七年级数学下册第2章达标测试卷作业课件(新版)北师大版
- 格式:ppt
- 大小:2.49 MB
- 文档页数:20
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!北师大版七年级下单元测试第2单元班级________姓名________一、选择题(共10小题,每小题4分,共40分)1.如图,直线a,b被直线c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角2.已知∠A=25°,则∠A的余角、补角分别是()A.65°B.75°C.155°D.165°3.如图,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C 路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.过一点有且只有一条直线与已知直线垂直4.如图,已知OA⊥OB,OC⊥OD,则图中∠1和∠2的关系是()A.互余B.互补C.相等D.以上都不对5.如图,下列推理正确的是()A.因为∠1=∠2,所以DE∥BFB.因为∠1=∠2,所以CE∥AFC.因为∠CEF+∠AFE=180°,所以DE∥BFD.因为∠CEF+∠AFE=180°,所以CE∥AF6.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=()A.70°B.100°C.110°D.120°7.如图,下列判断错误的是()A.∵∠1=∠2,∴AE∥BDB.∵∠3=∠4,∴AB∥CDC.∵∠1=∠2,∴AB∥DED.∵∠5=∠BDC,∴AE∥BD8.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°9.如图,AB∥CD,则α,β,γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180°C.α+β+γ=360°D.α-β-γ=180°10.如图,一束光线与水平面成60°角照射到地面,现在地面AB上支放着一块平面镜CD,使这束光线经过平面镜反射后成水平光线射出(∠1=∠2),那么平面镜CD与地面AB所成∠DCA度数为()A.30°B.45°C.50°D.60°二.填空题(共6小题,每小题4分,共24分)11.已知在同一个平面内的三条直线l1,l2,l3,如果l1⊥l2,l2⊥l3,那么l1与l3的位置关系是________12.如图,已知∠1=∠2,则图中互相平行的线段是;理由是:__________________________________________;13.如图,B,A,E三点在同一直线上,请你添加一个条件,使AD∥BC,你所添加的条件是________________.(不允许添加任何辅助线)14.已知∠AOB=60°,OC为∠AOB的平分线,以OB为始边,在∠AOB的外部作∠BOD=∠AOC,则∠COD的度数是________.15.如图,m∥n,∠1=110°,∠2=100°,则∠3=________.16.如图,AD平分∠CAE,CF∥AD,∠1=80°,∠2=________.三.解答题(共6小题,56分)17.(6分)若一个角的余角是这个角的15,求这个角的补角的度数.18.(8分)如图,直线AB,CD相交于点O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB,∠BOF的度数.19.(8分)如图,在△ABC中,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为F;(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数;20.(10分)如图,直线AB和CD交于点O,OE⊥OD,OD平分∠BOF,∠BOE =50°.(1)求∠AOC的度数;(2)求∠EOF的度数.21.(12分)如图,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的度数比是2∶11,求∠BOC的度数;(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少?22.(12分)观察发现:已知AB∥CD,点P是平面上一个动点.当点P在直线AB,CD的异侧,且在BC(不与点B,C重合)上时,如图①,容易发现:∠ABP +∠DCP=∠BPC.拓展探究:(1)当点P位于直线AB,CD的异侧,且在BC左侧时,如图②,∠ABP,∠DCP,∠BPC之间有何关系?并说明理由;(2)当点P位于直线AB,CD的异侧,且在BC右侧时,如图③,∠ABP,∠DCP,∠BPC之间有何关系?并说明理由;(3)当点P位于直线AB,CD的同侧,如图④,∠ABP,∠DCP,∠BPC之间有何关系?并说明理由.参考答案1-5BCBCD6-10CCBBA11.平行12.AD//BC,内错角相等,两直线平行13.∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°14.60°15.150°16.100°17.解:设这个角的度数为x,则它的余角的度数为(90°-x).由题意得90°-x=15x,解得x=75°.所以这个角的补角为180°-x=180°-75°=105°. 18.解:因为OE⊥CD,所以∠DOE=90°,因为∠1=50°,所以∠DOA=40°,即∠BOC=∠DOA=40°,因为OD平分∠AOF,所以∠AOF=2∠DOA=80°,所以∠BOF=180°-∠AOF=100°19.解:(1)∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴CD∥EF(2)∵EF∥DC∴∠2=∠BCD∵∠1=∠2,∴∠1=∠BCD xx+]∴DG∥BC∴∠ACB=∠3=105°20.解:(1)因为∠BOE=50°,∠COE=90°,∠AOC+∠COE+∠BOE=180°,所以∠AOC=180°-50°-90°=40°.(2)因为∠AOC=40°,所以∠BOD=∠AOC=40°,因为OD平分∠BOF,所以∠BOD=∠DOF=40°,所以∠EOF=50°+40°+40°=130°.21.解:(1)设∠DOB=2x°,则∠DOA=11x°.因为∠AOB=∠COD=90°,所以∠AOC=∠DOB=2x°,∠BOC=7x°.又因为∠DOA=∠AOB+∠COD-∠BOC=180°-∠BOC,所以11x=180-7x,解得x=10.所以∠BOC=70°.(2)因为∠AOD=∠AOB+∠COD-∠BOC=180°-∠BOC,所以∠AOD与∠BOC互补,则∠AOD的补角等于∠BOC.故∠AOD的补角的度数与∠BOC的度数之比是1∶1.22.解:(1)∠ABP+∠DCP=∠BPC.理由:如图,过点P作直线PQ∥AB,∴∠ABP=∠BPQ(两直线平行,内错角相等),∵AB∥CD(已知),∴DC∥PQ(如果两条直线和第三条直线平行,那么这两条直线平行),∴∠DCP=∠CPQ(两直线平行,内错角相等),∴∠ABP+∠DCP=∠BPQ+∠CPQ=∠BPC(等量代换)(2)∠ABP+∠BPC+∠DCP=360°,理由:如图③,过P作PQ∥AB,则DC∥PQ,∴∠ABP+∠BPQ=180°,∠DCP+∠CPQ=180°,∴∠ABP+∠BPC+∠DCP=360°(3)∠BPC=∠DCP-∠ABP,理由:如图④,过P作PQ∥AB,则PQ∥DC,∴∠DCP=∠CPQ,∠ABP=∠BPQ,∴∠BPC=∠CPQ-∠BPQ=∠DCP-∠ABP。
北师大版七年级数学下册第二章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( )A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( ) A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( ) A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是( )6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是( )A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是( )A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( ) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( )A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为 .12.(曲阜期末)如图,若满足条件,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是 .14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC = .第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有 .个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= .18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE= .三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?21.(8分)已知:如图,∠ABE+∠DEB=180°,∠1=∠2,则∠F与∠G的大小关系如何?请说明理由.22.(8分)如图,在三角形ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.25.(14分)如图,已知直线AC∥BD,直线AB,CD不平行,点P在直线AB上,且和点A,B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A,B两点之间运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P在线段BA延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)参考答案一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( C)A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( B)A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( C)A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( C)A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是 ( A)6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是 ( C)A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是 (D) A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( D) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有 ( D)A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( D)A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为__123°__.12.(曲阜期末)如图,若满足条件__∠A=∠3(答案不唯一)__,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是__相互平行__.14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B 之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西__63__度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=__40°__.第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有__3__个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__120°.18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=__110°或70°__.三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;解:设这个角的度数为x度,则x-(90-x)=20,解得x=55,即这个角的度数为55°,所以这个角的补角为180°-55°=125°.