2018届高考理科数学二轮专题复习 立体几何中的向量方法
- 格式:ppt
- 大小:5.57 MB
- 文档页数:20
立体几何中的向量方法【重点梳理】1.平面的法向量定义:已知平面,直线 l,取l的方向向量a ,有a,则称为a为平面的法向量。
重点解说:一个平面的法向量不是独一的,在应用时,可适合取平面的一个法向量。
已知一平面内两条订交直线的方向向量,可求出该平面的一个法向量。
2.平面的法向量确立往常有两种方法:(1)几何体中有详细的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量;(2)几何体中没有详细的直线,一般要成立空间直角坐标系,而后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为 n=( x, y, z);( ii )找出(求出)平面内的两个不共线的向量的坐标a=( a1, b1, c1), b=(a2,b2, c2);( iii)依据法向量的定义成立对于n a0 x、 y、z 的方程;n b0(iv )解方程组,取此中的一个解,即得法向量.因为一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.运用:(1)线面平行线面平行的判断方法一般有三种:①设直线 l 的方向向量是 a ,平面的向量是u,则要证明l //,只需证明 a u ,即 a u0 。
(2)面面平行①由面面平行的判断定理,要证明面面平行,只需转变为相应的线面平行、线线平行即可。
②若能求出平面,的法向量u,v,则要证明//,只需证明u // v 。
( 3)线面垂直①设直线 l 的方向向量是 a ,平面的向量是u,则要证明l,只需证明 a // u 。
②依据线面垂直的判断定理转变为直线与平面内的两条订交直线垂直。
(4)面面垂直①依据面面垂直的判断定理转变为证相应的线面垂直、线线垂直。
②证明两个平面的法向量相互垂直。
设直线 l的方向向量为 a ,平面的法向量为 u ,直线与平面所成的角为, a 与 u 的角为,则有 sin| cos || a u | 。
| a | | u |( 6)求二面角如图,若 PA于A,PB于B,平面PAB交l于E,则∠ AEB为二面角l的平面角,∠ AEB+∠APB=180°。
高考数学复习:立体几何中的向量方法空间向量及其应用一般每年考一道大题,试题一般以多面体为载体,分步设问,既考查综合几何也考查向量几何,诸小问之间有一定梯度,大多模式是:诸小问依次讨论线线垂直与平行→线面垂直与平行→面面垂直与平行→异面直线所成角、线面角、二面角→体积的计算.强调作图、证明、计算相结合.考查的多面体以三棱锥、四棱锥(有一条侧棱与底面垂直的棱锥、正棱锥)、棱柱(有一侧棱或侧面与底面垂直的棱柱,或底面为特殊图形一如正三角形、正方形、矩形、菱形、直角三角形等类型的棱柱)为主.1.共线向量与共面向量(1)共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对(x ,y ),使p =xa +yb . 2.两个向量的数量积向量a 、b 的数量积:a ·b =|a ||b |cos 〈a ,b 〉. 向量的数量积满足如下运算律: ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一有序实数组{x ,y ,z },使p =xa +yb +zc . 推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组{x ,y ,z },使OP →=xOA →+yOB →+zOC →.4.空间向量平行与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 5.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a ·a =a 21+a 22+a 23,cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)距离公式设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则 |AB →|=x 1-x 22+y 1-y 22+z 1-z 22.(3)平面的法向量如果表示向量a 的有向线段所在的直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量. 6.空间角的类型与范围 (1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.7.用向量求空间角与距离的方法(1)求空间角:设直线l 1、l 2的方向向量分别为a 、b ,平面α、β的法向量分别为n 、m . ①异面直线l 1与l 2所成的角为θ,则cos θ=|a ·b ||a ||b |.②直线l 1与平面α所成的角为θ,则sin θ=|a ·n ||a ||n |.③平面α与平面β所成的二面角为θ,则|cos θ|=|n ·m ||n ||m |. (2)求空间距离①直线到平面的距离,两平行平面间的距离均可转化为点到平面的距离. 点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).②设n 与异面直线a ,b 都垂直,A 是直线a 上任一点,B 是直线B 上任一点,则异面直线a 、b 的距离d =|AB →·n ||n |.高频考点一 向量法证明平行与垂直 例1、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式探究】如图所示,在底面是矩形的四棱锥P-ABCD中,P A⊥底面ABCD,E,F分别是PC,PD的中点,P A=AB=1,BC=2.(1)求证:EF∥平面P AB;(2)求证:平面P AD⊥平面PDC.【证明】以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系A-xyz如图所示,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0). (1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊄平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC . ④转化为几何结论.【变式探究】(2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4. (1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.解析:(1)证明:如图,设AC ,BD 交于点E ,连接ME , 因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.(2)取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形,所以OE ⊥AD .如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2. 于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12.(3)由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22.设直线MC 与平面BDP 所成角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269,所以直线MC 与平面BDP 所成角的正弦值为269.高频考点三 探索性问题要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由,这类问题常用“肯定顺推”的方法.例 3、如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【解析】 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD , 所以AB ⊥平面P AD ,PD ⊂平面P AD ,所以AB ⊥PD . 又因为P A ⊥PD , 所以PD ⊥平面P AB .(2)取AD 的中点O ,连接PO ,CO . 因为P A =PD ,所以PO ⊥CD .又因为PO ⊂平面P AD ,平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD .如图,建立空间直角坐标系O -xyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0.令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.(3)设M 是棱P A 上一点, 则存在λ∈[0,1]使得AM →=λAP →.因此点M (0,1-λ,λ), BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD 当且仅当BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0. 解得λ=14.所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.【方法技巧】空间向量最适合于解决这类立体几何中的探索性问题,它无须进行复杂的作图、论证、推理,只需通过坐标运算进行判断;解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【变式探究】如图所示,已知正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,点D 为AC 的中点,点E 的线段AA 1上.(1)当AE EA1=12时,求证:DE⊥BC1;(2)是否存在点E,使二面角D-BE-A等于60°?若存在,求AE的长;若不存在,请说明理由.(2)假设存在点E满足条件,设AE=h.取A1C1的中点D1,连接DD1,则DD1⊥平面ABC,所以DD1⊥AD,DD1⊥BD.如图,分别以DA,DB,DD1所在直线为x,y,z轴建立空间直角坐标系D-xyz,则A (1,0,0),B (0,3,0),E (1,0,h ).所以DB →=(0,3,0),DE →=(1,0,h ),AB →=(-1,3,0),AE →=(0,0,h ). 设平面DBE 的一个法向量为n 1=(x 1,y 1,z 1)则⎩⎪⎨⎪⎧n 1·DB →=0,n 1·DE →=0,即⎩⎨⎧3y 1=0,x 1+hz 1=0. 令z 1=1,得n 1=(-h,0,1).同理,设平面ABE 的一个法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AB →=0,n 2·AE →=0,即⎩⎨⎧-x 2+3y 2=0,hz 2=0.得n 2=(3,1,0). 所以|cos 〈n 1,n 2〉|=|-3h |h 2+1·2=cos60°=12.解得h =22<3,故存在点E 满足条件. 当AE =22时,二面角D -BE -A 等于60°.1. (2018年浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)【解析】方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.3. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】(Ⅰ)在三棱柱ABC-A1B1C1中,∵CC1⊥平面ABC,∴四边形A1ACC1为矩形.又E,F分别为AC,A1C1的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.4. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.5. (2018年江苏卷)在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.6. (2018年全国I卷理数)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD的法向量.设DP与平面ABFD所成角为,则.所以DP与平面ABFD所成角的正弦值为.7. (2018年全国Ⅲ卷理数)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.【答案】(1)见解析(2)【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.8. (2018年全国Ⅱ卷理数)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)见解析(2)【解析】(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.1.