, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--⎪⎝⎭,31725416P ⎛⎫- ⎪⎝⎭, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.2.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)234333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,cot602EO OB =⋅︒==, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan603OC OA CAO OA =⋅∠=⋅︒==, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上.设()()13y a x x =++,用(0A 代入得()()0103a =++,∴3a =.∴)()13y x x =++,即2y x =++ (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.3.在△ABC 中,∠A=90°,AB=4,AC=3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN∥BC 交AC 于点N .(1)如图1,把△AMN 沿直线MN 折叠得到△PMN,设AM=x . i .若点P 正好在边BC 上,求x 的值;ii .在M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数关系式,并求y 的最大值.(2)如图2,以MN 为直径作⊙O,并在⊙O 内作内接矩形AMQN .试判断直线BC 与⊙O 的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.4.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.5.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D 是弧AC 的中点,∴∠DBC =∠ABD ,∵AB 是直径,∴∠CBG+∠CGB =90°,∵DE ⊥AB ,∴∠FDG+∠ABD =90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD =⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD=⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.6.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)33+3;(3)ADCD=62+或62.【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵2,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3, ∴AE=22AB BE -=33,∵CE=BE=3,∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC ﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°, 如图2,当CD=CB 时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32, ∴AD 333CD 32+==62+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴33 ∴2DF=36∴AD 36CD 6==62综上所述:AD CD =622或62 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.7.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A .(2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.【答案】(1)作图见解析;(2)PQ 长最短是1.2;(3)四边形ADCF 面积最大值是813132+,最小值是813132-. 【解析】【分析】(1)连接线段OP 交⊙C 于A ,点A 即为所求;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短,根据勾股定理以及三角形的面积公式即可求出其最小值;(3)△ACF 的面积有最大和最小值,取AB 的中点G ,连接FG ,DE ,证明△FAG ~△EAD ,进而证明点F 在以G 为圆心1为半径的圆上运动,过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小,分别求出△ACD 的面积和△ACF 的面积的最小值即可得出四边形ADCF 的面积的最小值;②当F 在F 2时,四边形ADCF 的面积有最大值,在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,利用矩形的判定与性质以及三角形的面积公式即可得出得出四边形ADCF 的面积的最大值.【详解】解:(1)连接线段OP 交⊙C 于A ,点A 即为所求,如图1所示;(2)过C 作CP ⊥AB 于Q ,P ,交⊙C 于Q ,这时PQ 最短.理由:分别在线段AB ,⊙C 上任取点P ',点Q ',连接P ',Q ',CQ ',如图2,由于CP ⊥AB ,根据垂线段最短,CP ≤CQ '+P 'Q ',∴CO +PQ ≤CQ '+P 'Q ',又∵CQ =CQ ',∴PQ <P 'Q ',即PQ 最短.在Rt △ABC 中22228610AB AC BC =+=+=,1122ABC S AC BC AB CP ∆=•=•, ∴68 4.810AC BC CP AB •⨯===, ∴PQ =CP ﹣CQ =6.8﹣3.6=1.2, ∴22226 4.8 3.6BP BC CP -=-=.