(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.解:设∠2的对顶角为∠3,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD,∴∠D+∠B=180°.∵∠D=60°,∴∠B=120°.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?解:(1)同位角相等,两直线平行.(2)DE =12BC.21.(8分)已知:如图,∠ABE +∠DEB =180°,∠1=∠2,则∠F 与∠G 的大小关系如何?请说明理由.解:∠F =∠G.理由:∵∠ABE +∠DEB =180°,∴AC ∥ED ,∴∠CBE =∠DEB.∵∠1=∠2,∴∠CBE -∠1=∠DEB -∠2,即∠FBE =∠GEB ,∴BF ∥EG ,∴∠F =∠G.22.(8分)如图,在三角形ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,试比较∠EDF 与∠BDF 的大小,并说明理由.解:∠EDF=∠BDF.理由:∵AC∥ED,∴∠ACE=∠DEC.∵CE⊥AB,DF⊥AB,∴∠AEC=∠AFD=90°,∴DF∥CE,∴∠BDF=∠BCE,∠EDF=∠DEC,∴∠EDF=∠ACE.∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠EDF=∠BDF.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.解:(1)∵BC∥AD,∴∠B=∠DOE.又BE∥AF,∴∠DOE=∠A,∴∠A=∠B.(2)∵∠DOB=∠EOA,由BE∥AF得∠EOA+∠A=180°.又∠DOB=135°,∴∠A=45°.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.解:(1)∵∠BOD=28°,∴∠AOC=∠BOD=28°.∵OE⊥CD,∴∠EOC=90°,∴∠AOE=∠EOC-∠AOC=62°.(2)正确,设∠BOD=x,则∠AOC=∠BOD=x,∠BOC=180°-x.∵OF 平分∠AOC ,∴∠FOC =12x , ∴∠EOF =90°-∠FOC =90°-12x , ∴∠EOF =12∠BOC.25.(14分)如图,已知直线AC ∥BD ,直线AB ,CD 不平行,点P 在直线AB 上,且和点A ,B 不重合.(1)如图①,当点P 在线段AB 上时,若∠PCA =20°,∠PDB =30°,求∠CPD 的度数;(2)当点P 在A ,B 两点之间运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P 在线段AB 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P 在线段BA 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)解:(1)如图①,过点P 作PE ∥AC 交CD 于点E ,∵AC ∥BD ,∴PE ∥BD ,∴∠CPE =∠PCA =20°,∠DPE =∠PDB =30°,∴∠CPD=∠CPE+∠DPE=50°.(2)∠CPD=∠PCA+∠PDB.(3)∠CPD=∠PCA-∠PDB.理由:如图②,过点P作PE∥BD交CD于点E,∵AC∥BD,∴PE∥AC,∴∠CPE=∠PCA,∠DPE=∠PDB,∴∠CPD=∠CPE-∠DPE=∠PCA-∠PDB. (4)∠CPD=∠PDB-∠PCA;∠CPD=∠PCA-∠PDB.。
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
(新)北师大版七年级数学上册各章测试卷(共7套,含答案)第一章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.生活中的“八宝粥”易拉罐同学们都很熟悉,你认为“八宝粥”易拉罐类似于( )A.棱柱B.圆柱C.圆锥D.长方体2.将图中的图形绕虚线旋转一周,形成的几何体是( )(第2题)3.如图是一个螺母的示意图,从上面看得到的图形是( )(第3题)4.一个无盖的正方体盒子的表面展开图可以是如图所示的( )(第4题)A.①B.①②C.②③D.①③5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形B.棱锥的侧面是三角形C.长方体和正方体不是棱柱D.柱体的上、下两底面可以大小不一样6.用一个平面去截下列几何体,所得截面与其他三个不同的是( )(第7题)7.如图为一个长方体截去两个角后的立体图形,如果照这样截去长方体的八个角,则所得新的立体图形的棱有( )A.26条B.30条C.36条D.42条8.能由如图所示的平面图形折叠而成的立体图形是( )(第8题)9.把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是( ) A.78 B.72 C.54 D.4810.如图是由一些小立方块所搭的几何体从三个不同方向看到的图形,若在所搭的几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要的小立方块个数是( )(第10题) A.50 B.51 C.54 D.60二、填空题(每题3分,共24分)11.快速旋转一枚竖立的硬币(假定旋转轴在原地不动),旋转形成的立体图形是________.12.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.13.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是______或______.(第13题)(第14题)(第15题)14.如图是从不同方向看一个立体图形得到的平面图形,则这个立体图形的侧面积是________.15.正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1对面的数字是______.16.如图,木工师傅把一根长为1.6 m的长方体木料锯成3段后,表面积比原来增加了80 cm2,那么这根木料原来的体积是________.(第16题)(第17题)(第18题)17.如图,长方形ABCD的长AB=4,宽BC=3,以AB所在的直线为轴,将长方形旋转一周后所得几何体从正面看到的形状图的面积是________.18.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么该几何体从______面看到的形状图的面积最大.三、解答题(19~21题每题10分,其余每题12分,共66分)19.(1)如图是一些基本立体图形,在括号里写出它们的名称.(第19题)(2)将这些几何体分类,并写出分类的理由.20.如图①②都是几何体的表面展开图,先想一想,再折一折,然后说出图①②折叠后的几何体的名称、棱数与顶点数.(第20题)21.如图是一个立体图形从三个不同方向看所得到的形状图,请写出这个立体图形的名称,并计算这个立体图形的体积(结果保留π).(第21题)22.如图,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状).(1)王亮至少需要多少个小正方体?(2)王亮所搭几何体的表面积是多少?(第22题)23.如图①,在正方体中,点P,Q,S分别是所在边的中点,将此正方体展开,请在展开图(图②)中标出点P,Q,S的位置,当正方体的棱长为a时,求出展开图中三角形PSQ 的面积.(第23题)24.如图①至③是将正方体截去一部分后得到的几何体.(第24题)(1)根据要求填写表格:图面数(f) 顶点数(v) 棱数(e)①②③(2)猜想f,v,e三个数量间有何关系;(3)根据猜想计算,若一个几何体有2 013个顶点,4 023条棱,试求出它的面数.答案一、1.B 2.B 3.B 4.D 5.B 6.D 7.C 8.D 9.B 10.C二、11.球 12.8 cm 13.6;7 14.18 cm 215.3 16.3 200 cm 317.24 18.正三、19.解:(1)球;圆柱;圆锥;长方体;三棱柱(2)第一类:球、圆柱、圆锥,几何体的面中含有曲面;第二类:长方体、三棱柱,几何体的面中不含有曲面.(答案不唯一)20.解:图①折叠后是长方体,有12条棱,8个顶点;图②折叠后是六棱柱,有18条棱,12个顶点.21.解:这个立体图形是圆柱,体积为π×⎝ ⎛⎭⎪⎫822×10=160π(cm 3). 22.解:(1)两人所搭成的几何体拼成一个大长方体,该大长方体的长、宽、高至少为3,3,4,所以它的体积为36,则它是由36个棱长为1的小正方体搭成的,那么王亮至少需要36-17=19(个)小正方体.(2)王亮所搭几何体的上面面积为8,右侧面积为7,左侧面积为7,后面面积为9,前面面积为9,底面面积为8,故表面积为48.23.解:如图所示.(第23题)S 所在位置有两种情况.如图,过点Q 作QT ⊥BC 交直线BC 于点T.S 三角形PSQ =52a ·a -12a ·52a ·12-12a ·32a ·12-a ·a ·12=a 2.由图可以看出三角形PS ′Q 和三角形PSQ 的面积相等,所以三角形PS ′Q 的面积也是a 2.24.解:(1)7;9;14;6;8;12;7;10;15 (2)f +v -e =2.(3)因为v =2 013,e =4 023,f +v -e =2,所以f +2 013-4 023=2,f =2 012,即它的面数是2 012.第二章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.2的相反数是( )A .2B .12C .-2D .-123.在-1,-2,0,1这四个数中最小的数是( )A .-1B .-2C .0D .14.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-1C .(-3)2÷(-2)2=32D .0-7-2×5=-175.有理数a ,b 在数轴上对应的位置如图所示,则( )(第5题)A .a +b <0B .a +b >0C .a -b >0D .a b>06.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1097.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )A .3或7B .-3或-7C .-3D .-78.下列说法中正确的是( )A .一个有理数不是正数就是负数B .|a|一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.如图的数轴被墨迹盖住一部分,被盖住的整数点有( )(第9题)A .7个B .8个C .9个D .10个10.如图,下面每个表格中的四个数都是按相同规律填写的:(第10题)根据此规律确定x 的值为( )A .135B .170C .209D .252二、填空题(每题3分,共24分)11.-25的绝对值是________,倒数是________.12.某项科学研究,以45 min 为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1,以此类推,上午7:45应记为________.13.某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g ,(500±0.2)g ,(500±0.3) g 的字样,从中任意拿出两袋,它们最多相差________.14.比较一个正整数a ,其倒数1a,相反数-a 的大小:________________.15.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 016=________.16.已知在如图所示没有标明原点的数轴上有四个点,且它们表示的数分别为a ,b ,c ,d ,若|a -c|=10,|a -d|=12,|b -d|=9,则|b -c|=________.(第16题)(第17题)17.按如图所示的程序进行计算,如果第一次输入的数是20,而结果不大于100时,应把结果作为输入的数再进行第二次运算,直到符合要求为止,则最后输出的结果为________.18.一列数a 1,a 2,a 3,…,a n .其中a 1=-1,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 1+a 2+a 3+…+a 2 017=________.三、解答题(21题6分,19,22,23题每题8分,其余每题12分,共66分) 19.把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合{ …} 负分数集合{ …} 非负整数集合{ …} 有理数集合{ …} 20.计算:(1)-5-(-3)+(-4)-[-(-2)];(2)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(3)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).21.