【2017课标1,理18】如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=A B=DC,,求二面角A-PB-C的余弦值.【答案】(1)见解析;(2)33 -.【解析】(1)由已知,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面P AD.又AB⊂平面P AB,所以平面P AB⊥平面P AD.(2)在平面PAD内做PF AD⊥,垂足为F,由(1)可知,AB⊥平面PAD,故AB PF⊥,可得PF⊥平面ABCD.以F为坐标原点,FA的方向为x轴正方向,AB为单位长,建立如图所示的空间直角坐标系F xyz-.由(1)及已知可得,,,.所以,,,.设(),,n x y z =是平面PCB 的法向量,则,即,可取.设是平面PAB 的法向量,则,即,可取()1,0,1n =.则,所以二面角A PB C --的余弦值为33-. 2.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点.(Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.【答案】(Ⅰ).(Ⅱ)60︒.【解析】(Ⅰ)因为AP BE ⊥, AB BE ⊥,AB , AP ⊂平面ABP ,,所以BE ⊥平面ABP , 又BP ⊂平面ABP , 所以BE BP ⊥,又,因此(Ⅱ)以B 为坐标原点,分别以BE , BP , BA 所在的直线为x , y , z 轴,建立如图所示的空间直角坐标系.由题意得()0,0,3A ()2,0,0E , ()1,3,3G ,,故,,, 设是平面AEG 的一个法向量.由可得取12z =,可得平面AEG 的一个法向量.设是平面ACG 的一个法向量.由可得取22z =-,可得平面ACG 的一个法向量.所以.因此所求的角为60︒.3.【2017北京,理16】如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD =6,AB=4. (I )求证:M 为PB 的中点; (II )求二面角B -PD -A 的大小;(III )求直线MC 与平面BDP 所成角的正弦值.【答案】(Ⅰ)详见解析:(Ⅱ)3π;(Ⅲ)269【解析】(I )设,AC BD 交点为E ,连接ME .因为PD 平面MAC ,平面MAC ⋂平面PBD ME =,所以PD ME . 因为ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(II )取AD 的中点O ,连接OP , OE . 因为PA PD =,所以OP AD ⊥.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD . 因为OE ⊂平面ABCD ,所以OP OE ⊥. 因为ABCD 是正方形,所以OE AD ⊥.如图建立空间直角坐标系O xyz -,则()0,0,2P , ()2,0,0D , ()2,4,0B -,,.设平面BDP 的法向量为(),,n x y z =,则,即.令1x =,则1y =, 2z =.于是.平面PAD 的法向量为()0,1,0p =,所以.由题知二面角B PD A --为锐角,所以它的大小为3π.(III )由题意知, ()2,4,0D ,.设直线MC 与平面BDP 所成角为α,则.所以直线MC 与平面BDP 所成角的正弦值为269. 4.【2017天津,理17】如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,.点D ,E ,N 分别为棱P A ,P C ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【答案】 (1)证明见解析(2)10521 (3)85 或12【解析】如图,以A 为原点,分别以AB , AC , AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)证明: DE =(0,2,0),DB =(2,0, 2-).设(),,n x y z =,为平面BDE 的法向量,则,即.不妨设1z =,可得()1,0,1n =.又MN =(1,2, 1-),可得0MN n ⋅=.因为MN ⊄平面BDE ,所以MN //平面BDE .(Ⅱ)解:易知()11,0,0n =为平面CEM 的一个法向量.设为平面EMN 的法向量,则,因为,,所以.不妨设1y =,可得.因此有,于是.所以,二面角C —EM —N 的正弦值为10521. (Ⅲ)解:依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得,.由已知,得,整理得,解得85h =,或12h =. 所以,线段AH 的长为85或12. 5.【2017江苏,22】 如图, 在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B-A 1D-A 的正弦值.【答案】(1)17(2)74【解析】在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA1⊥平面ABCD,所以AA1⊥AE,AA1⊥AD.如图,以为正交基底,建立空间直角坐标系A-xyz.因为AB=AD=2,AA1=3,.则.(1),则.因此异面直线A1B与AC1所成角的余弦值为1 7 .(2)平面A1DA的一个法向量为. 设为平面BA1D的一个法向量,又,则即不妨取x=3,则,所以为平面BA1D的一个法向量,从而,设二面角B -A 1D -A 的大小为θ,则3cos 4θ=. 因为[]0,θπ∈,所以.因此二面角B -A 1D -A 的正弦值为74. 1.【2016高考新课标1卷】(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )21919- 【解析】(Ⅰ)由已知可得ΑF DF ⊥,ΑF FE ⊥,所以ΑF ⊥平面ΕFDC . 又F A ⊂平面ΑΒΕF ,故平面ΑΒΕF⊥平面ΕFDC .(Ⅱ)过D 作DG ΕF ⊥,垂足为G ,由(Ⅰ)知DG ⊥平面ΑΒΕF .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长,建立如图所示的空间直角坐标系G xyz -. 由(Ⅰ)知DFE ∠为二面角D AF E --的平面角,故,则2DF =,3DG =,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,()0,0,3D .由已知,//AB EF ,所以//AB 平面EFDC . 又平面ABCD平面,故//AB CD ,//CD EF .由//BE AF ,可得BE ⊥平面EFDC ,所以C ΕF ∠为二面角C BE F --的平面角,.从而可得. 所以,,,.设(),,x y z =n 是平面ΒC Ε的法向量,则ΕC ΕΒ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,所以可取.设m 是平面ΑΒCD 的法向量,则,同理可取.则.故二面角E BC A 的余弦值为21919-.【考点定位】线面垂直、二面角、勾股定理8. 【2014高考江西理第19题】如图,四棱锥ABCD P -中,ABCD 为矩形,平面⊥PAD 平面ABCD . (1)求证:;PD AB ⊥ (2)若问AB 为何值时,四棱锥ABCD P -的体积最大?并求此时平面PBC 与平面DPC 夹角的余弦值【答案】(1)详见解析, (2)63AB =时,四棱锥的体积P-ABCD 最大. 平面BPC 与平面DPC 夹角的余弦值为10.5【解析】(1)证明:ABCD 为矩形,故AB ⊥AD , 又平面PAD ⊥平面ABCD 平面PAD平面ABCD=AD所以AB ⊥平面PAD ,因为PD ⊂平面PAD ,故AB ⊥PD(2)解:过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG,BC ⊥PG在直角三角形BPC 中,设,AB m =,则,故四棱锥P-ABCD 的体积为因为故当63m =时,即63AB =时,四棱锥的体积P-ABCD 最大.A BCD P建立如图所示的空间直角坐标系,故设平面BPC 的法向量,则由1PC ⊥n ,1BC ⊥n 得解得1,0,x y ==1(1,0,1),=n同理可求出平面DPC 的法向量,从而平面BPC 与平面DPC 夹角θ的余弦值为【考点定位】面面垂直性质定理,四棱锥体积,利用空间向量求二面角 9. 【2014高考辽宁理第19题】如图,ABC ∆和BCD ∆所在平面互相垂直,且,,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.【答案】(1)详见解析;(2) 255. 【解析】 (1)证明:(方法一)过E 作EO ⊥BC ,垂足为O ,连OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC=∠FOC=2π,即FO ⊥BC , 又EO ⊥BC ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 左垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A(0,-1,3),D(3,-1,0),C(0,2,0),因而,所以,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥.(2)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,从而EO ⊥面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF. 因此∠EGO 为二面角E-BF-C 的平面角;在△EOC 中,EO=12EC=12BC·cos30°=32,由△BGO ∽△BFC 知,,因此tan ∠EGO=2EOOG=,从而sin ∠EGO=255,即二面角E-BF-C 的正弦值为255. (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量,又,由得其中一个,设二面角E-BF-C 的大小为θ,且由题意知θ为锐角,则,因此sin ∠EGO=255,即二面角E-BF-C 的正弦值为255. 【考点定位】线面垂直的判定、二面角. 10. 【2014高考全国1第19题】如图,三棱柱中,侧面C C BB 11为菱形,C B AB 1⊥.(Ⅰ)证明:1AB AC =; (Ⅱ)若1AC AB ⊥,,BC AB =,求二面角的余弦值.(Ⅰ)证明:1AB AC =; (Ⅱ)若1AC AB ⊥,,BC AB =,求二面角的余弦值.【答案】(Ⅰ)详见解析;(Ⅱ)17【解析】(I )连接1BC ,交1B C 于O ,连接AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥.又1B O CO =,故1AB AC =. (II )因为1AC AB ⊥,且O 为1B C 的中点,所以AO CO =,又因为BC AB =,.故OA OB ⊥,从而两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示的空间直角坐标系O xyz -.因为,所以1CBB ∆为等边三角形.又AB BC =,则3(0,0,)3A ,(1,0,0)B ,,., ,.设(,,)n x y z =是平面11AA B 的法向量,则即所以可取.设m 是平面111A B C 的法向量,则同理可取.则.所以二面角的余弦值为17.11. 【2014高考陕西第17题】四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱于点H G F ,,.学科网(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值. 【答案】(1)证明见解析;(2)105. 【解析】(1)由该四面体的三视图可知:,由题设,BC ∥面EFGH 面EFGH 面BDC FG = 面EFGH面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH .同理EF ∥AD ,HG ∥AD , EF ∴∥HG .∴四边形EFGH 是平行四边形又∴AD ⊥平面BDCAD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形(2)如图,以D 为坐标原点建立空间直角坐标系,则(0,0,0)D ,(0,0,1)A ,(2,0,0)B ,(0,2,0)C,,设平面EFGH 的一个法向量(,,)n x y z =BC ∥FG ,EF ∥AD即得,取(1,1,0)n =。
13—立体几何中的向量方法向量是几何学中非常重要的概念之一,它可以用来描述空间中的方向和大小。
在立体几何中,向量方法被广泛应用于解决各种问题,例如计算向量的模、方向角、点到直线的距离等等。
本文将详细介绍立体几何中的向量方法,包括向量的基本概念、加减乘除、数量积、向量积等内容。