当P 在点B 左侧3.6米处时,PQ 长最短是1.2.(3)△ACF 的面积有最大和最小值.如图3,取AB 的中点G ,连接FG ,DE .∵∠EAF =90°,1tan 3AEF ∠=, ∴13AF AE = ∵AB =6,AG =GB ,∴AC =GB =3,又∵AD =9, ∴3193AG AD ==, ∴DAF AE AG A = ∵∠BAD =∠B =∠EAF =90°,∴∠FAG =∠EAD ,∴△FAG ~△EAD , ∴13FG AF DE AE ==, ∵DE =3,∴FG =1,∴点F 在以G 为圆心1为半径的圆上运动,连接AC ,则△ACD 的面积=692722CD AD ⨯=⨯=, 过G 作GH ⊥AC 于H ,交⊙G 于F 1,GH 反向延长线交⊙G 于F 2,①当F 在F 1时,△ACF 面积最小.理由:由(2)知,当F 在F 1时,F 1H 最短,这时△ACF 的边AC 上的高最小,所以△ACF 面积有最小值, 在Rt △ABC 中,222269313AC AB BC =+=+=∴313sin 313BC BAC AC ∠=== 在Rt △ACH 中,313913sin 3GH AG BAC =•∠== ∴119131F H GH GF =-=-, ∴△ACF 面积有最小值是:11191327313313(1)22AC F H -•=⨯-=; ∴四边形ADCF 面积最小值是:27313813132722--+=; ②当F 在F 2时,F 2H 最大理由:在⊙G 上任取异于点F 2的点P ,作PM ⊥AC 于M ,作GN ⊥PM 于N ,连接PG ,则四边形GHMN 是矩形,∴GH =MN ,在Rt △GNP 中,∠NGF 2=90°,∴PG >PN , 又∵F 2G =PG ,∴F 2G +GH >PN +MN ,即F 2H >PM , ∴F 2H 是△ACF 的边AC 上的最大高,∴面积有最大值, ∵229131F H GH GF =+=+, ∴△ACF 面积有最大值是21191327313313(1)22AC F H +•=⨯+=; ∴四边形ADCF 面积最大值是27313813132722+++=综上所述,四边形ADCF 面积最大值是813132+,最小值是813132-. 【点睛】 本题为圆的综合题,考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.8.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r === ∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN∴AFN DFM ∆~∆ ∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒= ∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切 设圆N 半径为R ,圆O 半径为r ∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒ ∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM =O的半径长为25 8【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.9.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若3 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=3656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=122216r2-22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB ,∴∠OPB=∠OBP=∠APC ,∵AC=AB ,∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴33PH =,∴4323PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=1222162r - 又∵圆O 与直线MN 有交点,∴22162r r -, 2262r r -≤,∴22364r r -≤, ∴65r ≥ 又∵圆O 与直线AC 相离,∴r <6,656r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.10.在平面直角坐标系xOy 中,对于两个点A ,B 和图形ω,如果在图形ω上存在点P ,Q (P ,Q 可以重合),使得AP =2BQ ,那么称点A 与点B 是图形ω的一对“倍点”. 已知⊙O 的半径为1,点B (0,3).(1)①点B 到⊙O 的最大值,最小值;②在A 1(5,0),A 2(0,10),A 322)这三个点中,与点B 是⊙O 的一对“倍点”的是 ;(2)在直线y 3=x +b 上存在点A 与点B 是⊙O 的一对“倍点”,求b 的取值范围; (3)正方形MNST 的顶点M (m ,1),N (m +1,1),若正方形上的所有点与点B 都是⊙O 的一对“倍点”,直接写出m 的取值范围.【答案】(1)①点B 到⊙O 的最大值是4,最小值是2;②A 1;(2)b -≤≤;(3)3≤m ≤1或≤m ≤﹣4【解析】【分析】(1)①根据点与圆的位置关系求解即可;②先求出123,,A A A 三个点到⊙O 的最大值与最小值,再根据“倍点”的定义求解即可; (2)如图1(见解析),过点O 作OD l ⊥,先求428BQ ≤≤,再求出直线:l y x b =+上的点到⊙O 的最小值,只要这个最小值小于等于8即可满足题意,然后求解即可;(3)根据正方形的位置,可分20,01,1,2m m m m -≤<≤≤><-四种情况,分别求出每种情况下,正方形最近顶点、最远顶点到⊙O 的最大值与最小值,然后根据“倍点”的定义列出不等式组求解即可.