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +b a +b +c +m 2-cd 的值.22.一辆货车从超市出发,向东走了1 km ,到达小明家,继续向东走了3 km 到达小兵家,然后向西走了10 km ,到达小华家,最后又向东走了6 km 结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1 km ,请你在如图所示的数轴上表示出小明家、小兵家和小华家的具体位置.(第22题)(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1 km 的用油量为0.25 L ,请你计算货车从出发到结束行程共耗油多少升?23.已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.24.商人小周于上周日收购某农产品10 000 kg ,每千克2.3元,进入批发市场后共占5个摊位,每个摊位最多能容纳 2 000 kg 该农产品,每个摊位的市场管理价为每天20元.批发市场该农产品上周日的批发价为每千克 2.4元,下表为本周内该农产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负)星期一 二 三 四 五 与前一天相比价格的涨跌情况/元+0.3 -0.1 +0.25 +0.2 -0.5 当天的交易量/kg2 5002 0003 0001 5001 000(1)星期四该农产品价格为每千克多少元?(2)本周内该农产品的最高价格为每千克多少元?最低价格为每千克多少元? (3)小周在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算.25.观察下列各式: -1×12=-1+12;-12×13=-12+13; -13×14=-13+14;… (1)你发现的规律是____________________;(用含n 的式子表示)(2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛⎭⎪⎫-12 017×12 018.答案一、1.B 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.C10.C 点拨:首先根据图示,可得第n 个表格的左上角的数等于n ,左下角的数等于n +1;然后根据4-1=3,6-2=4,8-3=5,10-4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3,4,5,…,n +2,据此求出a 的值是多少;最后根据每个表格中右下角的数等于左下角的数与右上角的数的积加上左上角的数,求出x 的值是多少即可.二、11.25;-5212.-3 13.0.6 g 14.-a <1a ≤a15.1 16.7 17.320 18.1 007三、19.解:正数集合{15,0.81,227,171,3.14,π,1.6·,…}负分数集合{-12,-3.1,…}非负整数集合{15,171,0,…}有理数集合{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}20.解:(1)原式=-8. (2)原式=30. (3)原式=-73. (4)原式=-40.21.解:由题意,得a +b =0,cd =1, m =±2,所以m 2=4. 所以a +b a +b +c +m 2-cd=0+c+4-1 =0+4-1=3. 22.解:(1)略.(2)由题意得(+1)+(+3)+(-10)+(+6)=0(km ),因而货车最后回到超市. (3)由题意得,1+3+10+6=20(km ),货车从出发到结束行程共耗油0.25×20=5(L ).23.解:由ab 2<0,知a <0.因为a +b >0,所以b >0. 又因为|a|=2,|b|=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 24.解:(1)2.4+0.3-0.1+0.25+0.2=3.05(元). 所以星期四该农产品价格为每千克3.05元. (2)星期一的价格是2.4+0.3=2.7(元); 星期二的价格是2.7-0.1=2.6(元); 星期三的价格是2.6+0.25=2.85(元); 星期四的价格是3.05元;星期五的价格是3.05-0.5=2.55(元).因而最高价格为每千克3.05元,最低价格为每千克2.55元.(3)(2 500×2.7-5×20)+(2 000×2.6-4×20)+(3 000×2.85-3×20)+(1 500×3.05-2×20)+(1 000×2.55-20)-10 000×2.3=6 650+5 120+8 490+4 535+2 530-23 000=27 325-23 000=4 325(元).所以他在本周的买卖中共赚了4 325元.25.解:(1)-1n ×1n +1=-1n +1n +1(n 为正整数)(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 0172 018.第三章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分) 1.下列各式中,代数式的个数是( )①12; ②a +38; ③ab =ba ; ④1x +y ; ⑤2a -1; ⑥a ; ⑦12(a 2-b 2); ⑧5n +2.A .5B .6C .7D .82.单项式-π3a 2b 的系数和次数分别是( )A .π3,3 B .-π3,3 C .-13,4 D .13,43.下列各组是同类项的是( )A .xy 2与-12x 2y B .3x 2y 与-4x 2yz C .a 3与b 3 D .-2a 3b 与12ba 34.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( )A .a =0,b =3B .a =1,b =3C .a =2,b =3D .a =2,b =15.下列去括号正确的是( )A .a -(2b -3c)=a -2b -3cB .x 3-(3x 2+2x -1)=x 3-3x 2-2x -1C .2y 2+(-2y +1)=2y 2-2y +1D .-(2x -y)-(-x 2+y 2)=-2x +y +x 2+y 26.某校组织若干师生到活动基地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A .200-60xB .140-15xC .200-15xD .140-60x7.如图,阴影部分的面积是( )(第7题)A .112x yB .132xy C .6xy D .3xy8.已知-x +3y =5,则代数式5(x -3y)2-8(x -3y)-5的值为( )A .80B .-170C .160D .609.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确答案是( )A .2xy -5yz +xzB .3xy -8yz -xzC .yz +5xzD .3xy -8yz +xz10.如图,小明用棋子摆放图形来研究数的规律.图①中棋子围成三角形,其颗数分别为3,6,9,….类似地,图②中棋子围成正方形,其颗数分别为4,8,12,….下列选项中既能围成三角形又能围成正方形的棋子颗数是( )(第10题)A .2 010B .2 012C .2 014D .2 016二、填空题(每题3分,共24分)11.用代数式表示“比a 的平方的一半小1的数”是____________. 12.已知15 m xn 和-29m 2n 是同类项,则|2-4x|+|4x -1|的值为________.13.已知有理数a ,b 在数轴上对应的点的位置如图所示,化简|a +b|-|b -a|的结果为________.(第13题)14.三角形三边的长分别为(2x +1) cm ,(x 2-2) cm 和(x 2-2x +1) cm ,则这个三角形的周长是________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m 等于________.16.已知a 2-4ab =1,3ab +b 2=2,则整式3a 2+4b 2的值是________.17.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的优惠措施是每分降低a 元后,再下调25%;乙公司推出的优惠措施是每分下调25%,再降低a 元.若甲、乙两公司原来每分的收费标准相同,则推出优惠措施后收费较便宜的是________公司.18.有一个正六面体骰子,放在桌面上,将骰子按如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 017次后,骰子朝下一面的点数是________.(第18题)三、解答题(19,21,22题每题10分,其余每题12分,共66分) 19.先去括号,再合并同类项.(1)2a -(5a -3b)+(4a -b); (2)3(m 2n +mn)-4(mn -2m 2n)+mn.20.先化简,再求值:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1),其中a =-23;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.21.已知A =y 2-ay -1,B =2by 2-4y -1,且2A -B 的值与字母y 的取值无关,求2(a 2b -1)-3a 2b +2的值.22.小刚在图书馆认识了新朋友小明,他想知道小明的年龄,于是说:“把你的年龄减去5,再乘2后减去结果的一半,再加11,把最后结果告诉我,我就能猜出你的年龄.”小明这样做后,小刚果然迅速猜到了小明的年龄.你能说出小刚是用了什么办法猜对的吗?23.A,B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪20万元,每年加工龄工资4 000元;B公司半年薪10万元,每半年加工龄工资2 000元.A,B两家公司第n年的年薪分别是多少?从经济角度考虑,选择哪家公司有利?24.如图是一个长方形娱乐场所的设计图.其中半圆形休息区和长方形游泳池以外的地方都是绿地.试解答下列问题:(1)游泳池和休息区的面积各是多少? (2)绿地的面积是多少?(3)如果这个娱乐场所的长是宽的1.5倍,要求绿地面积占整个面积的一半以上.小亮同学根据要求,设计的游泳池的长和宽分别是大长方形的长和宽的一半,你说他的设计符合要求吗?为什么?(第24题)答案一、1.C 2.B 3.D 4.C 5.C 6.C 7.A 8.C9.B 点拨:由题意可知原多项式为(xy -2yz +3xz)+(xy -3yz -2xz)=2xy -5yz +xz ,则正确的答案为(2xy -5yz +xz)+(xy -3yz -2xz)=3xy -8yz -xz.10.D 二、11.12a 2-112.13 点拨:因为15m xn 和-29m 2n 是同类项,所以x =2.所以|2-4x|+|4x -1|=6+7=13.13.-2b 14.2x 2cm 15.416.11 点拨:因为a 2-4ab =1,所以3a 2-12ab =3 ①.因为3ab +b 2=2,所以12ab +4b 2=8 ②.①+②得3a 2+4b 2=11.17.乙 点拨:设甲、乙两公司原来的收费为每分b(b >a)元,则推出优惠措施后,甲公司的收费为(b -a)×75%=0.75b -0.75a (元),乙公司的收费为(0.75b -a )元.因为0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜.18.2三、19.解:(1)2a -(5a -3b)+(4a -b) =2a -5a +3b +4a -b =a +2b.(2)3(m 2n +mn)-4(mn -2m 2n)+mn =3m 2n +3mn -4mn +8m 2n +mn =11m 2n.20.解:(1)-a 2+(-4a +3a 2)-(5a 2+2a -1) =-a 2-4a +3a 2-5a 2-2a +1 =-3a 2-6a +1.当a =-23时,原式=-3×⎝ ⎛⎭⎪⎫-232-6×⎝ ⎛⎭⎪⎫-23+1=113.(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-[-3xy +2(14x 2-xy)+23y 2]=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2. 因为|x -1|+(y +2)2=0, 所以x -1=0且y +2=0.所以x =1,y =-2.所以原式=12+13×(-2)2=73.21.解:2A -B =2(y 2-ay -1)-(2by 2-4y -1) =2y 2-2ay -2-2by 2+4y +1 =(2-2b)y 2+(4-2a)y -1. 由题意知2-2b =0,4-2a =0, 即a =2,b =1.2(a 2b -1)-3a 2b +2=2a 2b -2-3a 2b +2=-a 2b =-22×1=-4.22.