一、向量的基本概念在立体几何中,我们通常用箭头表示一个向量,表示向量的长度表示向量的大小,箭头的方向表示向量的方向。
两个向量相等意味着它们的大小和方向都相同。
向量的模表示向量的大小,一般用,AB,表示,表示点A到点B的距离,也表示向量的大小。
二、向量的加减乘除1.向量的加法:向量的加法按照平行四边形法则进行,即将一个向量的起点与另一个向量的终点相连,新向量的起点为第一个向量的起点,终点为第二个向量的终点。
用数学表示为A+B=C,C的起点为A的起点,终点为B的终点。
2.向量的减法:向量的减法等价于将减去的向量取反再进行加法,即A-B=A+(-B)。
其中,-B表示B的方向相反,大小相同的向量。
3. 向量的数量积:两个向量的数量积等于向量的模的乘积与两个向量之间的夹角的余弦值的乘积,即A·B=,A,B,cosθ。
其中,θ为两个向量之间的夹角。
4. 向量的向量积:两个向量的向量积等于一个新的向量,其方向垂直于原来两个向量所在的平面,大小等于两个向量的模的乘积与夹角的正弦值的乘积,即A×B=,A,B,sinθn。
其中,n为右手定则确定的垂直于平面的方向。
三、应用实例1.计算向量的模:给定一个向量A=(-3,4,5),可以计算其模为,A,=√((-3)^2+4^2+5^2)=√50。
2. 计算向量的方向角:给定一个向量A=(-3,4,5),可以计算其方向角为α=arccos(-3/√50),β=arccos(4/√50),γ=arccos(5/√50)。
3.计算点到直线的距离:给定一点P(x,y,z)和一直线l,可以通过向量的方法计算点P到直线l的距离。
第3讲立体几何中的向量方法【高考考情解读】高考对本节知识的考查以解答题的形式为主,主要从以下三个方面命题:1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明,常出现在解答题的第(1)问中,考查空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间角(主要是线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题.1.直线与平面、平面与平面的平行与垂直的向量方法设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2).平面α、β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4)(以下相同).(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a3+b1b3+c1c3=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 3=λa 4,b 3=λb 4,c 3=λc 4. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0. 2. 直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α、β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)面面夹角设平面α、β的夹角为θ(0≤θ<π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. 3. 求空间距离直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).考点一 利用向量证明平行与垂直关系例1 如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方 法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 方法一 由题意,得AB ,AD ,AE 两两垂直,以A 为原点 建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0), F (1,0,1),M ⎝⎛⎭⎫12,0,0, O ⎝⎛⎭⎫12,12,12.(1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0), 由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎨⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA →=-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .(1)要证明线面平行,只需证明向量OM →与平面BCF 的法向量垂直;另一个思路则是根据共面向量定理证明向量OM →与BF →,BC →共面.(2)要证明面面垂直,只要证明这两个平面的法向量互相垂直;也可根据面面垂直的判定定理证明直线OM 垂直于平面EFCD ,即证OM 垂直于平面EFCD 内的两条相交直线,从而转化为证明向量OM →与向量FC →、DC →垂直.如图所示,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE , F A =FE ,∠AEF =45°. (1)求证:EF ⊥平面BCE ;(2)设线段CD 、AE 的中点分别为P 、M ,求证:PM ∥平面BCE . 证明 ∵△ABE 是等腰直角三角形,AB =AE ,∴AE ⊥AB ,∵平面ABEF ⊥平面ABCD 且平面ABEF ∩平面ABCD =AB ,∴AE ⊥平面ABCD ,∴AE ⊥AD ,即AD 、AB 、AE 两两垂直,建立如图空间直角坐标系. (1)设AB =1,则AD =AE =1,A (0,0,0),B (0,1,0),D (1,0,0),E (0,0,1),C (1,1,0), ∵F A =FE ,∠AEF =45°, ∴∠AFE =90°,从而F ⎝⎛⎭⎫0,-12,12,EF →=⎝⎛⎭⎫0,-12,-12, BE →=(0,-1,1),BC →=(1,0,0). 于是EF →·BE →=0+12-12=0,EF →·BC →=0,∴EF ⊥BE ,EF ⊥BC ,∵BE ⊂平面BCE ,BC ⊂平面BCE ,BC ∩BE =B , ∴EF ⊥平面BCE .(2)M ⎝⎛⎭⎫0,0,12,P ⎝⎛⎭⎫1,12,0, 从而PM →=⎝⎛⎭⎫-1,-12,12, 于是PM →·EF →=⎝⎛⎭⎫-1,-12,12·(0,-12,-12) =0+14-14=0.∴PM ⊥EF ,又EF ⊥平面BCE ,直线PM 不在平面BCE 内,故PM ∥平面BCE . 考点二 利用向量求空间角例2 (2013·湖北)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC ,E ,F 分别是P A ,PC 的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面P AC 的位置关系,并加以证明;(2)设(1)中的直线l 与圆O 的另一个交点为D ,且点Q 满足DQ →=12CP →,记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E -l -C 的大小为β,求证:sin θ=sin αsin β.(1)解 直线l ∥平面P AC ,证明如下: 连接EF ,因为E ,F 分别是P A ,PC 的中点, 所以EF ∥AC .又EF ⊄平面ABC ,且AC ⊂平面ABC , 所以EF ∥平面ABC .而EF ⊂平面BEF ,且平面BEF ∩平面ABC =l , 所以EF ∥l .因为l ⊄平面P AC ,EF ⊂平面P AC , 所以直线l ∥平面P AC .(2)证明 如图,由DQ →=12CP →,作DQ ∥CP ,且DQ =12CP .连接PQ ,EF ,BE ,BF ,BD , 由(1)可知交线l 即为直线BD .以点C 为原点,向量CA →,CB →,CP →所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,设CA =a ,CB =b ,CP =2c ,则有C (0,0,0),A (a,0,0),B (0,b,0),P (0,0,2c ),Q (a ,b ,c ),E ⎝⎛⎭⎫12a ,0,c ,F (0,0,c ). 于是FE →=⎝⎛⎭⎫12a ,0,0,QP →=(-a ,-b ,c ),BF →=(0,-b ,c ), 所以cos α=|FE →·QP →||FE →||QP →|=a a 2+b 2+c2,从而sin α=1-cos 2α=b 2+c 2a 2+b 2+c2,又取平面ABC 的一个法向量为m =(0,0,1), 可得sin θ=|m ·QP →||m ||QP →|=c a 2+b 2+c2,设平面BEF 的一个法向量为n =(x ,y ,z ). 所以由⎩⎪⎨⎪⎧ n ·FE →=0,n ·BF →=0.可得⎩⎪⎨⎪⎧12ax =0,-by +cz =0.取n =(0,c ,b ).于是|cos β|=|m ·n ||m ||n |=b b 2+c2. 从而sin β=1-cos 2β=cb 2+c2.故sin αsin β=b 2+c 2a 2+b 2+c2·cb 2+c2=ca2+b2+c2=sin θ,即sin θ=sin αsin β.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.(2013·山东)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.(1)证明因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB. 所以EF∥DC.又EF⊄平面PCD,DC⊂平面PCD,所以EF∥平面PCD.又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)解方法一在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°,即AB⊥BQ. 因为PB⊥平面ABQ,所以AB⊥PB.又BP∩BQ=B,所以AB⊥平面PBQ.由(1)知AB∥GH,所以GH⊥平面PBQ.又FH⊂平面PBQ,所以GH⊥FH.同理可得GH⊥HC,所以∠FHC为二面角D-GH-E的平面角.设BA=BQ=BP=2,连接FC,在Rt△FBC中,由勾股定理得FC=2,在Rt△PBC中,由勾股定理PC = 5.又H 为△PBQ 的重心,所以HC =13PC =53.同理FH =53.在△FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45.方法二 在△ABQ 中,AQ =2BD ,AD =DQ ,所以∠ABQ =90° 又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴, z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2). 所以EQ →=(-1,2,-1),FQ →=(0,2,-1),DP →=(-1,-1,2),CP →=(0,-1,2). 设平面EFQ 的一个法向量为m =(x 1,y 1,z 1),由m ·EQ →=0,m ·FQ →=0,得⎩⎪⎨⎪⎧ -x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得m =(0,1,2). 设平面PDC 的一个法向量为n =(x 2,y 2,z 2),由n ·DP →=0,n ·CP →=0,得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0,取z 2=1,得n =(0,2,1). 所以cos 〈m ,n 〉=m ·n |m ||n |=45.因为二面角D -GH -E 为钝角,所以二面角D -GH -E 的余弦值为-45.考点三 利用空间向量解决探索性问题例3 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC=90°,D 是BC 的中点. (1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD-C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.(1)证明 连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为 A 1C 的中点. 又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD .因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)解 由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直. 