【详解】(1)①点B 到⊙O 的最大值是314BO r +=+=点B 到⊙O 的最小值是312BO r -=-=;②1A 到⊙O 的最大值6,最小值4;2A 到⊙O 的最大值11,最小值9;3A 到⊙O 的最大值3,最小值1由(1)知,点B 到⊙O 的最大值是4,最小值是2因此,在⊙O 上存在点P ,Q ,使得12A P BQ =,则1A 与B 是⊙O 的一对“倍点”故答案为1A ;(2)∵点B 到⊙O 的最大值是4,最小值是2428BQ ∴≤≤如图1,过点O 作OD l ⊥由直线:l y x b =+的解析式可知:60,DCO OC b ∠=︒=由直角三角形的性质可得:1,2CD b OD ===则点D 到⊙O 1-,即直线:l y b =+上的点到⊙O 的最小值为1-要使直线:3l y x b =+上存在点A 与点B 是⊙O 的一对“倍点”18-≤解得:b ≤b -≤≤;(3)由(2)知,428BQ ≤≤依题意,需分20,01,1,2m m m m -≤<≤≤><-四种情况讨论:①当20m -≤<时,顶点(1,1)N m +到⊙O14<,此时顶点N 不符题意②当01m ≤≤时,顶点(,1)M m 到⊙O14<,此时顶点M 不符题意③当1m ,如图2,正方形MNST 处于1号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点T 到⊙O 的最小值为1m -,最大值为1m +;点N 到⊙O的最小值为11则1418m +≥⎧≤,解得:31m ≤≤ 当正方形MNST 处于2号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点M 到⊙O1-1;点S 到⊙O 的最小11则1418≥≤,解得:1m ≤≤或1m ≤≤- 故当1m 时,m的取值范围为31m ≤≤④当2m <-时,正方形MNST 处于3号正方形位置时则顶点S 和T 的坐标为(1,0),(,0)S m T m +此时,点S 到⊙O 的最小值为2m --,最大值为m -;点M 到⊙O的最小值为11则418m -≥⎧⎪≤,解得:4m -≤≤- 当正方形MNST 处于4号正方形位置时则顶点S 和T 的坐标为(1,2),(,2)S m T m +此时,点N 到⊙O11;点T 到⊙O11则1418≥≤,解得:1m ≤≤--1m ≤≤(舍去) 故当2m <-时,m的取值范围为4m ≤≤-综上,m的取值范围为31m ≤≤或4m ≤≤-.【点睛】本题考查了直线与圆的的位置关系、点与圆的位置关系、正方形的性质,较难的是(3),根据点与圆的位置关系分四种情况讨论是解题关键.。
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
九年级数学几何模型压轴题中考真题汇编[解析版]一、初三数学旋转易错题压轴题(难)1.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=22.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.【答案】(1)①EF=BE+DF;②成立,理由详见解析;(2)DE=53.【解析】【分析】(1)①根据旋转的性质得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;②根据旋转的性质作辅助线,得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G 在一条直线上,根据SAS推出△EAF≌△GAF,根据全等三角形的性质得出EF=GF,即可求出答案;(2)如图3,同理作旋转三角形,根据等腰直角三角形性质和勾股定理求出∠ABC=∠C=45°,BC=4,根据旋转的性质得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD =∠DAE=45°,证△FAD≌△EAD,根据全等得出DF=DE,设DE=x,则DF=x,BF=CE=3﹣x,根据勾股定理得出方程,求出x即可.【详解】解:(1)∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC22AB AC+4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中AD ADFAD EAD AF AE=⎧⎪∠=∠⎨⎪=⎩,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=53,即DE=53.【点睛】本题考查了四边形的综合题,旋转的性质,全等三角形的性质和判定,勾股定理的应用,此题是开放性试题,运用类比的思想;首先在特殊图形中找到规律,然后再推广到一般图形中,对学生的分析问题,解决问题的能力要求比较高.2.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CMDM在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12 BMDE=EM﹣DM﹣由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12 BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12 BC∴tan∠CDF=CFCD,∴∠CDF=60°,∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,∴∠CBE=∠CFD,∵∠CBE=∠PCF,∴∠CFD=∠PCF=30°,∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,在△FCP和△CFD中,CPF CDFPCF CFD CF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP≌△CFD(AAS),∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠APD=60°,∵∠BPF=∠CPF=90°﹣30°=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC与△PAB之间满足小明探究的问题中的边角关系;在Rt△PDQ中,∵∠PDQ=90°,PD=DADN=12CD=3,∴PQ.