解:设小明的年龄是x 岁,则2(x -5)-12×2(x -5)+11=x +6(小明说的这个数是x +6).所以只要小明说出这个数,小刚再把这个数减去6就能得知小明的年龄. 23.解:A 公司第n 年的年薪为200 000+4 000(n -1)=196 000+4 000n(元),B 公司第n 年的年薪为100 000×2+(2n -1)×2 000=198 000+4 000n(元). 因为n >0,所以196 000+4 000n <198 000+4 000n. 所以从经济角度考虑,选择B 公司有利. 24.解:(1)游泳池的面积为mn ; 休息区的面积为12×π×⎝ ⎛⎭⎪⎫n 22=18πn 2.(2)绿地的面积为ab -mn -18πn 2.(3)符合要求.理由如下:由已知得a =1.5b ,m =0.5a ,n =0.5b. 所以⎝ ⎛⎭⎪⎫ab -mn -18πn 2-12ab = 38b 2-π32b 2>0. 所以ab -mn -18πn 2>12ab ,即小亮设计的游泳池符合要求.第四章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.小辉同学画出了如下的四个图形,你认为是四边形的是( )2.在党中央、国务院“振兴中央苏区”的精神鼓舞下,老区人民掀起了建设家乡的热潮.某村把一条弯曲的公路改为直道以达到缩短路程的目的,其道理用数学知识解释应是( )A .两点之间线段最短B .两点确定一条直线C .线段可以比较大小D .线段有两个端点3.对于下列直线AB ,线段CD ,射线EF ,能相交的是( )4.如图,OB ,OC 都是∠AOD 内部的射线,如果∠AOB =∠COD ,那么( )A .∠AOC>∠BODB .∠AOC =∠BOD C .∠AOC<∠BOD D .以上均有可能(第4题)(第5题)5.如图,下列等式中错误的是( )A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC6.晓敏早晨8:00出发,中午12:30到家,那么晓敏到家时时针和分针的夹角是( )A .160°B .165°C .120°D .125°7.下列说法正确的有( ) ①角的大小与所画边的长短无关;②比较角的大小就是比较它们的度数的大小;③从角的顶点出发的一条射线把这个角分成两个角,这条射线叫做这个角的平分线; ④如果∠AOC =12∠AOB ,那么OC 是∠AOB 的平分线.A .1个B .2个C .3个D .4个8.如图,射线OA 与正东方向所成的角是30°,射线OA 与射线OB 所成的角是100°,则射线OB 的方向为( )A .北偏西30°B .北偏西50°C .北偏西40°D .西偏北30°(第8题)(第9题)(第10题)9.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.如果∠AOC =30°,∠BOD =80°,那么∠COE 的度数为( )A .50°B .60°C .65°D .70°10.如图,C ,D 为线段AB 上的两点,M 是AC 的中点,N 是BD 的中点,如果MN =a ,CD =b ,那么线段AB 的长为( )A .2(a -b)B .2a -bC .2a +2bD .2a +b二、填空题(每题3分,共24分)11.工人师傅在用地砖铺地时,常常打两个木桩然后沿着拉紧的线铺地,这样地砖就铺得整齐,这是根据________________________.12.如图,线段有________条,射线有________条.(第12题)13.时钟由2点30分到2点55分,时针走过的角度是________,分针走过的角度是________.14.如图,直径AC 与BD 互相垂直,则半径分别是______________________,扇形AOD 的圆心角是________,弧AD 可表示为________.(第14题)(第15题)(第16题)15.如图,已知线段AB ,延长AB 到C ,使BC =12AB ,D 为AC 的中点,DC =3 cm ,则DB=________.16.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于________.17.如图,艺术节期间我班数学兴趣小组设计了一个长方形时钟作品,其中心为O ,数3,6,9,12标在各边中点处,数2在长方形顶点处,则数1应该标在________处(选填一个序号:①线段DE的中点;②∠DOE的平分线与DE的交点).(第17题)(第18题)18.点M,N在数轴上的位置如图所示,如果P是数轴上的另外一点,且3PM=MN,则点P对应的有理数是________.三、解答题(19题8分,20题6分,24题12分,其余每题10分,共66分)19.读句画图:如图,A,B,C,D四点在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)画线段AB;(4)连接BC,并反向延长BC.(第19题)20.计算:(1)83°46′+52°39′16″;(2)96°-18°26′59″;(3)20°30′×8;(4)105°24′15″÷3.21.如图,由点O引出6条射线OA,OB,OC,OD,OE,OF,且∠AOB=90°,OF平分∠BOC,OE平分∠AOD.若∠EOF=170°,求∠COD的度数.(第21题)22.如图,在O点的观测站测得渔船A,B的方向分别为北偏东45°,南偏西30°,为了减少相互干扰并取得较好的捕鱼效益,渔船C恰好位于∠AOB的平分线上,求渔船C相对观测站的方向.(第22题)23.如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =38AB ,E 是线段AC 的中点,D 是线段AB 的中点,求DE 的长.(第23题)24.如图,B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm ,设点B 的运动时间为t s (0≤t ≤10).(1)当t =2时,①AB =________;②求线段CD 的长度. (2)用含t 的代数式表示运动过程中AB 的长.(3)在运动过程中,若AB 的中点为E ,则EC 的长是否发生变化?若不变,求出EC 的长;若发生变化,请说明理由.(第24题)25.如图,正方形ABCD 内部有若干个点,利用这些点以及正方形ABCD 的顶点A ,B ,C ,D 把原正方形分割成一些三角形(互相不重叠):(第25题)(1)填写下表:正方形ABCD 内点的个数 1 2 3 4 … n 分割成的三角形的个数46…(2)原正方形能否被分割成2 018个三角形?若能,求此时正方形ABCD 内部有多少个点;若不能,请说明理由.答案一、1.B 2.A 3.B 4.B 5.C 6.B 7.B 8.C 9.D 10.B 二、11.两点确定一条直线 12.6;813.12.5°;150°14.OA ,OB ,OC ,OD ;90°;AD ︵15.1 cm 16.135°17.② 点拨:根据钟表表盘的特征可得数1应该标在∠DOE 的平分线与DE 的交点处.故答案为②.18.-1或-5 点拨:因为3PM =MN ,所以PM =13×(3+3)=2.所以当点P 在点M 左侧时,点P 对应的有理数是-5;当点P 在点M 右侧时,点P 对应的有理数是-1.三、19.解:如图.(第19题)20.解:(1)83°46′+52°39′16″= 135°85′16″=136°25′16″.(2)96°-18°26′59 ″=95°59′60″-18°26′59″=77°33′1″. (3)20°30′×8=160°240′=164°. (4)105°24′15″÷3=35°8′5″.21.解:因为∠EOF =170°,∠AOB =90°,所以∠BOF +∠AOE =360°-∠EOF -∠AOB =360°-170°-90°=100°.又因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =∠BOF ,∠EOD =∠AOE. 所以∠COF +∠EOD =∠BOF +∠AOE =100°.所以∠COD =∠EOF -(∠COF +∠EOD)=170°-100°=70°.22.解:由题意可知∠AOB =180°-45°+30°=165°,165°÷2-30°=52.5°,所以渔船C 在观测站南偏东52.5°方向.23.解:因为AB =24 cm ,BC =38AB ,所以BC =38×24=9(cm ).所以AC =AB +BC =24+9=33(cm ). 因为E 是线段AC 的中点, 所以AE =12×33=16.5(cm ).因为D 是线段AB 的中点, 所以AD =12AB =12×24=12(cm ).所以DE =AE -AD =16.5-12=4.5(cm ). 24.解:(1)①4 cm②因为AD =10 cm ,AB =4 cm , 所以BD =10-4=6(cm ). 因为C 是线段BD 的中点, 所以CD =12BD =12×6=3(cm ).(2)因为B 是线段AD 上一动点,沿A →D →A 以2 cm /s 的速度往返运动,所以当0≤t ≤5时,AB =2t cm ;当5<t ≤10时,AB =10-(2t -10)=20-2t(cm ). (3)不变.因为AB 的中点为E ,C 是线段BD 的中点, 所以EC =12(AB +BD)=12AD =12×10=5(cm ).25.解:(1)填表如下: 正方形 ABCD 内点的个数,1,2,3,4,…,n 分割成的 三角形的个数,4,6,8,10,…,2n +2(2)能.当2n +2=2 018,即n =1 008时,原正方形被分割成2 018个三角形,此时正方形ABCD 内部有1 008个点.第五章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.下列方程中,是一元一次方程的是( )A .x =1B .2x+1=0 C .3x +y =2 D .x 2-1=5x2.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =y aC .若a =b ,则ac =bcD .若b a=d c,则b =d3.下列方程中,解是x =2的方程是( )A .23x =2B .-14x +12=0 C .3x +6=0 D .5-3x =14.下列解方程过程正确的是( )A .由47x =5-27x ,得4x =5-2xB .由30%x +40%(x +1)=5,得30x +40(x +1)=5C .由x0.2-1=x ,得5x -1=xD .由x -6=8,得x =25.若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .26.已知方程2x -3=m3+x 的解满足|x|-1=0,则m 的值是( )A .-6B .-12C .-6或-12D .任何数7.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-268.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是( )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=1009.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的一个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为( )(第9题)A .10 gB .15 gC .20 gD .25 g10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元二、填空题(每题3分,共24分) 11.方程2x -1=0的解是x =________. 12.已知关于x 的方程(a -3)x|2a -7|-5=0是一元一次方程,则a =________.13.若k 是方程3x +1=7的解,则4k +3=________.14.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.15.一个两位数,个位上的数字是十位上的数字的2倍,如果把十位上与个位上的数字对调,那么所得的两位数比原两位数大27,求原两位数.若设原两位数个位上的数字为x ,则可列方程为____________________;若设原两位数十位上的数字为y ,则可列方程为______________________.16.甲、乙两个足球队连续进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜________场.(第18题)17.某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为________元.18.如图是一块在电脑屏幕上出现的长方形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个长方形色块图的面积为________.三、解答题(20~22题每题10分,其余每题12分,共66分) 19.