以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0), 所以AD →=(1,-2,0),AC →1=(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD →=0,n ·AC →1=0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)解 假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1),故可设E (0,λ,1),其中0≤λ≤2. 所以AE →=(0,λ-2,1),DC →1=(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE →,DC →1〉|=|AE →·DC →1||AE →|·|DC →1|=12,即1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去). 所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.如图,在三棱锥P —ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC ,点D 为BC 的中点; (1)求二面角A —PD —B 的余弦值;(2)在直线AB 上是否存在点M ,使得PM 与平面P AD 所成角的正弦值 为16,若存在,求出点M 的位置;若不存在,说明理由.解 (1)∵AC =BC ,P A =PB ,PC =PC , ∴△PCA ≌△PCB , ∴∠PCA =∠PCB , ∵PC ⊥AC ,∴PC ⊥CB , 又AC ∩CB =C ,∴PC ⊥平面ACB ,且PC ,CA ,CB 两两垂直,故以C 为坐标原点,分别以CB ,CA ,CP 所在直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (0,2,0),D (1,0,0),P (0,0,2),∴AD →=(1,-2,0),PD →=(1,0,-2), 设平面P AD 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·AD →=0n ·PD →=0,∴取n =(2,1,1),平面PDB 的一个法向量为CA →=(0,2,0), ∴cos 〈n ,CA →〉=66,设二面角A —PD —B 的平面角为θ,且θ为钝角, ∴cos θ=-66,∴二面角A —PD —B 的余弦值为-66. (2)方法一 存在,M 是AB 的中点或A 是MB 的中点. 设M (x,2-x,0) (x ∈R ),∴PM →=(x,2-x ,-2), ∴|cos 〈PM →,n 〉|=|x |x 2+(2-x )2+4·6=16, 解得x =1或x =-2,∴M (1,1,0)或M (-2,4,0),∴在直线AB 上存在点M ,且当M 是AB 的中点或A 是MB 的中点时,使得PM 与平面P AD 所成角的正弦值为16.方法二 存在,M 是AB 的中点或A 是MB 的中点. 设AM →=λAB →,则AM →=λ(2,-2,0)=(2λ,-2λ,0) (λ∈R ), ∴PM →=P A →+AM →=(2λ,2-2λ,-2), ∴|cos 〈PM →,n 〉|=|2λ|(2λ)2+(2-2λ)2+4·6=16. 解得λ=12或λ=-1.∴M 是AB 的中点或A 是MB 的中点.∴在直线AB 上存在点M ,且当M 是AB 的中点或A 是MB 的中点时,使得PM 与平面P AD 所成角的正弦值为16.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性.提醒三点:(1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值.(2)求二面角除利用法向量外,还可以按照二面角的平面角的定义和空间任意两个向量都是共面向量的知识,我们只要是在二面角的两个半平面内分别作和二面角的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如图所示.(3)对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),四点P ,A ,B ,C 共面的充要条件是x +y +z =1.空间一点P 位于平面MAB 内⇔存在有序实数对x ,y ,使MP →=xMA →+yMB →,或对空间任一定点O ,有序实数对x ,y ,使OP →=OM →+xMA →+yMB →.如图,在边长为4的菱形ABCD 中,∠DAB =60°.点E 、F 分别在边CD 、CB 上,点E 与点C 、D 不重合,EF ⊥AC ,EF ∩AC =O .沿EF 将△CEF 翻折到△PEF 的位置,使平面PEF ⊥平面ABFED .(1)求证:BD ⊥平面POA ;(2)设点Q 满足AQ →=λQP →(λ>0),试探究:当PB 取得最小值时,直线OQ 与平面PBD 所成角的大小是否一定大于π4?并说明理由.(1)证明 ∵菱形ABCD 的对角线互相垂直, ∴BD ⊥AC ,∴BD ⊥AO , ∵EF ⊥AC ,∴PO ⊥EF .∵平面PEF ⊥平面ABFED ,平面PEF ∩平面ABFED =EF ,且PO ⊂平面PEF , ∴PO ⊥平面ABFED ,∵BD ⊂平面ABFED ,∴PO ⊥BD . ∵AO ∩PO =O ,∴BD ⊥平面POA .(2)解 如图,以O 为原点,建立空间直角坐标系 O -xyz . 设AO ∩BD =H .因为∠DAB =60°,所以△BDC 为等边三角形. 故BD =4,HB =2,HC =2 3.又设PO =x ,则OH =23-x ,OA =43-x . 所以O (0,0,0),P (0,0,x ),B (23-x,2,0), 故PB →=(23-x,2,-x ), 所以|PB →|=(23-x )2+22+(-x )2=2(x -3)2+10,当x =3时,|PB |min =10.此时PO =3, 设点Q 的坐标为(a,0,c ), ∵OP =3,则A (33,0,0),B (3,2,0),D (3,-2,0),P (0,0,3). ∴AQ →=(a -33,0,c ),QP →=(-a,0,3-c ),∵AQ →=λQP →,∴⎩⎪⎨⎪⎧a -33=-λa ,c =3λ-λc⇒⎩⎪⎨⎪⎧a =331+λ,c =3λ1+λ.∴Q (33λ+1,0,3λλ+1),∴OQ →=(33λ+1,0,3λλ+1).设平面PBD 的法向量为n =(x ,y ,z ), 则n ·PB →=0,n ·BD →=0.∵PB →=(3,2,-3),BD →=(0,-4,0),∴⎩⎪⎨⎪⎧3x +2y -3z =0,-4y =0. 取x =1,解得y =0,z =1, ∴n =(1,0,1).设直线OQ 与平面PBD 所成的角为θ, ∴sin θ=|cos 〈OQ →,n 〉|=|OQ →·n ||OQ →|·|n |=|33λ+1+3λλ+1|2·(33λ+1)2+(3λλ+1)2=|3+λ|2·9+λ2=129+6λ+λ29+λ2=121+6λ9+λ2. 又∵λ>0,∴sin θ>22. ∵θ∈[0,π2],∴θ>π4.因此直线OQ 与平面PBD 所成的角大于π4,则结论成立.(推荐时间:60分钟)一、选择题1. 已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内 答案 D解析 由已知得M 、A 、B 、C 四点共面.所以AM 在平面ABC 内,选D. 2. 如图,三棱锥A -BCD 的棱长全相等,E 为AD 的中点,则直线CE与BD 所成角的余弦值为( )A.36 B.32C.336D.12答案 A解析 设AB =1,则CE →·BD →=(AE →-AC →)·(AD →-AB →) =12AD →2-12AD →·AB →-AC →·AD →+AC →·AB → =12-12cos 60°-cos 60°+cos 60°=14. ∴cos 〈CE →,BD →〉=CE →·BD →|CE →||BD →|=1432=36.选A.3. 如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB →的值为( )A .0B .1C .0或1D .任意实数答案 C解析 AP →可为下列7个向量:AB →,AC →,AD →,AA 1→,AB →1,AC →1,AD →1,其中一个与AB →重合,AP →·AB →=|AB →|2=1;AD →,AD →1,AA →1与AB →垂直,这时AP →·AB →=0;AC →,AB →1与AB →的夹角为45°,这时AP →·AB →=2×1×cos π4=1,最后AC →1·AB →=3×1×cos ∠BAC 1=3×13=1,故选C.4. (2013·山东)已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为 ( )A.5π12 B.π3C.π4D.π6答案 B解析 如图所示:S ABC =12×3×3×sin 60°=334.∴VABC -A 1B 1C 1=S ABC ×OP =334×OP =94,∴OP = 3.又OA =32×3×23=1, ∴tan ∠OAP =OP OA =3,又0<∠OAP <π2,∴∠OAP =π3.二、填空题5. 在一直角坐标系中已知A (-1,6),B (3,-8),现沿x 轴将坐标平面折成60°的二面角,则折叠后A 、B 两点间的距离为________. 答案 217解析 如图为折叠后的图形,其中作AC ⊥CD ,BD ⊥CD , 则AC =6,BD =8,CD =4, 两异面直线AC 、BD 所成的角为60°, 故由AB →=AC →+CD →+DB →, 得|AB →|2=|AC →+CD →+DB →|2=68, ∴|AB →|=217.6. 已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD 的中点,则点C 到平面GEF 的距离为________.答案61111解析 建立如图所示的空间直角坐标系C -xyz , GF →=(4,2,-2),GE →=(2,4,-2),由⎩⎪⎨⎪⎧GF →·n =0,GE →·n =0,得平面GEF 的一个法向量为n =(1,1,3),所以点C 到平面GEF 的距离d =|n ·CG →||n |=61111.7. 如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,现在沿DE ,DF 及EF 将三个角折起,使A ,B ,C 三点重合,重合后的点记为P ,那么在四面体P -DEF 中,二面角D -PE -F 的大小为________.答案 90°解析 由已知可得,PD ⊥PE ,PF ⊥PE , 所以∠DPF 是二面角D -PE -F 的平面角.又因为PD ⊥PF ,所以二面角D -PE -F 的大小为90°.8. 如图,正方体ABCD -A 1B 1C 1D 1,则下列四个命题:①P 在直线BC 1上运动时,三棱锥A -D 1PC 的体积不变; ②P 在直线BC 1上运动时,直线AP 与平面ACD 1所成角的大小不 变;③P 在直线BC 1上运动时,二面角P -AD 1-C 的大小不变;④M 是平面A 1B 1C 1D 1上到点D 和C 1距离相等的点,则M 点的轨迹是过D 1点的直线. 其中真命题的编号是________(写出所有真命题的编号). 答案 ①③④解析 ∵BC 1∥AD 1,∴BC 1∥平面ACD 1,BC 1上任一点到平面ACD 1的距离为定值,∴VA -D 1PC =VP -ACD 1为定值,①正确;P 到面ACD 1的距离不变,但AP 的长在变化,∴AP 与面ACD 1所成角的大小是变量,②错误;面P AD 1即面ABC 1D 1,∴ABC 1D 1与面ACD 1所成二面角的大小不变,③正确;M 点的轨迹为A 1D 1,④正确. 三、解答题9. 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点. (1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图), 则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0), 则D (0,m,0),E ⎝⎛⎭⎫12,m 2,0.可得PE →=⎝⎛⎭⎫12,m 2,-n ,BC →=(m ,-1,0). 因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1, 故C ⎝⎛⎭⎫-33,0,0,D ⎝⎛⎭⎫0,-33,0,E ⎝⎛⎭⎫12,-36,0, P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又P A →=(1,0,-1), 所以|cos 〈P A →,n 〉|=24.所以直线P A 与平面PEH 所成角的正弦值为24.10.如图,五面体中,四边形ABCD 是矩形,AD ⊥面ABEF ,且AD =1,AB ∥EF ,AB =12EF =22,AF =BE =2,P 、Q 、M分别为AE 、BD 、EF 的中点.