《数字信号处理(第四版)》部分课后习题解答
- 格式:docx
- 大小:3.23 MB
- 文档页数:21
7.2 课后习题详解7-1 用冲激响应不变法将以下Ha (s )变换为H (z ),抽样周期为T 。
(1)H a (s )=(s +a )/[(s +a )2+b 2];(2)H a (s )=A/(s -s 0)n0,n 0为任意正整数。
解:(1)冲激响应不变法满足h (n )=h a (t )|t =nT =h a (nT ),T 为抽样间隔。
这种变换法必须让H a (s )先用部分分式展开。
由推出由冲激响应不变法可得(2)先引用拉氏变换的结论,可得按且可得可以递推求得7-2 设计一个模拟低通滤波器,要求其通带截止频率f p=20Hz,其通带最大衰减为R p=2dB,阻带截止频率为f st=40Hz,阻带最小衰减为A s=20dB,采用巴特沃思滤波器,画出滤波器的幅度响应。
解:巴特沃思模拟低通滤波器设计流程为:①利用教程(7-5-24)式求解滤波器阶次N;②利用教程(7-5-27a)式求解3dB截止频率Ωc;③查教程表7-2或表7-4获得归一化巴特沃思低通滤波器的系统函数H an(s);④将H an(s)根据Ωc的值去归一化求得所需的系统函数H a(s)。
已知Ωp=2π×20rad/s,Ωst=2π×40rad/s,R p=2dB,A s=20dB。
(1)按给定的参数由教程(7-5-24)式可求得取N=4。
(2)按教程(7-5-27a)式可求得巴特沃思滤波器3dB处的通带截止频率Ωc为(3)查教程表7-2可得N=4时归一化巴特沃思低通滤波器H an(s)(4)去归一化,求得所需的H a(s)为滤波器的幅度响应如图7-1所示。
图7-17-3 设计一个模拟高通滤波器,要求其阻带截止频率f st=30Hz,阻带最小衰减为A s=25dB,通带截止频率为f p=50Hz,通带最大衰减为R p=1dB。
(1)采用巴特沃思滤波器;(2)采用切比雪夫滤波器;(3)利用MATLAB工具箱函数设计椭圆函数滤波器。
数字信号处理习题(xítí)解答第1-2章:1. 判断下列(xiàliè)信号是否为周期信号,若是,确定其周期。
若不是,说明(shuōmíng)理由(1)f1(t) = sin2t + cos3t(2)f2(t) = cos2t + sinπt2、判断下列序列是否为周期(zhōuqī)信号,若是,确定其周期。
若不是(bùshi),说明理由(1)f1(k) = sin(3πk/4) + cos(0.5πk)(2)f2(k) = sin(2k)(3)若正弦序列x(n)=cos(3πn /13)是周期的, 则周期是N=3、判断下列信号是否为周期信号,若是,确定其周期; 若不是,说明理由(1)f(k) = sin(πk/4) + cos(0.5πk)(2)f2(k) = sin(3πk/4) + cos(0.5πk)解1、解β1 = π/4 rad,β2 = 0.5π rad 由于2π/ β1 = 8 N1 =8,N2 = 4,故f(k) 为周期序列,其周期为N1和N2的最小公倍数8。
(2)β1 = 3π/4 rad,β2 = 0.5π rad由于2π/ β1 = 8/3 N1 =8, N2 = 4,故f1(k) 为周期序列,其周期为N1和N2的最小公倍数8。
4、画出下列函数的波形(1).(2).解5、画出下列函数的波形x(n)=3δ(n+3)+δ(n+1)-3δ(n-1)+2δ(n-2)6. 离散线性时不变系统单位阶跃响应,则单位响应=?7、已知信号(xìnhào),则奈奎斯特取样(qǔyàng)频率为( 200 )Hz。
8、在已知信号(xìnhào)的最高频率为100Hz(即谱分析范围(fànwéi))时,为了避免频率(pínlǜ)混叠现象,采样频率最少要200 Hz:9. 若信号的最高频率为20KHz,则对该信号取样,为使频谱不混叠,最低取样频率是40KHz10、连续信号:用采样频率采样,写出所得到的信号序列x(n)表达式,求出该序列x(n) 的最小周期解:,11、连续信号:用采样频率100s f Hz = 采样,写出所得到的信号序列x(n)表达式,求出该序列x(n) 的最小周期长度。
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。
解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。
4.2 课后习题详解4-1 如果一台通用计算机的速度为平均每次复乘40ns ,每次复加5ns ,用它来计算512点的DFT[x (n )],问直接计算需要多少时问?用FFT 运算需要多少时间?若做128点快速卷积运算,问最低抽样频率应是多少?解:①直接利用DFT 计算:复乘次数为N 2,复加次数为N (N-1)。
②利用FFT计算:复乘次数为,复加次数为N㏒2N 。
(1)直接计算复乘所需时间复加所需时间所以(2)用FFT 计算复乘所需时间复加所需时间所以4-2 N =16时,画出基-2按频率抽选法的FFT 流图采用输入自然顺序,输出倒位序),统计所需乘法次数(乘±1,乘±j 都不计在内)。
根据任一种流图确定序列x (n )=4cos (n π/2)(0≤n ≤15)的DFT 。