解下列方程:(1)5y -3=2y +6; (2)5x =3(x -4);(3)2x +13-5x -16=1; (4)x 0.7-0.17-0.2x 0.03=1.20.若x=5是方程ax-6=22+a的解.试求关于y的方程ay+5=a-3y的解.21.轮船在静水中的航行速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.22.某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15 m3,按每立方米1.8元收费;如果超过15 m3,超过部分按每立方米2.3元收费,其余仍按每立方米1.8元收费.另外,每立方米加收污水处理费1元.若某户一月份共支付水费58.5元,求该户一月份的用水量.23.用一个长60 m的篱笆围成一个长方形鸡场(鸡场的一边靠墙,墙长为20 m).如图,若BC=2AB,求AB和BC的长,并检验是否符合要求;若不符合要求,提出改进意见,并求出改进后的AB,BC的长,使其仍满足BC=2AB.(1)一变:若不利用墙,使围成鸡场的长比宽多6 m,求鸡场的面积;(2)二变:不利用墙,若围成正方形、圆形,分别求出鸡场的面积,并猜想要使鸡场的面积更大一些,最好围成什么图形.(第23题)24.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过一天罚款1 000元,甲、乙两人经商量后签了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合做了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适?为什么?答案一、1.A 2.C 3.B 4.C 5.B 6.C 7.C 8.A 9.A 10.C 二、11.1212.4 点拨:由题意得|2a -7|=1且a -3≠0,解得a =4. 13.11 14.6915.10×x 2+x =10x +x2-27;10y +2y =10×2y +y -27 16.6 17.340 18.143 三、19.解:(1)y =3. (2)x =-6. (3)x =-3. (4)x =1417.20.解:把x =5代入方程ax -6=22+a ,得5a -6=22+a ,解得a =7, 把a =7代入关于y 的方程ay +5=a -3y ,得7y +5=7-3y , 解得y =15.21.解:设甲、乙两码头间的距离为x km ,由题意得x 20+4+x20-4=5.解这个方程得x=48.所以甲、乙两码头间的距离为48 km .22.解:若该户一月份的用水量为15 m 3,则需支付水费15×(1.8+1)=42(元),而42<58.5,所以该户一月份的用水量超过15 m 3.设该户一月份的用水量为x m 3,则列方程为42+(2.3+1)(x -15)=58.5,解得x =20. 所以该户一月份的用水量为20 m 3. 23.解:设AB =x m ,根据题意, 得x +x +2x =60,解得x =15, 所以BC =30 m >20 m . 所以不符合题意. 改进意见:墙AE 做鸡场一边AD 的一部分,如图,设AB =y m ,此时可得方程2(y +2y)-20=60,解得y =403,所以AB =403 m .AD =BC =803m >20 m ,符合题意.(第23题)(1)设宽为z m ,则长为(z +6) m . 由题意,得2(z +6+z)=60. 解得z =12,则长为12+6=18(m ),所以鸡场的面积为12×18=216(m 2). (2)若围成正方形, 则其边长为60÷4=15(m ), 所以面积为152=225(m 2);若围成圆形,则其半径为60÷2π=30π(m ),所以面积为π×⎝ ⎛⎭⎪⎫30π2=900π≈286.6(m 2).因为286.6>225,所以要使鸡场的面积更大一些,最好围成圆形. 24.解:(1)正常情况下,甲、乙两人能履行该合同.理由如下:设两人合做需x 天,由题意得x 30+x20=1,解得x =12,因为12<15,所以正常情况下,两人能履行该合同. (2)调走甲更合适.理由如下:完成这项工程的75%所用天数为34÷⎝ ⎛⎭⎪⎫130+120=9(天),若调走甲,设共需y 天完成,由题意得 34+y -920=1,解得y =14, 因为14<15,所以能履行该合同.若调走乙,设共需z 天完成,由题意得34+z -930=1,解得z =16.5,因为16.5>15,所以不能履行该合同.综上可知,调走甲更合适.第六章达标检测卷(120分,90分钟)题 号 一 二 三 总 分得 分一、选择题(每题3分,共30分)1.在下列调查中,适宜采用普查的是( )A .了解我省中学生的视力情况B .了解九(1)班学生校服的尺码情况C .检测一批电灯泡的使用寿命D .调查台州《600全民新闻》栏目的收视率2.为了了解某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是( )A .1 500名学生的体重是总体B .1 500名学生是总体C .每名学生是个体D .100名学生是所抽取的一个样本3.PM 2.5指数是衡量空气污染程度的一个重要指标,在一年中最可靠的一种观测方法是( )A .随机选择5天进行观测B .选择某个月进行连续观测C .选择在春节7天期间连续观测D .每个月随机选中5天进行观测4.要反映北京市某周内每天最高气温的变化情况,采用的统计图比较合适的是( )A .条形统计图B .扇形统计图C .折线统计图D .上述三种统计图都可以5.如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角的度数是( )A .36°B .72°C .108°D .180°。
北师大版数学七年级下册第二章单元测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合要求的)1.下图中,∠1和∠2是对顶角的是()2.已知∠1=40°,则∠1的补角的度数是()A.100°B.140°C.50°D.60°3.下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离B.从一条河向一个村庄引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短4.如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A.95°B.100°C.110°D.120°(第4题) (第5题)5.如图,∠B的同旁内角有()A.1个B.2个C.3个D.4个6.如图,一个合格的弯形管道ABCD要求AB∥CD.现测得∠ABC=135°,若这个弯形管道符合要求,则∠BCD的度数为()A.25°B.45°C.55°D.65°7.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠38.如图所示,若AB∥CD,则∠A,∠D,∠E之间的关系是()A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°9.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的有()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离;⑥∠BAD =∠C.A.2个B.3个C.4个D.5个10.(1)如图①,AB∥CD,则∠A+∠E+∠C=180°;(2)如图②,AB∥CD,则∠E=∠A+∠C;(3)如图③,AB∥CD,则∠A+∠E-∠1=180°;(4)如图④,AB∥CD,则∠A=∠C+∠P.以上结论正确的是()A.(1)(2)(3)(4)B.(1)(2)(3)C.(2)(3)(4)D.(1)(2)(4)二、填空题(本题共6小题,每小题3分,共18分)11.若直线a∥b,a∥c,则____________,理由是_____________________.12.如图,ED∥AB,ED交AF于点C,若∠ECF=138°,则∠A=________.13.若∠A=45°,则∠A的余角等于________°.14.如图,请填写一个条件:______________,使得DE∥AB .15.如图,A,B之间是一座山,一条铁路要通过A,B两地,为此需要在A,B 之间修一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么在B地按南偏西________的方向施工,才能保证铁路准确接通.16.如图,在△ABC中,∠ACB=90°,AC=5 ,BC=12 ,AB=13 .点P是线段AB上的一个动点,则CP的最小值为__________.3三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)如图,已知∠B+∠BCD=180°,∠B=∠D,那么∠E=∠DFE成立吗?为什么?下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整.解:成立.因为∠B+∠BCD=180°(已知),所以__________(同旁内角互补,两直线平行).所以∠B=∠DCE(____________________________).又因为∠B=∠D(已知),所以∠DCE=∠D(等量代换).所以AD∥BE(____________________________).所以∠E=∠DFE(____________________________).18.(8分)一个角的余角比它的补角的23还小55°,求这个角的度数.19.(8分)如图,已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG 和∠DEG的度数.20.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作图法作∠EBC,使∠EBC=∠A,BE与AD平行吗?21.(10分)学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图①,l1∥l2,点P在l1,l2之间,探究∠A,∠APB,∠B之间的数量关系.小明过点P作l1的平行线,可得到∠APB,∠A,∠B之间的数量关系是__________________.(2)如图②,若AC∥BD,点P在AC,BD同侧,∠A,∠B,∠APB的数量关系如何?为此,小明进行了下面的推理.请将这个推理过程补充完整,并在括号内填上依据.解:过点P作PE∥AC,如图②,所以∠A=∠APE (______________________).因为AC∥BD,5所以BD∥PE(__________________________),所以∠B=∠BPE.因为∠APB=∠BPE-∠APE,所以∠APB=____________(____________).(3)随着以后的学习我们还会发现平行线的许多用途.如图③,在小学我们已知道,三角形ABC中,∠A+∠B+∠C=180°,试构造平行线说明理由.22.(10分)已知AB∥CD.(1)如图①,若∠B=30°,∠BEC=148°,求∠C的度数;(2)如图②,若CF∥EB,CF平分∠ECD,试判断∠ECD与∠B之间的数量关系,并说明理由.答案一、1.C 2.B 3.C 4.C 5.C 6.B7.D8.C 9.B10.C二、11.b∥c;平行于同一条直线的两条直线平行12.42°13.4514.∠ABD=∠D(答案不唯一)15.63°16.60 13三、17.AB∥CD;两直线平行,同位角相等;内错角相等,两直线平行;两直线平行,内错角相等18.解:设这个角的度数为x°.由题意得90-x=23(180-x)-55,解得x=75.答:这个角的度数为75°.19.解:因为AB∥CD,∠B=100°,所以∠BEC=80°.因为EF平分∠BEC,所以∠BEF=∠CEF=40°.因为EG⊥EF,所以∠GEF=90°.所以∠BEG=90°-∠BEF=90°-40°=50°,∠DEG=180°-∠GEF-∠CEF =180°-90°-40°=50°.20.解:如图,BE与AD不一定平行.21.解:(1) ∠APB=∠A+∠B(2)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠B-∠A;等量代换(3)过点A作直线DE∥BC,如图.因为DE∥BC,所以∠DAB=∠B,∠EAC=∠C (两直线平行,内错角相等).7因为∠DAB+∠BAC+∠EAC=180°,所以∠BAC+∠B+∠C=180°(等量代换).22.解:(1)如图①,过点E作EG∥AB,所以∠B=∠BEG.因为∠BEC=∠BEG +∠GEC=148°.所以∠B+∠GEC=148°.因为∠B=30°,所以∠GEC=148°-∠B=118°.因为AB∥CD,所以EG∥CD.所以∠GEC+∠C=180°.所以∠C =180°-∠GEC=62°.(2)∠B=12∠ECD.理由如下:如图②,过点E作EG∥AB,所以∠B=∠BEG.因为AB∥CD,所以EG∥CD.所以∠GEC+∠ECD=180°. 因为CF平分∠ECD,所以∠ECD=2∠ECF. 所以∠GEC+2∠ECF=180°.因为CF∥EB,所以∠BEC+∠ECF=180°.所以∠GEC+∠BEG+∠ECF=180°.所以∠BEG+∠ECF=2∠ECF.所以∠BEG=∠ECF.因为∠B=∠BEG,∠ECF=12∠ECD.所以∠B=12∠ECD.。