(1)求证:PQ ∥平面BCE ; (2)求证:AM ⊥平面ADF ; (3)求二面角A -DF -E 的余弦值.(1)证明 连接AC ,因为四边形ABCD 是矩形,Q 为BD 的中点, ∴Q 为AC 的中点,又在△AEC 中,P 为AE 的中点,∴PQ ∥EC , ∵EC ⊂面BCE ,PQ ⊄面BCE ,∴PQ ∥平面BCE . (2)证明 ∵M 为EF 的中点,∴EM =AB =22, 又∵EF ∥AB ,∴四边形ABEM 是平行四边形. ∴AM ∥BE ,AM =BE =2, 又∵AF =2,MF =22, ∴△MAF 是Rt △且∠MAF =90°. ∴MA ⊥AF .又∵DA ⊥平面ABEF ,MA ⊂面ABEF , ∴MA ⊥DA ,又∵DA ∩AF =A , ∴AM ⊥平面ADF .(3)解 如图,以A 为坐标原点,以AM 、AF 、AD 所在直线 分别为x ,y ,z 轴建立空间直角坐标系. 则A (0,0,0),D (0,0,1),M (2,0,0),F (0,2,0).可得AM →=(2,0,0),MF →=(-2,2,0),DF →=(0,2,-1). 设平面DEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·MF →=0n ·DF →=0.故⎩⎪⎨⎪⎧ -2x +2y =02y -z =0,即⎩⎪⎨⎪⎧x -y =02y -z =0. 令x =1,则y =1,z =2,故n =(1,1,2)是平面DEF 的一个法向量.∵AM ⊥面ADF ,∴AM →为平面ADF 的一个法向量.所以cos 〈n ,AM →〉=n ·AM →|n |·|AM →|=2×1+0×1+0×26×2=66. 由图可知所求二面角为锐角,所以二面角A -DF -E 的余弦值为66.11.(2013·重庆)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值.解 (1)如图,连接BD 交AC 于点O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1, 而AC =4,得AO =AC -OC =3,又OD =CD sin π3= 3. 故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因为P A ⊥底面ABCD ,可设P (0,-3,z ),因为F 为PC 的中点,所以F ⎝⎛⎭⎫0,-1,z 2. 又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ), 因为AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =23(舍去-23), 所以|P A →|=23,所以P A 的长为2 3.(2)由(1)知,AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2).由n 1·AD →=0,n 1·AF →=0得⎩⎪⎨⎪⎧ -3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB →=0,n 2·AF →=0得 ⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18. 故二面角B -AF -D 的正弦值为378.12.如图,AB 为圆O 的直径,点E ,F 在圆上且EF ∥AB ,矩形ABCD所在平面和圆O 所在平面垂直,已知AB =2,EF =1.(1)求证:平面ADE ⊥平面BCE ;(2)当AD 的长为何值时,二面角D -EF -B 的大小为60°?(1)证明 ∵平面ABCD ⊥平面ABEF 且DA ⊥AB ,∴DA ⊥平面ABEF .又∵BE ⊂平面ABEF ,∴DA ⊥BE ,∵AB 为圆O 的直径,∴BE ⊥AE .又DA ∩AE =A ,∴BE ⊥平面ADE .∵BE ⊂平面BCE ,∴平面ADE ⊥平面BCE .(2)解 取EF ,CD 的中点M ,N ,连接OM ,ON ,易知OA ,OM ,ON 两两垂直.以O 为坐标原点,OA ,OM ,ON 所在直线为x 轴,y 轴,z 轴建立如 图所示的空间直角坐标系,设AD =t (t >0),过点E 作EH ⊥AB ,垂足为H .∵AB =2,EF =1,∴BH =12.又∵Rt △EBH ∽Rt △ABE ,∴BH BE =BE AB .∴BE =1,EH =32.则O (0,0,0),D (1,0,t ),E (-12,32,0),F (12,32,0)∴DE →=(-32,32,-t ),DF →=(-12,32,-t ).设平面DEF 的一个法向量为n 1=(x ,y ,z ),则n 1·DE →=0,n 1·DF →=0.得⎩⎨⎧ -32x +32y -tz =0,-12x +32y -tz =0.令z =3,解得x =0,y =2t ,∴n 1=(0,2t ,3),取平面BEF 的一个法向量为n 2=(0,0,1).由题意知n 1,n 2所成的角为60°.∴cos 60°=n 1·n 2|n 1||n 2|=0+0+34t 2+3,解得t =±32(负值舍去). 因此,当AD 的长为32时,二面角D -EF -B 的大小为60°.。
立体几何中的向量方法【要点梳理】1.平面的法向量定义:已知平面α,直线l α⊥,取l 的方向向量a ,有α⊥a ,则称为a 为平面α的法向量。
要点诠释:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量。
已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量。
2.平面的法向量确定通常有两种方法:(1) 几何体中有具体的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量;(2) 几何体中没有具体的直线,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为n=(x ,y ,z );(ii )找出(求出)平面内的两个不共线的向量的坐标a=(a 1,b 1,c 1),b=(a 2,b 2,c 2);(iii )根据法向量的定义建立关于x 、y 、z 的方程00n a n b ⋅=⎧⎨⋅=⎩;(iv )解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量.运用:(1)线面平行线面平行的判定方法一般有三种: ①设直线l 的方向向量是a ,平面α的向量是u ,则要证明//l α,只需证明⊥a u ,即0⋅=a u 。
(2)面面平行①由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可。
②若能求出平面α,β的法向量u ,v ,则要证明//αβ,只需证明//u v 。
(3)线面垂直①设直线l 的方向向量是a ,平面α的向量是u ,则要证明l α⊥,只需证明//a u 。
②根据线面垂直的判定定理转化为直线与平面内的两条相交直线垂直。
(4)面面垂直①根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直。
②证明两个平面的法向量互相垂直。
(5)求直线和平面所成的角设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ, 则有||sin |cos |||||θϕ⋅==⋅a u a u 。
立体几何中的向量方法【考点梳理】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则(3)面面夹角设平面α,β的夹角为θ(0≤θ<π),【题型突破】题型一、利用空间向量证明平行、垂直关系【例1】如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明: (1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面P AD .【解析】证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以向量AB→=(1,0,0)为平面PAD 的一个法向量,而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面PAD ,所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0, 不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量.且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD . 【类题通法】1.利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何定理的条件,如在(2)中忽略BE ⊄平面P AD 而致误. 【对点训练】在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证: (1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .【解析】证明 (1)以B 为坐标原点,BA ,BC ,BB 1所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (0,0,0),D (0,2,2),B 1(0,0,4),C 1(0,2,4). 设BA =a ,则A (a ,0,0),所以BA →=(a ,0,0),BD →=(0,2,2),B 1D →=(0,2,-2). B 1D →·BA →=0,B 1D →·BD →=0+4-4=0, 则B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,BA ,BD ⊂平面ABD , 因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG →=⎝ ⎛⎭⎪⎫a 2,1,1,EF →=(0,1,1),B 1D →·EG →=0+2-2=0, B 1D →·EF →=0+2-2=0, 即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,EG ,EF ⊂平面EGF , 因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .题型二、求线面角或异面直线所成的角【例2】如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.【解析】(1)证明 由AM =2MD ,AD =3. ∴AM =23AD =2.取BP 的中点T ,连接AT ,TN . 由于N 为PC 的中点, 所以TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB . (2)解 取BC 的中点E ,连接AE . 又AB =AC ,得AE ⊥BC ,从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A-xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的一个法向量,则 ⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1). 于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525. 所以直线AN 与平面PMN 所成的角的正弦值为8525.【类题通法】1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两方向向量的夹角(或其补角). 【对点训练】将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧. (1)求三棱锥C -O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.【解析】(1)连接A 1B 1,因为A 1B 1︵=π3,∴∠O 1A 1B 1=∠A 1O 1B 1=π3,∴△O 1A 1B 1为正三角形, ∴S △O 1A 1B 1=12·O 1A 1·O 1B 1·sin π3=34.∴VC -O 1A 1B 1=13·OO 1·S △O 1A 1B 1=13×1×34=312, ∴三棱锥C -O 1A 1B 1的体积为312.(2)以O 为坐标原点建系如图,则A (0,1,0),A 1(0,1,1), B 1⎝ ⎛⎭⎪⎫32,12,1,C ⎝ ⎛⎭⎪⎫32,-12,0. ∴AA 1→=(0,0,1),B 1C →=(0,-1,-1), ∴cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, ∴〈AA 1→,B 1C →〉=3π4,∴异面直线B 1C 与AA 1所成的角为π4.