解:按频率抽取法的FFT 流图中的复数乘法出现在减法之后,其运算量为复数乘法:;复数加法:;由于N =16,有,,,不需要乘法。
按频率抽取,见图4-1(a )。
图4-1(a )运算量:复数乘法:由于,,,不需要乘法。
由图P4.2(a )可知,共有的个数为1+2+4+8=15有的个数为1+2+4=7所以总的乘法次数为32-15-7=10(个)复数加法:举例:对序列x (n )=4cos (n π/2)(0≤n ≤15)可表示为由于N =16,可采用P4.2(b )的流图。
设Xi (k )=(i =1,2,3,4)分别为第i 级蝶形结构的输出序列,则由P4.2(b )的流图可知由于采用的是顺序输入、逆序输出的结构,因此输出X (k )与X 4(k )为逆序关系,即,为k 二进制逆序值由此可知,x (n )的DFT 为X (4)=X 4(2)=32,X (12)=X 4(3)=12图4-1(b )4-3 用MATLAB 或C 语言编制以下几个子程序。
(1)蝶形结运算子程序;(2)求二进制倒位序子程序;(3)基-2 DIT FFT 流程图,即迭代次数计算子程序。
实验一卷积运算1. 实验目的(1) MATLAB中序列的表示;(2) 序列的图形显示;(3) 序列的卷积计算。
2. 实验原理与方法(1) 信号在MATLAB中的表示方法MATLAB中用两个参数向量来表示有限长序列x(n),一个是x(n)中各点的样值向量,一个是各点的位置向量。
两个向量长度相等,假设位置向量的第m 个元素的值为k,则样值向量的第m个元素的值即为x(k)。
(2) 序列的图形显示MATLAB中可调用stem函数来显示序列,其具体形式为:stem(X,Y)stem(...,'fill')stem(...,LineSpec)(3) 序列的卷积运算卷积和是离散信号与系统分析的有效方法和工具,两个序列x(n)和h(n)的卷积和定义为:∑∞-∞=== =mmnhmxnhnxny)()()(*)()(利用MATLAB求离散序论卷积和的专用函数conv可以实现离散信号卷积和的计算。
其具体形式为:w = conv(u,v)3. 实验内容及步骤(1) 熟悉MATLAB造作环境,复习时域离散信号和系统的相关知识。
(2) 编写实验程序,产生以下序列并显示其图形:14234()()403()347()cos4()sin 8x n R n n n x n n n x n n x n n ππ=-≤≤⎧⎪=-≤≤⎨⎪⎩== (3) 编制程序,计算x 2(n)*x 1(n)、x 3(n)*x 1(n)、x 4(n)*x 1(n),并显示其计算结果。
(4) 手动计算上述卷积和,并与程序运行结果进行比较。
4.实验方式及要求每人一台安装有Matlab7.0的计算机,在计算机上编程仿真。
一人一组,独立完成。
5. 思考题脚本文件与函数文件编写上有什么区别?二者用法上有什么区别?6. 实验报告要求(1) 简述实验目的及实验原理。
(2) 按实验步骤附上实验过程中离散序列的时域波形,并对所得结果进行分析和解释。
(3) 总结实验中的主要结论。
《数字信号处理(第四版)》部分课后习题解答一、简答题1. 什么是数字信号处理?数字信号处理(DSP)是指对数字信号进行处理和分析的一种技术。
它使用数学和算法处理模拟信号,从而实现信号的采样、量化、编码、存储和重构等过程。
DSP广泛应用于通信、音频处理、图像处理和控制系统中。
2. 数字信号处理的主要特点有哪些?•数字信号处理能够处理和分析具有广泛频谱范围的信号。
•数字信号处理能够实现高精度的信号处理和复杂的算法运算。
•数字信号处理能够实现信号的存储、传输和复原等功能。
•数字信号处理可以利用计算机等处理硬件进行实时处理和系统集成。
3. 数字信号处理的基本原理是什么?数字信号处理的基本原理是将连续时间的模拟信号转换成离散时间的数字信号,然后通过一系列的算法对数字信号进行处理和分析。
该过程主要涉及信号的采样、量化和编码等环节。
4. 什么是离散时间信号?离散时间信号是指信号的取样点在时间上呈现离散的情况。
在离散时间信号中,只能在离散时间点上获取信号的取样值,而无法观测到连续时间上的信号变化。
5. 描述离散时间信号的功率和能量的计算方法。
对于离散时间信号,其功率和能量的计算方法如下:•功率:对于离散时间信号x(n),其功率可以通过求平方和的平均值来计算,即功率P = lim(T->∞) [1/T *∑|x(n)|^2],其中T表示信号x(n)的观测时间。
•能量:对于离散时间信号x(n),其能量可以通过求平方和来计算,即能量E = ∑|x(n)|^2。
二、计算题1. 设有一个离散时间周期序列x(n) = [2, 3, -1, 4, 0, -2],求其周期N。
由于x(n)是一个周期序列,我们可以通过观察序列来确定其周期。
根据观察x(n)的取值,我们可以发现序列在n=1和n=5两个位置上取得了相同的数值。
因此,序列x(n)的周期为N = 5 - 1 = 4。
2. 设有一个信号x(t) = 2sin(3t + π/4),请将其离散化为离散时间信号x(n)。
数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。