《第二章有理数及其运算》章末测试卷一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣182.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和84.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.26.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为07.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.89.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣110.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定二、填空题(每空3分)11.计算:|﹣(+4.8)|=;0﹣(﹣2019)=.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为米.13.平方得的数是,立方得﹣8的数是.14.绝对值不大于3的所有整数是,其和是,积是.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?参考答案一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣18【考点】有理数的减法.【分析】根据有理数的减法,可得答案.【解答】解:由题意,得23﹣(﹣5)=23+5=28,故选:B.【点评】本题考查了有理数的减法,利用有理数的减法:减去一个数等于加上这个数的相反数是解题关键.2.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零【考点】倒数;相反数.【分析】根据互为相反数的和为零,可得答案.【解答】解:由,a+b=0,a与b的关系互为相反数,故选:B.【点评】本题考查了相反数,利用互为相反数的和为零是解题关键.3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和8【考点】相反数.【分析】根据相反数的定义,可以得到哪个选项是正确.【解答】解:﹣0.01和0.1不是相反数,和互为倒数,不是相反数,﹣0.125和互为相反数,﹣0.125和8不是互为相反数,故选C.【点评】本题考查相反数,解题的关键是明确相反数的定义.4.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大【考点】有理数的乘法;有理数的加法.【分析】两个数的积为负数说明这两数异号,和也为负数说明这两数中负数的绝对值大.【解答】解:∵两个数的积为负数,∴这两数异号;又∵和也为负数,∴这两数中负数的绝对值较大.故选C.【点评】本题主要考查了有理数的加法与乘法的符号法则.两数相乘,异号得负;绝对值不相等的异号两数相加,取绝对值较大的加数的符号.5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.2【考点】有理数的加法;有理数.【分析】最小的自然数是0,最小的正整数是1,最大的负整数是﹣1,依此可得a、b、c,再相加可得三数之和.【解答】解:由题意可知:a=0,b=1,c=﹣1,a+b+c=0.故选:B.【点评】考查了有理数的加法,此题的关键是知道最小的自然数是0,最小的正整数是1,最大的负整数是﹣1.6.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为0【考点】倒数;相反数;绝对值.【分析】根据各个选项中的说法可以判断哪个选项是正确的.【解答】解:当a=﹣2时,﹣a=2,故选项A错误;当a=﹣2时,|﹣2|=2,故选项B错误;﹣b的相反数是b,故选项C正确;0没有倒数,故选项D错误;故选C.【点评】本题考查倒数、相反数、绝对值,解题的关键是明确它们各自的定义.7.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个【考点】有理数的乘法.【专题】计算题.【分析】根据多个数字相乘积为负数,得到负因式个数为奇数个,即可确定出结果.【解答】解:4个有理数相乘,积的符号是负号,则这4个有理数中,负数有1个或3个.故选A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.8【考点】非负数的性质:绝对值.【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【解答】解:∵|x﹣2|+|y+6|=0,∴x﹣2=0,y+6=0,解得x=2,y=﹣6,则x+y=2﹣6=﹣4.故选:B.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.9.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.10.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定【考点】绝对值.【分析】根据绝对值的意义得到|3|=3,|﹣3|=3.【解答】解:∵|3|=3,|﹣3|=3,∴绝对值等于3的有理数为±3.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.二、填空题(每空3分)11.计算:|﹣(+4.8)|= 4.8;0﹣(﹣2019)=2019.【考点】有理数的减法.【分析】首先将绝对值里面的进行化简,然后再去掉绝对值符号即可;根据有理数的减法法则计算即可求解.【解答】解:|﹣(+4.8)|=4.8;0﹣(﹣2014)=2014.故答案为:4.8;2014.【点评】本题考查了绝对值的求法,有理数的减法,属于基础题,比较简单.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为﹣20米.【考点】正数和负数.【分析】潜艇所在高度是﹣50米,如果一条鲨鱼在艇上方30m处,根据有理数的加法法则即可求出鲨鱼所在高度.【解答】解:∵潜艇所在高度是﹣50米,鲨鱼在潜艇上方30米处,∴鲨鱼所在高度为﹣50+30=﹣20(米).故答案为:﹣20.【点评】此题主要考查了正负数能够表示具有相反意义的量、有理数的加法等知识,解题关键是正确理解题意,根据题意列出算式解决问题.13.平方得的数是±,立方得﹣8的数是﹣2.【考点】有理数的乘方.【专题】计算题.【分析】利用平方根及立方根的定义即可得到结果.【解答】解:平方得的数是±,立方得﹣8的数是﹣2.故答案为:﹣;﹣2.【点评】此题考查了有理数的乘方,熟练掌握平方根及立方根的定义是解本题的关键.14.绝对值不大于3的所有整数是±3,±2,±1,0,其和是0,积是0.【考点】绝对值;有理数的加法;有理数的乘法.【分析】首先找出绝对值不大于3的所有整数为:±3,±2,±1,0,再求和与积即可.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,3+2+1+0+(﹣1)+(﹣2)+(﹣3)=0,3×2×1×0×(﹣1)×(﹣2)×(﹣3)=0,故答案为::±3,±2,±1,0;0;0.【点评】此题主要考查了绝对值,关键是掌握绝对值的概念,数轴上某个数与原点的距离叫做这个数的绝对值.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:1.28×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12800=1.28×104,故答案为:1.28×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.【考点】有理数.【分析】根据题目中的数据可以分别得到正整数、整数、负分数、非负数分别包括哪些数.【解答】解:(1)正整数:6,78;(2)整数:6,﹣7,0,﹣100,78;(3)负分数:﹣3.15;(4)非负数:,6,,050%,78,π.故答案为:(1)6,78;(2)6,﹣7,0,﹣100,78;(3)﹣3.15;(4),6,,050%,78,π.【点评】本题考查有理数,解题的关键是明确有理数的划分,可以判断一个数属于哪一类型.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.【考点】有理数大小比较;数轴.【分析】首先在数轴上表示出各数的位置,再根据当数轴方向朝右时,右边的数总比左边的数大利用<连接即可.【解答】解:如图所示:,﹣3<﹣1<0<2.5<4.【点评】此题主要考查了有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)根据乘法分配律进行计算即可;(3)先算乘除,再算加减即可;(4)先算括号里面的,再算乘方,乘除,最后算加减.【解答】解:(1)原式=﹣20+15﹣12﹣5=﹣5﹣12﹣5=﹣22;(2)原式=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣8+6﹣9=﹣11;(3)原式=23×(﹣5)﹣(﹣3)×=23×(﹣5)+118=﹣115+118=3;(4)原式=﹣1﹣[1﹣2]2×(﹣)2=﹣1﹣[﹣]2×=﹣1﹣×=1﹣1=0.【点评】本题考查的是实数的混合运算,熟知实数混合运算的法则是解答此题的关键.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?【考点】正数和负数.【分析】(1)根据题意可以求得这8名男生共做了多少个俯卧撑;(2)根据题目中的数据可以计算出这8名男生的达标率.【解答】解:(1)7×8+[2+(﹣1)+0+3+(﹣2)+(﹣3)+1+0]=56+0=56(个)即这8名男生共做了56个俯卧撑;(2)达标率是:,即这8名男生的达标率是62.5%.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义.20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?【考点】正数和负数.【分析】(1)根据表格可以解答本题;(2)根据表格中的数据可以解答本题;(3)根据表格可以解答本题.【解答】解:(1)10月3日的人数为:1000+31+178﹣58=1151(人),故答案为:1151;(2)由表格可知,10月2日人数最多,最多为:1000+31+178=1209(人),由表格可知,10月7日人数最少,最少为:1000+31+178﹣58﹣8﹣1﹣16﹣115=1011(人),故答案为:2,1209,7,1011;(3)1000+1000×7+(31+178﹣58﹣8﹣1﹣16﹣115)=1000+7000+11=8011(名)即珠江源头风景区在这八天内一共接待了8011名游客.【点评】本题考查正数和负数,解题的关键是明确题意,找出所求问题需要的条件.。