题型三、二面角的计算【例3】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.【解析】(1)证明 取P A 的中点F ,连接EF ,BF , 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD , 由∠BAD =∠ABC =90°得BC ∥AD , 又BC =12AD ,所以EF 綉BC , 四边形BCEF 是平行四边形,CE ∥BF , 又BF ⊂平面PAB , CE ⊄平面PAB , 故CE ∥平面PAB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则 A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3), PC→=(1,0,-3),AB →=(1,0,0). 设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的一个法向量, 所以|cos 〈BM→,n 〉|=sin 45°,|z |(x -1)2+y 2+z 2=22,即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①,②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝ ⎛⎭⎪⎫1-22,1,62,从而AM→=⎝ ⎛⎭⎪⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则 ⎩⎪⎨⎪⎧m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m ·n |m ||n |=105. 因此二面角M -AB -D 的余弦值为105.【类题通法】1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【对点训练】如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.(1)证明:平面PAD⊥平面ABFE;(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是22 3.【解析】(1)证明由于几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P -ABCD的组合体.∴AD⊥AB,又AD⊥AF,AF∩AB=A,∴AD⊥平面ABEF.又AD⊂平面PAD,∴平面PAD⊥平面ABFE.(2)解以A为原点,AB,AE,AD的正方向为x,y,z轴,建立空间直角坐标系A-xyz.设正四棱锥的高为h,AE=AD=2,则A(0,0,0),F(2,2,0),C(2,0,2),P(1,-h,1),设平面ACF的一个法向量m=(x,y,z),AF →=(2,2,0),AC →=(2,0,2),则⎩⎪⎨⎪⎧m ·AF →=2x +2y =0,m ·AC →=2x +2z =0,取x =1,得m =(1,-1,-1),设平面AFP 的一个法向量n =(a ,b ,c ), AP→=(1,-h ,1), 则⎩⎪⎨⎪⎧n ·AF →=2a +2b =0,n ·AP →=a -hb +c =0,取b =1,则n =(-1,1,1+h ),二面角C -AF -P 的余弦值223,∴|cos 〈m ,n 〉|=|m ·n ||m |·|n |=|-1-1-(1+h )|3·2+(h +1)2=223,解得h =1. ∴当四棱锥的高为1时,二面角C -AF -P 的余弦值为223.题型四、 利用空间向量求解探索性问题【例4】如图,C 是以AB 为直径的圆O 上异于A ,B 的点,平面P AC ⊥平面ABC ,P A =PC =AC =2,BC =4,E ,F 分别是PC ,PB 的中点,记平面AEF 与平面ABC 的交线为直线l .(1)证明:直线l ⊥平面PAC ;(2)直线l 上是否存在点Q ,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出AQ 的长;若不存在,请说明理由.【解析】(1)证明 ∵E ,F 分别是PB ,PC 的中点,∴BC ∥EF , 又EF ⊂平面EFA ,BC ⊄平面EFA , ∴BC ∥平面EFA ,又BC ⊂平面ABC ,平面EFA ∩平面ABC =l ,∴BC ∥l ,又BC ⊥AC ,平面PAC ∩平面ABC =AC ,平面PAC ⊥平面ABC ,∴BC ⊥平面PAC ,∴l ⊥平面PAC .(2)解 以C 为坐标原点,CA 为x 轴,CB 为y 轴,过C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,则C (0,0,0),A (2,0,0),B (0,4,0),P (1,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫12,2,32. AE →=⎝ ⎛⎭⎪⎫-32,0,32,EF →=(0,2,0), 设Q (2,y ,0),平面AEF 的一个法向量为m =(x ,y ,z ),则⎩⎨⎧AE →·m =-32x +32z =0,EF →·m =2y =0,取z =3,得m =(1,0,3).又PQ →=(1,y ,-3), ||cos 〈PQ →,EF →〉=⎪⎪⎪⎪⎪⎪2y 24+y 2=|y |4+y 2, |cos 〈PQ →,m 〉|=⎪⎪⎪⎪⎪⎪1-324+y 2=14+y2, 依题意,得|cos 〈PQ →,EF →〉|=|cos 〈PQ→,m 〉|,∴y =±1. ∴直线l 上存在点Q ,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,AQ 的长为1.【类题通法】1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【对点训练】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD= 5.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱P A上是否存在点M,使得BM∥平面PCD?若存在,求AMAP的值;若不存在,说明理由.【解析】(1)证明因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,AB,PA⊂平面PAB,所以PD⊥平面PAB.(2)解取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0, 令z =2,则x =1,y =-2.所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33. 所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱PA 上一点,则存在λ∈[0,1],使得AM→=λAP →. 因此点M (0,1-λ,λ),BM→=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM ∥平面PCD , 此时AM AP =14.。
领略立体几何中的向量方法战前热身立体几何研究的基本对象是点、直线、平面以及由它们组成的空间图形,为了利用空间向量这个工具解决立体几何问题,◆首先要解决如何利用向量把空间中的点、直线、平面的位置表示出来。
1.直线的方向向量:是指和这条直线平行(或共线)的向量.一条直线的方向向量有个。
2.平面的法向量:直线α⊥l ,取直线l 的方向向量a ,则向量a 叫做平面的法向量.一个平面的法向量有个,它们的关系是。
3.求法向量的步骤:(1)设出平面的法向量),,(z y x n =;(2)找出平面内的两个不共线的向量的坐标),,(),,,(321321b b b b a a a a ==;(3)根据法向量的定义建立关于z y x ,,的方程组⎪⎩⎪⎨⎧=⋅=⋅00b n a n ;(4)解方程组,取其中的一个解,即得一个法向量。
4.利用向量确定点、直线、平面在空间中的位置:(1)空间中的任意一点P ,可以以一定点O 作为基点,用向量来确定;(2)空间中任意一条直线l ,可以通过l 上的一个定点A 和l 的一个方向向量a 来确定,即直线l 可以表示为a t AP =,其中P 是l 上任意一点;(3)空间中任意一个平面α,有两种向量表示形式:①通过α上的一个定点O 和两个不共线向量b a ,来确定,即平面α可以表示为:OP =,其中P 是α上的任意一点;②通过α上的一个定点O 和α的法向量a 来确定,即平面α可以表示为:0=⋅a OP ,其中P 为α上的任意一点。
◆其次要解决如何结合运算,利用空间向量表示立体几何中的平行、垂直和夹角。
设直线l ,m 的方向向量分别为),,(),,,(321321b b b b a a a a ==,平面βα,的法向量分别为),,(),,,(321321d d d d c c c c ==,则:(1)线线平行 ⇔=⇔⇔b k a b a m l //// ;线面平行 ⇔=⋅⇔⊥⇔0//c a c a l α ;面面平行 ⇔βα//⇔⇔ 。
专题五立体几何与空间向量第3讲立体几何中的向量方法考情考向分析以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.热点分类突破热点一利用向量证明平行与垂直设直线l的方向向量为a=(a1,b1,c1),平面α,β的法向量分别为μ=(a2,b2,c2),v=(a3,b3,c3),则有:(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a2+b1b2+c1c2=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2.(3)面面平行α∥β⇔μ∥v⇔μ=λv⇔a2=λa3,b2=λb3,c2=λc3.(4)面面垂直α⊥β⇔μ⊥v⇔μ·v=0⇔a2a3+b2b3+c2c3=0.例1如图,在直三棱柱ADE—BCF中,面ABFE和面ABCD都是正方形且互相垂直,点M为AB的中点,点O为DF的中点.运用向量方法证明:(1)OM∥平面BCF;(2)平面MDF⊥平面EFCD.证明方法一(1)由题意,得AB,AD,AE两两垂直,以点A为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12.OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0, ∴OM →⊥BA →. ∵棱柱ADE —BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧ n 1·DF →=0,n 1·DM →=0, 得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12.同理可得n 2=(0,1,1). ∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .方法二 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA →=12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA → =-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →, ∴OM →·CD →=⎝⎛⎭⎫-12BC →-12BF →·BA →=0, OM →·FC →=⎝⎛⎭⎫-12BC →-12BF →·(BC →-BF →) =-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C ,CD ,FC ⊂平面EFCD , ∴OM ⊥平面EFCD .又OM ⊂平面MDF ,∴平面MDF ⊥平面EFCD .思维升华 用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.跟踪演练1 如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .证明 (1)以点A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 分别是PC ,PD 的中点, ∴E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB .(2)由(1)可知,PB →=(1,0,-1),PD →=(0,2,-1), AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0,AD →·DC →=(0,2,0)·(1,0,0)=0,∴AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ,AD ⊂平面P AD , ∴DC ⊥平面P AD . ∵DC ⊂平面PDC , ∴平面P AD ⊥平面PDC . 