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性. 3.两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)αα<<角度,如图2所示.()1利用图2证明AC BD =且AC BD ⊥;()2当BD 与CD 在同一直线上(如图3)时,求AC 的长和α的正弦值.【答案】(1)详见解析;(2)7,725. 【解析】【分析】 (1)图形经过旋转以后明确没有变化的边长,证明AOC BOD ≅,得出AC=BD , 延长BD 交AC 于E ,证明∠AEB=90︒,从而得到BD AC ⊥.(2) 如图3中,设AC=x ,在Rt △ABC 中,利用勾股定理求出x ,再根据sinα=sin ∠ABC=AC AB即可解决问题【详解】 ()1证明:如图2中,延长BD 交OA 于G ,交AC 于E .∵90AOB COD ∠=∠=,∴AOC DOB ∠=∠,在AOC 和BOD 中,OA OBAOC BODOC OD=⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD≅,∴AC BD=,CAO DBO∠=∠,∵90DBO GOB∠+∠=,∵OGB AGE∠=∠,∴90CAO AGE∠+∠=,∴90AEG∠=,∴BD AC⊥.()2解:如图3中,设AC x=,∵BD、CD在同一直线上,BD AC⊥,∴ABC是直角三角形,∴222AC BC AB+=,∴222(17)25x x++=,解得7x=,∵45ODC DBOα∠=∠+∠=,45ABC DBO∠+∠=,∴ABCα∠=∠,∴7sin sin25ACABCABα=∠==.【点睛】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,第二个问题的关键是利用(1)的结论解决问题,属于中考常考题型.4.请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=3,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=5,BP=2,PC=1.求∠BPC度数的大小和正方形ABCD的边长.【答案】(1)150°,7;(2)135°,5【解析】试题分析:(1)利用旋转的性质,得到全等三角形.(2)利用(1)中的解题思路,把△BPC,旋转,到△BP’A,连接PP’,BP’,容易证明△APP’是直角三角形,∠BP’E=45°,已知边BP’=BP=2,BE=BP’=1,勾股定理可求得正方形边长.(1)150° 7(2)将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP=BP′=2;连接PP′,在Rt△BP′P中,∵BP=BP′=2,∠PBP′=90°,∴PP′=2,∠BP′P=45°;在△AP′P中,AP′=1,PP′=2,AP=5,∵222+=,即AP′2+PP′2=AP2;125∴△AP′P是直角三角形,即∠AP′P=90°,∴∠AP′B=135°,∴∠B PC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E;则△BEP′是等腰直角三角形,∴∠EP′B=45°,∴EP′=BE=1,∴AE=2;∴在Rt△ABE中,由勾股定理,得AB=5;∴∠BPC=135°,正方形边长为5.点睛:本题利用题目中的原理迁移解决问题,解题利用了旋转的性质,一般利用正方形,等腰,等边三角形的隐含条件,构造全等三角形,把没办法利用的已知条件转移到方便利用的图形位置,从而求解.5.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,O D=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.6.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=12AE,利用三角形全等证出AE=AF,而DM=12AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=12AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=12AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.7.在矩形ABCD 中,2AB =,1BC =,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为(0180)αα<<,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .()1如图①,当点E 落在DC 边上时,直写出线段EC 的长度为______; ()2如图②,当点E 落在线段CF 上时,AE 与DC 相交于点H ,连接AC ,①求证:ACD ≌CAE ; ②直接写出线段DH 的长度为______.()3如图③设点P 为边FG 的中点,连接PB ,PE ,在矩形ABCD 旋转过程中,BEP 的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】(1)23;(2)①见解析;34②;(3)存在,PBE 的面积的最大值为21,理由见解析 【解析】 【分析】()1如图①中,在Rt ADE 中,利用勾股定理即可解决问题; ()2①证明:如图②中,根据HL 即可证明ACD ≌CAE ;②如图②中,由ACD ≌CAE ,推出ACD CAE ∠∠=,推出AH HC =,设AH HC m ==,在Rt ADH 中,根据222AD DH AH +=,构建方程即可解决问题; ()3存在.如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M.由题意:PF PC 1==,由AG EF 1==,G F 90∠∠==,推出PA PE ==PBE1SPE BM 22=⋅⋅=,推出当BM 的值最大时,PBE 的面积最大,求出BM 的最大值即可解决问题; 【详解】()1四边形ABCD 是矩形,AB CD 2∴==,BC AD 1==,D 90∠=,矩形AEFG 是由矩形ABCD 旋转得到,AE AB 2∴==,在Rt ADE 中,DE ==CE 2∴=,故答案为2.