七年级数学下册第二章测试卷-北师大版(含答案)[时间:100分钟满分:120分]一、选择题(本大题共6小题,每小题3分,共18分)1.下列关于-3.782的说法正确的是()A.是负数,不是分数B.不是分数,是有理数C.是分数,不是有理数D.是分数,也是负数2.下列运算正确的有()(1)(-4)+(-4)=2×(-4);(2)(-2)3=-23;(3)(2×3)2=2×32;(4)(-2)2n=22n.A.1个B.2个C.3个D.4个3.下列说法错误的是()A.负数的绝对值为正数B.0没有倒数C.一个数的平方一定是正数D.数轴上的两个点表示的数,右边的点对应的数总比左边的大4.有理数a,b在数轴上对应的点的位置如图所示,则下列结论不正确的是()A.b>aB.a+b<0C.ba<0D.a-b>05.大于-2020而小于2021的所有整数的和是()A.-2021B.-2020C.2021D.20206.有下列说法:①若a+b=0,则a与b互为相反数;②若|a|=|b|,则a=b;③若a2=b2,则a=b;④若0>a>b>-1,则1a <1b.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.-2020的相反数是.8.用科学记数法表示1203000为.9.如果a与-2互为倒数,那么a2=.11.下面是一列按规律排列的数:-12,24,-38,416,-532,…,请观察此数列的规律,按此规律,则第n 个数应是 . 12.若|a|=2,|b|=3,且ab>0,则a-b 的值是 . 三、解答题(本大题共5小题,每小题6分,共30分) 13.计算:(1)(+4.3)-(-4)+(-2.3)-(+4);(2)(-12)÷6+|-5|×(-2).14.计算:(1)(-14+23-12)×48;(2)(-2)4×(-0.5)4.15.在数轴上表示出下列各数,并用“<”将它们连接起来:-312,0,-2,-(-4.5),|-12|.16.计算:-14-[-5+(0.2×13-1)÷(-125) ].17.若|a|=2,b=-3,c 是最大的负整数,求a+b-c 的值.四、解答题(本大题共3小题,每小题8分,共24分)18.若a 与b 互为相反数,m 与n 互为倒数,c 2=36,求2nm+3a-c+3b 的值.19.已知|x+1|+(2x-y+4)2=0.(1)求x,y的值;(2)求x2-y的值.20.某食品厂从生产的袋装食品中随机抽取20袋样品,检测每袋的质量是否符合标准质量,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g) -5 -2 0 1 3 6袋数 1 4 3 4 5 3(1)这20袋食品平均每袋的质量比标准质量多还是少?多了或少了多少克?(2)若标准质量是450 g,则这20袋食品的总质量是多少?五、解答题(本大题共2小题,每小题9分,共18分)21.已知a,b均为有理数,现我们定义一种新的运算,规定:a#b=a2+ab+3,例如:5#2=52+5×2+3=38.求:(1)(-3)#6的值;#(-9)]-[(-2)#3]的值.(2)[1322.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(上涨记为正,下跌记为负)星期一二三四五每股涨跌+2.20 +1.42 -0.80 -2.52 +1.30(2)本周内该股票的最高价是每股多少元?最低价是每股多少元?(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税,如果小杨在星期五收盘前将全部股票卖出,那么他的收益情况如何?六、解答题(本大题共12分)23.如图所示,数轴上的三个点A,B,C表示的数分别为-3,-2,2,试回答下列问题:(1)A,C两点间的距离是多少?(2)若数轴上的点E与点B之间的距离是5,求点E与点C间的距离;(3)若将数轴折叠,使点A与点C重合,则点B与表示哪个数的点重合?为什么?参考答案1.D2.C3.C4.D5.D6.B7.20208.1.203×1069.1410.-1 11.(-1)n n2n 12.1或-113.解:(1)(+4.3)-(-4)+(-2.3)-(+4) =4.3+4-2.3-4 =4.3-2.3 =2.(2)(-12)÷6+|-5|×(-2) =-2+5×(-2) =-2+(-10) =-12.14.解:(1)(-14+23-12)×48=-48×14+48×23-48×12 =-12+32-24 =-4.(2)(-2)4×(-0.5)4 =[(-2)×(-0.5)]4 =14=1. 15.解:如图所示:用“<”连接:-312<-2<0<|-12|<-(-4.5). 16.解:-14-[-5+(0.2×13-1 )÷(-125)]=-1-[-5+(115-1)÷(-75) ]=-1-[-5+(-1415)×(-57 ) ] =-1-(-5+23) =-1-(-413) =-1+413=313.17.解:因为|a|=2,所以a=2或a=-2. 因为c 是最大的负整数,所以c=-1. 当a=2,b=-3,c=-1时, a+b-c =2+(-3)-(-1) =2-3+1 =0.当a=-2,b=-3,c=-1时, a+b-c =-2+(-3)-(-1) =-2-3+1 =-4.综上所述,a+b-c 的值为0或-4.18.解:因为a 与b 互为相反数,所以a+b=0. 因为m 与n 互为倒数,所以mn=1. 因为c 2=36,所以c=6或c=-6. 2nm+3a-c+3b=2nm+3(a+b )-c=2-c.①当c=6时,2-c=2-6=-4; ②当c=-6时,2-c=2+6=8.综上,2nm+3a-c+3b 的值为-4或8.所以x=-1,y=2.(2)当x=-1,y=2时,x 2-y=(-1)2-2=1-2=-1.20.解:(1)由题意,得(-5)×1+(-2)×4+0×3+1×4+3×5+6×3 =-5+(-8)+4+15+18 =24(g), 24÷20=1.2(g).答:这20袋食品平均每袋的质量比标准质量多,多了1.2 g . (2)20×450+24=9024(g).答:这20袋食品的总质量是9024 g . 21.解:(1)(-3)#6=(-3)2+(-3)×6+3=9-18+3=-6. (2)因为13#(-9)=(13)2+13×(-9)+3=19, (-2)#3=(-2)2+(-2)×3+3=1, 所以[13#(-9)]-[(-2)#3]=19-1=-89. 22.解:(1)+2.20+1.42-0.80=2.82(元). 答:星期三收盘时,该股票涨了2.82元. (2)由题意可知周一股价为27+2.20=29.20(元); 周二股价为29.20+1.42=30.62(元); 周三股价为30.62-0.80=29.82(元); 周四股价为29.82-2.52=27.3(元); 周五股价为27.3+1.30=28.6(元).所以本周内该股票的最高价为每股30.62元,最低价为每股27.3元. (3)买进时共支出了27×1000×(1+1.5‰)=27040.5(元),卖出时扣去手续费和交易税后得到的总金额为28.6×1000×(1-1.5‰-1‰)=28528.5(元), 纯收入为28528.5-27040.5=1488(元).答:如果小杨在星期五收盘前将全部股票卖出,他赚了1488元. 23.解:(1)2-(-3)=5,即A ,C 两点间的距离是5.(2)因为点E 与点B 之间的距离是5,所以点E 表示的数是3或-7. 当点E 表示的数是3时,点E 与点C 间的距离为1; 当点E 表示的数是-7时,点E 与点C 间的距离为9.理由:把数轴折叠后,记折点为F.因为A ,C 两点间的距离是5,点F 与A ,C 两点的距离相等, 所以点F 与A ,C 两点的距离都是52, 所以点F 在点A 的右侧52个单位长度处,所以点F 表示的数是-12,所以BF=-12-(-2)=112, 所以-12+112=1,即点B 与表示数1的点重合.。
第二学期期中达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列图形中,∠1与∠2是同旁内角的是()2.下列计算正确的是()A.(a3)4=a12B.a3·a5=a15C.(x2y)3=x6y D.a6÷a3=a23.如图,直线a,b相交于点O,如果∠1+∠2=100°,那么∠2是() A.50°B.100°C.130°D.150°(第3题) (第4题)(第5题)(第7题)4.如图,下列条件能判定a∥b的是()A.∠2+∠3=180°B.∠1+∠2=180°C.∠1=∠2 D.∠3=∠45.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是()A.惊蛰B.小满C.秋分D.大寒6.已知(a+b)2=40,(a-b)2=60,则a2+b2的值为()A.40 B.50 C.60 D.1007.甲骑自行车从A地到B地,乙骑电动车从B地到A地,两人同时出发,匀速行驶,各自到达终点后停止运动.设甲、乙两人间的距离为s(单位:m),甲行驶的时间为t(单位:min),s与t之间的关系如图所示,则下列结论中不正确的是()A.出发30 min时,甲、乙同时到达终点B.出发15 min时,乙比甲多行驶了3 000 mC.出发10 min时,甲、乙在途中相遇D.乙的速度是甲的速度的两倍8.如图,有两个正方形A,B.现将B放在A的内部得图①,将A,B并列放置后,构造新的正方形得图②.图①和图②中阴影部分的面积分别为1和12,若三个正方形A和两个正方形B如图③摆放,则图③中阴影部分的面积为()(第8题)A.28 B.29 C.30 D.31二、填空题(共5小题,每小题3分,计15分)9.近来,中国芯片技术获得重大突破,7 nm芯片已经量产,已知7 nm=0.000 000 7cm,则0.000 000 7用科学记数法表示为____________.10.已知某地的地面气温是20 ℃,如果每升高1 000 m气温下降6 ℃,则气温t(℃)与高度h(m)的函数关系式为________________.11.已知2x+y-4=0,则4x·2y的值是__________.12.如图,一块含有30°角的直角三角板,两个顶点分别在直尺的一对平行边上,∠α=110°,则∠β=________°.(第12题)(第13题)13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设两正3 方形的面积分别为S 1,S 2.若AB =9,两正方形的面积和为51,则图中阴影部分的面积为__________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)化简:(1)(-x 2)3÷(-2x 3)·x 3; (2)(-2a 2)(4ab -ab 2+1).15.(5分)计算: (1)-12 024+2 0242-2 025×2 023;(2)(2 023-π)0-|-4|+⎝ ⎛⎭⎪⎫-12-3.16.(5分)先化简,再求值:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x ,其中x =1,y =-2.17.(5分)已知x+y=6,xy=4,求下列各式的值:(1)(x-3)(y-3);(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3).18.(5分)如图,已知∠α.请你用直尺和圆规画一个∠BAC,使得∠BAC=∠α.(要求:保留作图痕迹,不写作法)(第18题)19.(5分)一种大豆的总售价y(元)与所售质量x(千克)之间的关系如下表所示:所售质量x(千克)00.51 1.5总售价y(元)012 3(1)按表中给出的信息,写出y与x的关系式;(2)当售出大豆的质量为20千克时,总售价是多少?20.(5分)如图,已知直线EF⊥MN,垂足为F,且∠1=138°,若AB∥CD,求∠2的度数.(第20题)21.(6分)如图,已知AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥DA,且EF交AB于点G.试说明∠AGF=∠F.5(第21题)22.(7分)如图,直线MN分别与直线AC,DG交于点B,F,且∠1=∠2.∠ABF 的平分线BE交直线DG于点E,∠BFG的平分线FC交直线AC于点C.(第22题)(1)试说明BE∥CF;(2)若∠C=35°,求∠BED的度数.23.(7分)如图,直线AB,CD相交于点O,OM⊥AB.(第23题)(1)若∠1=30°,求∠BOD的度数;(2)如果∠1=∠2,那么ON与CD互相垂直吗?请说明理由.24.(8分)如图表示的是李军从家到超市的时间与他离家的距离之间的关系.观察图象并回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)李军到达超市用了多少时间?(3)李军出发的第20 min到第30 min内可能在做什么?(4)李军从家到超市的平均速度是多少?返回时的平均速度是什么?(第24题)725.(8分)已知动点P从点A出发沿图①的边框(边框拐角处都互相垂直)按A→B→C→D→E→F的路径移动,相应的三角形AHP的面积y(cm2)关于移动路程x(cm)的关系图象如图②,若AH=2 cm,根据图象信息回答下列问题:(第25题)(1)图①中AB=________cm;(2)图②中n=________;(3)求三角形AHP面积的最大值.26.(10分)如图①,已知直线CD∥EF,点A,B分别在直线CD,直线EF上,P 为两平行线间的一点.(第26题)(1)猜想∠DAP,∠FBP,∠APB之间有什么数量关系?并说明理由;(2)利用(1)的结论解答:①如图②,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠P与∠P1的数量关系,不需要说明理由;②如图③,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=α,求∠AP2B的大小(用含α的代数式表示).9答案一、1.B 2.A 3.A 4.A 5.D 6.B 7.A8.B 点拨:设正方形A ,B 的边长各为a ,b (a >b ),得图①中阴影部分的面积为(a -b )2=a 2-2ab +b 2=1,解得a -b =1或a -b =-1(舍去),图②中阴影部分的面积为(a +b )2-(a 2+b 2)=2ab =12.所以(a +b )2=a 2+2ab +b 2=a 2-2ab +b 2+4ab =(a -b )2+4ab =1+2×12=25,解得a +b =5或a +b =-5(舍去),所以图③中阴影部分的面积为(2a +b )2-(3a 2+2b 2)=a 2+4ab -b 2=(a +b )·(a -b )+2×2ab =5×1+2×12=5+24=29,故选B. 二、9.7×10-7 10.t =-0.006h +20 11.16 12.5013.152 点拨:设AC =m ,CF =n ,因为AB =9,所以m +n =9,又因为S 1+S 2=51,所以m 2+n 2=51,由完全平方公式可得,(m +n )2=m 2+2mn +n 2,所以92=51+2mn ,所以mn =15,所以S 阴影部分=12mn =152,即阴影部分的面积为152. 