热点二 利用空间向量求空间角设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ ⎝⎛⎭⎫0≤θ≤π2, 则cos θ=|a ·b ||a ||b |=.(2)线面夹角设直线l 与平面α的夹角为θ ⎝⎛⎭⎫0≤θ≤π2, 则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. (3)二面角设α—a —β的平面角为θ(0≤θ≤π), 则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 例2 在三棱柱ABC -A 1B 1C 1中, AB ⊥平面BCC 1B 1, ∠BCC 1=π3, AB =BC =2, BB 1=4,点D 在棱CC 1上,且CD =λCC 1(0<λ≤1).建立如图所示的空间直角坐标系.(1)当λ=12时,求异面直线AB 1与A 1D 的夹角的余弦值;(2)若二面角A -B 1D -A 1的平面角为π3,求λ的值.解 (1)易知A ()0,0,2, B 1()0,4,0, A 1()0,4,2. 当λ=12时, 因为BC =CD =2, ∠BCC 1=π3,所以C ()3,-1,0,D ()3,1,0.所以AB 1→=()0,4,-2, A 1D →=()3,-3,-2. 所以cos 〈AB 1→,A 1D →〉=AB 1→·A 1D →||AB 1→||A 1D→,=0×3+4×()-3+()-2×()-242+()-22·()32+()-32+()-22=-55. 故异面直线AB 1与A 1D 的夹角的余弦值为55. (2)由CD =λCC 1可知, D ()3,4λ-1,0, 所以DB 1→=()-3,5-4λ,0, 由(1)知, AB 1→=()0,4,-2.设平面AB 1D 的法向量为m =()x ,y ,z , 则⎩⎪⎨⎪⎧ AB 1→·m =0,DB 1→·m =0, 即⎩⎨⎧4y -2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =2,所以平面AB 1D 的一个法向量为m =⎝⎛⎭⎪⎫5-4λ3,1,2.设平面A 1B 1D 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧B 1A 1→·n =0,DB 1→·n =0, 即⎩⎨⎧2z =0,()5-4λy -3x =0,令y =1,解得x =5-4λ3, z =0,所以平面A 1B 1D 的一个法向量为n =⎝⎛⎭⎪⎫5-4λ3,1,0.因为二面角A -B 1D -A 1的平面角为π3,所以||cos 〈m ,n 〉=|m·n |||m ||n =⎪⎪⎪⎪⎪⎪5-4λ3×5-4λ3+1×1+2×0⎝ ⎛⎭⎪⎫5-4λ32+12+22·⎝ ⎛⎭⎪⎫5-4λ32+12=12,即()5-4λ2=1,解得λ=32(舍)或λ=1,故λ的值为1.思维升华 (1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|;②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角;③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,注意函数名称的变化.跟踪演练2 如图,在四棱锥S -ABCD 中,SD ⊥平面ABCD ,四边形ABCD 是直角梯形,∠ADC =∠DAB =90°,SD =AD =AB =2,DC =1. (1)求二面角S -BC -A 的余弦值;(2)设P 是棱BC 上一点,E 是SA 的中点,若PE 与平面SAD 所成角的正弦值为22613,求线段CP 的长.解 (1)以D 为坐标原点,建立如图所示空间直角坐标系Dxyz ,则D (0,0,0),B (2,2,0),C (0,1,0),S (0,0,2),所以SB →=(2,2,-2),SC →=(0,1,-2),DS →=(0,0,2). 设平面SBC 的法向量为n 1=(x ,y ,z ), 由n 1·SB →=0,n 1·SC →=0, 得2x +2y -2z =0且y -2z =0. 取z =1,得x =-1,y =2,所以n 1=(-1,2,1)是平面SBC 的一个法向量.因为SD ⊥平面ABC ,取平面ABC 的一个法向量n 2=(0,0,1). 设二面角S -BC -A 的大小为θ, 所以|cos θ|=|n 1·n 2||n 1||n 2|=|1|6=66, 由图可知二面角S -BC -A 为锐二面角,所以二面角S -BC -A 的余弦值为66.(2)由(1)知,E (1,0,1),则CB →=(2,1,0),CE →=(1,-1,1). 设CP →=λCB →(0≤λ≤1),则CP →=λ(2,1,0)=(2λ,λ,0), 所以PE →=CE →-CP →=(1-2λ,-1-λ,1).易知CD ⊥平面SAD ,所以CD →=(0,-1,0)是平面SAD 的一个法向量. 设PE 与平面SAD 所成的角为α, 所以sin α=|cos 〈PE →,CD →〉| =|PE →·CD →||PE →||CD →|=λ+15λ2-2λ+3, 即λ+15λ2-2λ+3=22613,得λ=13或λ=119(舍).所以CP →=⎝⎛⎭⎫23,13,0,|CP →|=53, 所以线段CP 的长为53. 热点三 利用空间向量求解探索性问题存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.例3 如图,在四棱锥E -ABCD 中,平面ABE ⊥底面ABCD ,侧面AEB 为等腰直角三角形, ∠AEB =π2,底面ABCD 为直角梯形, AB ∥CD ,AB ⊥BC ,AB =2CD =2BC .(1)求直线EC 与平面ABE 所成角的正弦值;(2)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出EFEA ;若不存在,说明理由.解 (1)因为平面ABE ⊥平面ABCD ,且AB ⊥BC ,平面ABE ∩平面ABCD =AB ,BC ⊂平面ABCD ,所以BC ⊥平面ABE, 则∠CEB 即为直线EC 与平面ABE 所成的角, 设BC =a ,则AB =2a ,BE =2a ,所以CE =3a , 则在Rt △CBE 中, sin ∠CEB =CB CE =13=33,即直线EC 与平面ABE 所成角的正弦值为33.(2)存在点F ,且EF EA =13时,有EC ∥平面FBD ,证明如下:取AB 中点O 为坐标原点,OB ,OD ,OE 分别为x ,y ,z 轴建立空间直角坐标系,如图所示,设CD =1,则E (0,0,1),A (-1,0,0),B (1,0,0),C (1,1,0),D (0,1,0), 所以EA →=(-1,0,-1),BD →=(-1,1,0),EC →=(1,1,-1).由EF →=13EA →=⎝⎛⎭⎫-13,0,-13,得F ⎝⎛⎭⎫-13,0,23, 所以FB →=⎝⎛⎭⎫43,0,-23. 设平面FBD 的法向量为v =()a ,b ,c , 则⎩⎪⎨⎪⎧ v ·BD →=0,v ·FB →=0,所以⎩⎪⎨⎪⎧-a +b =0,43a -23c =0, 取a =1,得v =()1,1,2,因为EC →·v =()1,1,-1·()1,1,2=0, 且EC ⊄平面FBD ,所以EC ∥平面FBD , 即当点F 满足EF EA =13时,有EC ∥平面FBD .思维升华 空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.跟踪演练3 如图所示的空间几何体中,底面四边形ABCD 为正方形,AF ⊥AB ,AF ∥BE ,平面ABEF ⊥平面ABCD ,DF =5,CE =22,BC =2.(1)求二面角F -DE -C 的大小;(2)若在平面DEF 上存在点P ,使得BP ⊥平面DEF ,试通过计算说明点P 的位置. 解 (1)因为AF ⊥AB ,平面ABCD ⊥平面ABEF ,平面ABEF ∩平面ABCD =AB ,所以AF ⊥平面ABCD ,所以AF ⊥AD .因为四边形ABCD 为正方形,所以AB ⊥AD ,所以AD ,AB ,AF 两两垂直,以A 为原点,AD ,AB ,AF 分别为x ,y ,z 轴建立空间直角坐标系(如图).由勾股定理可知,AF =1,BE =2,所以A (0,0,0),B (0,2,0),C (2,2,0),D (2,0,0),E (0,2,2),F (0,0,1),所以AC →=(2,2,0),CD →=(0,-2,0), CE →=(-2,0,2).设平面CDE 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CE →=0,得⎩⎪⎨⎪⎧-2y =0,-2x +2z =0,即⎩⎪⎨⎪⎧y =0,x -z =0,取x =1,得n =(1,0,1). 同理可得平面DEF 的一个法向量m =(1,-1,2), 故cos 〈m ,n 〉=m·n|m||n|=32,因为二面角F -DE -C 为钝角,故二面角F -DE -C 的大小为5π6. (2)设DP →=λDE →+μDF →,因为DE →=(-2,2,2),DF →=(-2,0,1),又BD →=(2,-2,0),DP →=λDE →+μDF →=(-2λ,2λ,2λ)+(-2μ,0,μ)=(-2λ-2μ,2λ,2λ+μ),所以BP →=BD →+DP →=(2-2λ-2μ,2λ-2,2λ+μ), 因为⎩⎪⎨⎪⎧BP →·DF →=0,BP →·DE →=0,所以⎩⎪⎨⎪⎧-2(2-2λ-2μ)+2λ+μ=0,-2(2-2λ-2μ)+2(2λ-2)+2(2λ+μ)=0,解得⎩⎪⎨⎪⎧μ=0,λ=23,即DP →=23DE →.所以P 是线段DE 上靠近E 的三等分点.真题体验1.(2017·浙江改编)如图,已知正四面体D —ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA =2,分别记二面角D —PR —Q ,D —PQ —R ,D —QR —P 的平面角为α,β,γ,则α,β,γ的大小关系为________. 答案 α<γ<β解析 如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO . 由图可知,它们的对边都是DO , ∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心. 设点O 到△QRP ′三边的距离为a ,则OG =a , OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a , OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a , ∴OF <OG <OE , ∴OD tan β<OD tan γ<OD tan α, ∴α<γ<β.2.(2017·北京)如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4. (1)求证:M 为PB 的中点; (2)求二面角B —PD —A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.(1)证明 设AC ,BD 交于点E ,连接ME ,如图所示. 因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.(2)解 取AD 的中点O ,连接OP ,OE . 因为P A =PD ,所以OP ⊥AD ,又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,且OP ⊂平面P AD , 所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE . 因为四边形ABCD 是正方形, 所以OE ⊥AD ,如图,建立空间直角坐标系Oxyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2.于是n =(1,1,2). 平面P AD 的法向量为p =(0,1,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知,二面角B -PD -A 为锐角,所以它的大小为π3.(3)解 由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0), MC →=⎝⎛⎭⎫3,2,-22.设直线MC 与平面BDP 所成的角为α,则 sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269.所以直线MC 与平面BDP 所成角的正弦值为269.押题预测(2017届太原模拟)如图,在几何体ABCDEF 中,四边形ABCD 是菱形,BE ⊥平面ABCD, DF ∥BE, DF =2BE =2,EF =3. (1)证明:平面ACF ⊥平面BEFD ;(2)若二面角A -EF -C 是直二面角,求AE 与平面ABCD 所成角的正切值.