()2①当点E 落在线段CF 上,AEC ADC 90∠∠∴==,在Rt ADC 和Rt AEC 中,{AC CACD AE ==,Rt ACD ∴≌()Rt CAE HL ;ACD ②≌CAE ,ACD CAE ∠∠∴=,AH HC ∴=,设AH HC m ==,在Rt ADH 中,222AD DH AH +=,2221(2m)m ∴+-=,5m 4∴=, 53DH 244∴=-=, 故答案为34; ()3存在.理由如下:如图③中,连接PA ,作BM PE ⊥交PE 的延长线于M ,由题意:PF PC1==,AG EF1==,G F90∠∠==,PA PE2∴==PBE 12S PE BM BM22∴=⋅⋅=,∴当BM的值最大时,PBE的面积最大,BM PB≤,PB AB PA≤+,PB22∴≤,BM22∴≤BM∴的最大值为22+PBE∴21.【点睛】本题是四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.8.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(2)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.二、初三数学圆易错题压轴题(难)9.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG =∠BDC .(2)当AB =6时,在点F 的整个运动过程中. ①若BF =22时,求CE 的长.②当△CEG 为等腰三角形时,求所有满足条件的BE 的长.(3)过点E 作△BCF 外接圆的切线交AD 于点P .若PE ∥CF 且CF =6PE ,记△DEP 的面积为S 1,△CDE 的面积为S 2,请直接写出12S S 的值.【答案】(1)详见解析;(2)①1825;②当BE 为10,395或445时,△CEG 为等腰三角形;(3)724. 【解析】 【分析】(1)根据平行线的性质得出∠ABD =∠BDC ,根据圆周角定理得出∠ABD =∠ECG ,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =62CE 1825; ②分三种情况讨论求得:当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE=GH=125,即可得到BE=BH+HE=445;(3)连接OE、EF、AE、EF,先根据切线的性质和垂直平分线的性质得出EF=CE,进而证得四边形ABCD是正方形,进一步证得△ADE≌△CDE,通过证得△EHP∽△FBC,得出EH=1 6BF,即可求得BF=6,根据勾股定理求得CF=10,得出PE=106,根据勾股定理求得PH,进而求得PD,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB∥CD.∴∠ABD=∠BDC,∵∠ABD=∠ECG,∴∠ECG=∠BDC.(2)解:①∵AB=CD=6,AD=BC=8,∴BD=10,如图1,连结EF,则∠CEF=∠BCD=90°,∵∠EFC=∠CBD.∴sin∠EFC=sin∠CBD,∴35 CE CD CF BD==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF=22BF BC+=10,∴PE=16FC=53,∴PH=224PE EH3-=,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.10.如图①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,点D是AC边上一点(不与C重合),以AD为直径作⊙O,过C作CE切⊙O于E,交AB于F.(1)若⊙O半径为2,求线段CE的长;(2)若AF=BF,求⊙O的半径;(3)如图②,若CE=CB,点B关于AC的对称点为点G,试求G、E两点之间的距离.【答案】(1)CE =42;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r-= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E , ∴∠OEC =90°,∵AC =8,⊙O 的半径为2, ∴OC =6,OE =2,∴CE =2242OC OE -= ; (2)设⊙O 的半径为r ,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8, ∴BC 22AB A C -=6, ∵AF =BF ,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关11.在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).(1)求圆心C的坐标.(2)抛物线y=ax2+bx+c过O,A两点,且顶点在正比例函数y=-的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D,E两点,试判断D,E两点是否在(2)中的抛物线上.(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.【答案】(1)圆心C的坐标为(1,);(2)抛物线的解析式为y=x2﹣x;(3)点D、E均在抛物线上;(4)﹣1<x0<0,或2<x0<3.【解析】试题分析:(1)如图线段AB是圆C的直径,因为点A、B的坐标已知,根据平行线的性质即可求得点C的坐标;(2)因为抛物线过点A、O,所以可求得对称轴,即可求得与直线y=﹣x的交点,即是二次函数的顶点坐标,利用顶点式或者一般式,采用待定系数法即可求得抛物线的解析式;(3)因为DE∥x轴,且过点C,所以可得D、E的纵坐标为,求得直径AB的长,可得D、E的横坐标,代入解析式即可判断;(4)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<x0<0,或2<x0<3.