三、14.解:(1)原式=-x 6÷(-2x 3)·x 3=12x 6-3+3 =12x 6.(2)原式=-2a 2·4ab +2a 2·ab 2-2a 2·1 =-8a 3b +2a 3b 2-2a 2.15.解:(1)原式=-1+2 0242-(2 024+1)(2 024-1)=-1+2 0242-(2 0242-1) =-1+2 0242-2 0242+1 =0.(2)原式=1-4-8 =-11.16.解:[(x +y )(3x -y )-(x +2y )2+5y 2]÷2x=(3x 2+3xy -xy -y 2-x 2-4xy -4y 2+5y 2)÷2x =(2x 2-2xy )÷2x =x -y .当x=1,y=-2时,原式=1-(-2)=3.17.解:(1)(x-3)(y-3)=xy-3x-3y+9=xy-3(x+y)+9=4-3×6+9=-5.(2)[(2x-y)2-(2x+y)(2x-y)]÷(-2y)-y(x-3)=(2x-y)[(2x-y)-(2x+y)]÷(-2y)-xy+3y=(2x-y)(-2y)÷(-2y)-xy+3y=2x-y-xy+3y=2(x+y)-xy=2×6-4=8.18.解:如图所示,∠BAC即为所求.(第18题)19.解:(1)表格中反映的是大豆所售质量x(千克)与总售价y(元)之间的关系,大豆所售质量x(千克)是自变量,总售价y(元)是因变量,y与x之间的关系式为y=2x.(2)由关系式可知,当售出大豆的质量为20千克时,y=2×20=40,所以当售出大豆的质量为20千克时,总售价是40元.20.解:若AB∥CD,则∠BFG=∠DGN,由题知∠1=138°,∠1+∠DGN=180°,所以∠DGN=42°.所以∠BFG=∠DGN=42°.因为EF⊥MN,所以∠2+∠BFG=90°,11所以∠2=90°-∠BFG=90°-42°=48°. 21.解:因为AD是∠BAC的平分线,所以∠BAD=∠CAD,因为EF∥DA,所以∠AGF=∠BAD,∠F=∠CAD,所以∠AGF=∠F.22.解:(1)因为∠1=∠2,∠2=∠BFG,所以∠1=∠BFG,所以AC∥DG,所以∠ABF=∠BFG.因为BE,FC分别为∠ABF,∠BFG的平分线,所以∠EBF=12∠ABF,∠CFB=12∠BFG,所以∠EBF=∠CFB,所以BE∥CF.(2)由题意知,AC∥DG,∠C=35°,所以∠C=∠CFG=35°,又因为BE∥CF,所以∠BEG=∠CFG=35°,故∠BED=180°-∠BEG=145°.23.解:(1)因为OM⊥AB,所以∠AOM=90°,又因为∠1=30°,所以∠AOC=∠AOM-∠1=90°-30°=60°,因为∠BOD=∠AOC,所以∠BOD=60°.(2)ON⊥CD.理由:因为∠1+∠AOC=90°,∠1=∠2,所以∠2+∠AOC=90°,即∠CON=90°,所以ON⊥CD.24.解:(1)图象表示的是李军从家到超市的时间与他离家的距离两个变量之间的关系,时间为自变量,离家的距离为因变量.(2)由图象可知,李军到达超市用了20 min.(3)可能在超市选购商品.(答案不唯一).(4)李军从家到超市的平均速度是90020=45(m/min),返回时的平均速度是90045-30=60(m/min).25.解:(1)3(2)26(3)由图象可得,当0<x≤3时,点P在AB上运动;当3<x≤5时,点P在BC上运动;当5<x≤11时,点P在CD上运动;当11<x≤17时,点P在DE上运动;当17<x≤30时,点P在EF上运动.所以点P在DE上运动时,三角形AHP的面积最大,即12×2×(11-2)=9(cm2).所以△AHP面积的最大值为9 cm2.26.解:(1)∠APB=∠DAP+∠FBP,理由如下:过点P作MP∥CD,如图,(第26题) 所以∠APM=∠DAP,因为CD∥EF,所以MP∥EF,所以∠MPB=∠FBP,所以∠APM+∠MPB=∠DAP+∠FBP.即∠APB=∠DAP+∠FBP.(2)①∠P=2∠P1.②由(1)得∠APB=∠DAP+∠FBP,13同理可得∠AP 2B =∠CAP 2+∠EBP 2, 因为AP 2,BP 2分别平分∠CAP ,∠EBP ,所以∠CAP 2=12∠CAP ,∠EBP 2=12∠EBP , 所以∠AP 2B =12∠CAP +12∠EBP=12(180°-∠DAP )+12(180°-∠FBP )=180°-12(∠DAP +∠FBP ) =180°-12∠APB =180°-12α.。
北师大版七年级数学上册第二章达标测试卷一、选择题(每题3分,共30分) 1.a 的相反数为-3,则a 等于( ) A .-3 B .3 C .±3 D .13 2.在有理数1,12,-1,0中,最小的数是( ) A .1 B .12 C .-1 D .0 3.-a 一定是( )A .正数B .负数C .0D .以上都不正确4.对于-(-3)4,下列叙述正确的是( ) A .表示-3的4次幂B .表示4个3相乘的积C .表示4个-3相乘的积的相反数D .以上都不正确5.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和,接近值是( ) A .8×106 B .16×106 C .1.6×107 D .16×1012 6.下列算式正确的是( )A .-2×3=6B .⎝ ⎛⎭⎪⎫-14÷(-4)=1C .(-2)3=8D .3-(-2)=57.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2.其中化简结果为负数的有( )A .4个B .3个C .2个D .1个8.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0”和“8”分别对应数轴上的-3.6和x ,则x 的值为( )A .4.2B .4.3C .4.4D .4.59.数a ,b ,c 在数轴上对应的点的位置如图所示,则下列各式正确的是( )A .abc <0B .a +c <0C .a +b <0D .a -c <010.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则100!98!的值为( )A .5049 B .99! C .9 900 D .2! 二、填空题(每题3分,共30分)11.如果盈利10%记为+10%,那么亏损8%记为__________. 12.近似数5.0×102精确到__________位.13.在有理数-3.7,2,213,-34,0,0.02,-10中,正数有________________,负分数有__________________________________________________. 14.-2 022的相反数是__________,绝对值是__________,倒数是__________. 15.比较大小:-45________-34,|-5|________0,-(-0.01)________⎝ ⎛⎭⎪⎫-1102.(填“>”“<”或“=”)16.如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有________个.17.若|a -11|+(b +12)2=0,则(a +b )2 021=________.18.已知点A 是数轴上的一点,且点A 到原点的距离为2,把点A 沿数轴向右移动5个单位长度得到点B ,则点B 表示的有理数是____________. 19.在算式1-⎪⎪⎪⎪-2 3中的 里,填入运算符号________,可使得算式的值最小.(在符号+,-,×,÷中选择一个)20.某山上的温度从山脚处开始每升高100 m ,降低0.6 ℃,若山脚处的温度是28 ℃,则山上高度为500 m 处的温度是________ ℃.三、解答题(21题16分,22题7分,26题10分,其余每题9分,共60分) 21.计算(能简算的要简算):(1)-|3-5|+2×(1-3); (2)-121.4+(-78.5)-⎝ ⎛⎭⎪⎫-812-(-1.4);(3)(-2)3-(-13)÷⎝ ⎛⎭⎪⎫-12; (4)⎝ ⎛⎭⎪⎫79-56+13×18+3.85×(-6)-1.85×(-6).22.画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来. -⎝ ⎛⎭⎪⎫-412,-2,0,(-1)2,|-3|,-313.23.十一期间,某风景区在7天假期中,每天前来旅游的人数变化如下表所示(正数表示比前一天增加的人数,负数表示比前一天减少的人数,单位:万人).若9月30日的游客人数为1万人.(1)这7天哪天的游客人数最多?哪天的游客人数最少? (2)这7天该风景区平均每天有游客多少万人?(精确到0.01万人)24.一辆出租车一天下午以明珠广场为出发地在东西方向的街道上运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10,-7.(1)将最后一名乘客送到目的地时,出租车离出发地明珠广场多远?在明珠广场的什么方向?(2)若每千米的价格为5元,司机这天下午的营业额是多少元?25.(1)计算下列各式,将结果直接写在横线上:⎪⎪⎪⎪⎪⎪12-1=________,1-12=________;⎪⎪⎪⎪⎪⎪13-12=________,12-13=________;⎪⎪⎪⎪⎪⎪14-13=________,13-14=________.(2)将(1)中每行计算的结果进行比较,利用你发现的规律计算:⎪⎪⎪⎪⎪⎪12-1+⎪⎪⎪⎪⎪⎪13-12+⎪⎪⎪⎪⎪⎪14-13+…+⎪⎪⎪⎪⎪⎪12 022-12 021.26.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,|x -2|的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为|x +1|=|x -(-1)|,所以|x +1|的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离. 发现问题:|x +1|+|x -2|的最小值是多少?探究问题:如图,点A ,B ,P 分别表示数-1,2,x ,AB =3.因为|x +1|+|x -2|的几何意义是线段P A 与PB 的长度之和,所以当点P 在线段AB 上时,P A +PB =3,当点P 在点A 的左侧或点B 的右侧时,P A +PB >3.所以|x +1|+|x -2|的最小值是3. 解决问题:(1)|x -4|+|x +2|的最小值是________;(2)利用上述思想方法及下面的数轴直接写出满足|x +3|+|x -1|>4的x 的取值范围;(3)当a为何值时,|x+a|+|x-3|的最小值是2?答案一、1.B 2.C 3.D 4.C 5.C 6.D 7.B 8.C 9.B 10.C 二、11.-8% 12.十13.2,213,0.02;-3.7,-34 14.2 022;2 022;-12 022 15.<;>;= 16.7 17.-1 18.7或3 19.× 20.25三、21.解:(1)原式=-2+2×(-2)=-2+(-4)=-6; (2)原式=(-121.4+1.4)+(-78.5+8.5)=-120-70=-190; (3)原式=-8-26=-34;(4)原式=79×18-56×18+13×18+(3.85-1.85)×(-6)=14-15+6+2×(-6)=5-12=-7.22.解:-⎝ ⎛⎭⎪⎫-412=412,(-1)2=1,|-3|=3.如图所示.由数轴得-⎝ ⎛⎭⎪⎫-412>|-3|>(-1)2>0>-2>-313.23.解:(1)由题意知,该风景区在7天假期中,每天前来旅游的人数如下表所示(单位:万人).日期 1日 2日 3日 4日 5日 6日 7日 人数2.63.43.83.42.62.81.6由此可知,10月3日的游客人数最多,10月7日的游客人数最少. (2)这7天该风景区平均每天的游客人数为 17×(2.6+3.4+3.8+3.4+2.6+2.8+1.6)≈2.89(万人).24.解:(1)+9-3-5+4-8+6-3-6-4+10-7=-7(km).答:出租车离出发地明珠广场7 km ,在明珠广场的西边.(2)(9+|-3|+|-5|+4+|-8|+6+|-3|+|-6|+|-4|+10+|-7|)×5=(9+3+5+4+8+6+3+6+4+10+7)×5=65×5=325(元). 答:司机这天下午的营业额是325元. 25.解:(1)12;12;16;16;112;112(2)原式=1-12+12-13+13-14+…+12 021-12 022=1-12 022=2 0212 022. 26.解:(1)6(2)满足|x +3|+|x -1|>4的x 的取值范围为x <-3或x >1.(图略)(3)当a 为-1或-5时,|x +a |+|x -3|的最小值是2.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________. 14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm),所以CA -AB 的值不会随着t 的变化而改变.。