同理:∀n1 , 0 ≤ n ≤ L − 1
详见(4-38) P.142
L
M
例:N=12=4×3, M=4 , L=3 算法流图:图4-20,P.144
这是一个蝶形 三点蝶形
这仍然是一个蝶形 四点蝶形
x(n)={x(0), x(1), x(2)…x(11)}
x(0) x(1) x(5) x(9)
= ∑ x( n)WNkn = = =
=
n=0 M −1 L −1
n0 = 0 n1 = 0 M −1 L −1
N −1
x(Mn1+n0)
一列一列 求DFT
= DFTn1 [ x( n1 , n0 )] 0 ≤ k0 ≤ L − 1, ∀n0
∆
n1 = 0
( Mn1 + n0 )( Lk1 + k0 ) x ( n , n ) W ∑∑ 1 0 N Mn1k0 Lk1n0 k0 n0 MLk1n1 x ( n , n ) W W W W ∑∑ 1 0 N N N N
n1 = 0 L −1
n1 = 0,1,..., L − 1
行号
k0 = 0,1,..., L − 1
′ k 0 n0 (3) X 1 (k0 , n0 ) = X 1 (k0 , n0 )WN
0 ≤ k0 ≤ L − 1
0 ≤ n0 ≤ M − 1 (4) ∀k0 , 0 ≤ k0 ≤ L − 1 (针对每一行) M −1 ′ kn ′ X 2 (k 0 , k1 ) = DFTn0 [ X 1 (k 0 , n0 )] = ∑ X 1 (k0 , n0 )WM , k 0 = 0,1,..., M − 1
0 ≤ n0 ≤ M − 1, ∀k