试题分析:(1)∵⊙C经过原点O∴AB为⊙C的直径∴C为AB的中点过点C作CH垂直x轴于点H,则有CH=OB=,OH=OA=1∴圆心C的坐标为(1,).(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1,∵抛物线的顶点在直线y=﹣x上,∴顶点坐标为(1,﹣).把这三点的坐标代入抛物线y=ax2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣x.(3)∵OA=2,OB=2,∴AB==4,即⊙C的半径r=2,∴D(3,),E(﹣1,),代入y=x2﹣x检验,知点D、E均在抛物线上.(4)∵AB为直径,∴当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,∴﹣1<x0<0,或2<x0<3.考点:二次函数综合题.12.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;(1)如图1,求证:CD⊥AB;(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.【答案】(1)见解析;(2)见解析;(3)AC=48 5【解析】【分析】(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得BF=4,解出BC=8,sin∠OBC=35,所以可得AC=2CK,CK=BC•sin∠OBC=245得AC=48 5.【详解】解:(1)如图1,令∠OBC=∠1,∠ACD=∠2延长BO交⊙O于F,连接CF.∵BF是⊙O的直径,∴∠FCB=90°∴∠1+∠F=90°,∵弧BC=弧BC,∴∠A=∠F又∵∠1=∠2,∴∠2+∠A=90°,∴∠3=90°,∴CD⊥AB(2)如图2,令∠OBC=∠1,∠BCD=∠4延长BO交AC于K∵∠A=∠1+∠4,∠5=∠1+∠4,∴∠A=∠5,∵∠A+∠2=90°,∴∠5+∠2=90°,∴∠6=90°∵∠7=180°﹣∠3=90°,∴∠6=∠7,又∵∠5=∠8,∴∠9=∠2∵∠2=∠1,∴∠9=∠1,∴BO平分∠ABC(3)如图3,延长BO交AC于点K,延长CD交⊙O于点N,联结BN∵OH⊥CN,OF⊥BC∴CH=NH,BF=CF∴HF是△CBN的中位线,HF∥BN∴∠FHC=∠BNC=∠BAC∵∠BAC=∠OEH,∠FHC=∠EHM∴∠OEH=∠EHM设EM、OE交于点P∵∠OEH+∠EOH=∠EHM+∠OHP=90°∴∠EOH=∠OHP∴OP=PH∵∠ADC=∠OHC=90°∴AD∥OH∴∠PBM=∠EOH,∠BMP=∠OHP∴PM=PB∴PM+PH=PB+OP∴HM=OB=5在Rt△OBF中,根据勾股定理可得BF=4∴BC=8,sin∠OBC=3 5∵∠A+∠ABO=∠DEB+∠ABO=90°∴∠AKB+∠CKB=90°∴OK⊥ACAC=2CK,CK=BC•sin∠OBC=24 5∴AC=48 5【点睛】此题主要考查了圆的综合应用以及三角形的内角和定理及外角定理和勾股定理、三角函数等知识,理解同弧所对的圆周角相等是解题关键.13.如图1,四边形ABCD中,、为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”,此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为.(1)等腰梯形(填“是”或“不是”)“四边形”;(2)如图3,是⊙O的直径,A是⊙O上一点,,点为上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有个.【答案】“值”为10;(1)是;(2)最多有5个.【解析】试题分析:仔细分析题中“四边形”的定义结合矩形的性质求解即可;(1)根据题中“四边形”的定义结合等腰梯形的性质即可作出判断;(2)根据题中“四边形”的定义结合中垂线的性质、圆的基本性质即可作出判断.矩形ABCD中,若AB=4,BC=3,则它的“值”为10;(1)等腰梯形是“四边形”;(2)由题意得当点运动到某一位置时,以、、、、、中的任意四个点为顶点的“四边形”最多,最多有5个.考点:动点问题的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.14.如图①、②、③是两个半径都等于2的⊙O1和⊙O2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O1和⊙O2相交于A、B两点,分别连结O1A、O1B、O2A、O2B和AB.(1)如图②,当∠AO1B=120°时,求两圆重叠部分图形的周长l;(2)设∠AO1B的度数为x,两圆重叠部分图形的周长为y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O2A所在的直线与⊙O1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°, ∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:, 解之x =90度∴AO 1B =90°,因此菱形AO 1BO 2是正方形,∴O 1AO 2=90°,即O 2A ⊥O 1A ,而O 1A 是⊙O 1的半径,且A 为半径之外端;∴O 2A 与⊙O 1相切.还有如下位置关系:当0≤x ≤90和0≤x ≤180时,线段O 2A 所在的直线与⊙O 1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大15.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?【答案】(1)24cm ,()926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】【分析】(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,261218()92()OB OC CB cm ON BN cm =+=+====,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形;。