押题依据 利用空间向量求二面角全面考查了空间向量的建系、求法向量、求角等知识,是高考的重点和热点. (1)证明 ∵四边形ABCD 是菱形,∴AC ⊥BD . ∵BE ⊥平面ABCD ,∴BE ⊥AC , 又BE ∩BD =B ,BE ,BD ⊂平面BEFD , ∴AC ⊥平面BEFD . ∵AC ⊂平面ACF , ∴平面ACF ⊥平面BEFD . (2)解 方法一 (向量法)设AC 与BD 交于点O ,以点O 为原点, OA 方向为x 轴, OB 方向为y 轴, BE 方向为z 轴建立空间直角坐标系,如图.取DF 的中点H ,连接EH . ∵BE 綊DH, DH =1,∴四边形BEHD 为平行四边形, ∵在Rt △EHF 中, FH =1,EF =3, ∴EH =22,∴BD =2 2.设AB 的长为a ,则各点坐标为A ()a 2-2,0,0, E ()0,2,1,F ()0,-2,2,C ()-a 2-2,0,0, ∴AE →=()-a 2-2,2,1,EF →=()0,-22,1, CE →=()a 2-2,2,1.设n 1=()x 1,y 1,z 1为平面AEF 的法向量, n 2=()x 2,y 2,z 2为平面CEF 的法向量. 由n 1·AE →=0,n 1·EF →=0, 得z 1=22y 1,x 1=32a 2-2y 1. 令y 1=a 2-2,得n 1=()32,a 2-2,22a 2-4, 同理得n 2=()-32,a 2-2,22a 2-4. ∵二面角A -EF -C 是直二面角, ∴n 1·n 2=0,得a =2,由题可得∠EAB 为AE 与平面ABCD 的夹角, ∵AB =2,BE =1, ∴tan ∠EAB =BE AB =12.方法二 (几何法) 设AC 与BD 交于点O . ∵四边形ABCD 是菱形,∴△ADF ≌△CDF ,△ABE ≌△CBE , ∴AF =CF ,AE =CE ,∴△AEF ≌△CEF . 过A 作AM ⊥EF ,连接CM ,则CM ⊥EF , 则∠AMC 为二面角A -EF -C 的平面角. 设菱形的边长为a ,∵BE =1,DF =2,EF =3, DF ⊥BD ,∴BD =2 2. 在△AOB 中, AO =a 2-2,∴AC =2a 2-2,∵A -EF -C 的二面角为直角,∴∠AMC 为直角, ∴AM =2a 2-4,在△AEF 中, AM ⊥EF ,设ME =x ,则MF =3-x , AF =a 2+4,AE =a 2+1,()a 2+42-()3-x 2=()a 2+12-x 2,∴a =2.AE 与平面ABCD 所成角为∠EAB , ∴tan ∠EAB =12.A 组 专题通关1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM →=34OA →+18OB →+18OC →,则直线AM ( )A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内答案 D解析 由已知得M ,A ,B ,C 四点共面,所以AM 在平面ABC 内,故选D.2.(2017·湖南省衡阳市联考)如图所示,在正方体AC 1中, AB =2, A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos ()α-β等于( ) A.66 B.33 C.306 D.63答案 A解析 由题意可知,α=π2,则cos ()α-β=sin β,以点D 为坐标原点,DA ,DC ,DD 1方向为x ,y ,z 轴正方向建立空间直角坐标系,则D ()0,0,0,E ()1,1,2,DE →=()1,1,2,平面BCC 1B 1的法向量DC →=()0,2,0, 由此可得cos ()α-β=sin β=DE →·DC →|DE →||DC →|=66.故选A.3.正方体ABCD -A 1B 1C 1D 1中,点P 在A 1C 上运动(包括端点),则BP 与AD 1所成角的取值范围是( ) A.⎣⎡⎦⎤π4,π3 B.⎣⎡⎦⎤π4,π2 C.⎣⎡⎦⎤π6,π2 D.⎣⎡⎦⎤π6,π3答案 D解析 以点D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为1,设点P 坐标为()x ,1-x ,x (0≤x ≤1),则BP →=()x -1,-x ,x , BC 1→=()-1,0,1,设BP →,BC 1→的夹角为α, 所以cos α=BP →·BC 1→||BP →||BC 1→=1()x -12+2x 2×2=13⎝⎛⎭⎫x -132+23·2,所以当x =13时,cos α取得最大值32,α=π6.当x =1时, cos α取得最小值12,α=π3. 因为BC 1∥AD 1.故选D.4.(2017·全国Ⅱ)已知直三棱柱ABC —A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155C.105 D.33答案 C解析 方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图所示,连接AD 1,B 1D 1,BD . 由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知,BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图所示. 由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105. 故选C.5.(2017·全国Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 答案 ②③解析 依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π,则B (cos θ,sin θ,0), ∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与直线a 所成的夹角为α, 则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎡⎦⎤0,22,∴45°≤α≤90°,∴③正确,④错误;设直线AB 与直线b 所成的夹角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与直线a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误.6.如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,A 1A =AB =2,∠ABC =π3,E ,F 分别是BC ,A 1C 的中点.(1)求异面直线EF ,AD 所成角的余弦值;(2)点M 在线段A 1D 上,A 1MA 1D =λ .若CM ∥平面AEF ,求实数λ的值.解 因为四棱柱ABCD -A 1B 1C 1D 1为直四棱柱, 所以A 1A ⊥平面ABCD .又AE ⊂平面ABCD ,AD ⊂平面ABCD , 所以A 1A ⊥AE ,A 1A ⊥AD .在菱形ABCD 中,∠ABC =π3,则△ABC 是等边三角形.因为E 是BC 中点,所以BC ⊥AE . 因为BC ∥AD ,所以AE ⊥AD .以{AE →,AD →,AA 1→}为正交基底建立空间直角坐标系.则A (0,0,0),C (3,1,0),D (0,2,0), A 1(0,0,2),E (3,0,0),F ⎝⎛⎭⎫32,12,1.(1)AD →=(0,2,0),EF →=⎝⎛⎭⎫-32,12,1,从而cos 〈AD →,EF →〉=AD →·EF →|AD →||EF →|=24.故异面直线EF ,AD 所成角的余弦值为24. (2)设M (x ,y ,z ),由于点M 在线段A 1D 上,且A 1MA 1D =λ,则A 1M →=λA 1D →,即(x ,y ,z -2)=λ(0,2,-2). 则M (0,2λ,2-2λ),CM →=(-3,2λ-1,2-2λ). 设平面AEF 的法向量为n =(x 0,y 0,z 0). 因为AE →=(3,0,0),AF →=⎝⎛⎭⎫32,12,1,由n ·AE →=0,n ·AF →=0,得x 0=0,12y 0+z 0=0.取y 0=2,则z 0=-1,则平面AEF 的一个法向量为n =(0,2,-1). 由于CM ∥平面AEF ,则n ·CM →=0, 即2(2λ-1)-(2-2λ)=0, 解得λ=23.7.(2017·全国Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D —AE —C 的余弦值.(1)证明 由题设可得 △ABD ≌△CBD . 从而AD =CD ,又△ACD 为直角三角形, 所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D —AC —B 的平面角, 在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°, 所以平面ACD ⊥平面ABC .(2)解 由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系Oxyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0, 3,0,C (-1,0,0),由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12,故AE →=⎝⎛⎭⎫-1,32,12,AD →=()-1,0,1,OA →=()1,0,0.设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧ AE →·n 1=0,AD →·n 1=0,即⎩⎪⎨⎪⎧-x 1+32y 1+12z 1=0,-x 1+z 1=0,令x 1=1,则n 1=⎝⎛⎭⎫1,33,1. ⎩⎪⎨⎪⎧ AE →·n 2=0,OA →·n 2=0,即⎩⎪⎨⎪⎧-x 2+32y 2+12z 2=0,x 2=0,令y 2=-1,则n 2=(0,-1,3),设二面角D —AE —C 的平面角为θ,易知θ为锐角, 则cos θ=|n 1·n 2||n 1||n 2|=77.8.(2016·浙江)如图,在三棱台ABC —DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3. (1)求证:BF ⊥平面ACFD ;(2)求二面角B —AD —F 的平面角的余弦值.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面BCFE ,因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK ,且CK ∩AC =C ,所以BF ⊥平面ACFD .(2)解 方法一 过点F 作FQ ⊥AK 于点Q ,连接BQ . 因为BF ⊥平面ACFD ,所以BF ⊥AK , 则AK ⊥平面BQF ,所以BQ ⊥AK .所以∠BQF 是二面角B —AD —F 的平面角. 在Rt △ACK 中,AC =3,CK =2, 得FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以二面角B —AD —F 的平面角的余弦值为34. 方法二 如图,延长AD ,BE ,CF 相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系Oxyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝⎛⎭⎫12,0,32,F ⎝⎛⎭⎫-12,0,32.因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0). 设平面ACK 的法向量为m =(x 1,y 1,z 1), 平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1); 由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m ||n |=34. 所以二面角B —AD —F 的平面角的余弦值为34. B 组 能力提高9.已知空间四边形ABCD ,满足||AB →=3, ||BC →=7, ||CD →=11, ||DA →=9,则AC →·BD →的值为( )A .-1B .0 C.212 D.332答案 B解析 如图,构造符合题设的空间四边形ABCD ,不妨设AB ⊥BD ,则BD =81-9=72,因为BC 2+BD 2=CD 2,则CB ⊥BD ,故由线面垂直的判定定理可得BD ⊥平面ABC ,AC ⊂平面ABC ,所以AC ⊥BD ,即AC →·BD →=0,故选B.10.(2017届上饶模拟)如图,在长方体ABCD —A 1B 1C 1D 1中,AB =3AD =3AA 1=3,点P 为线段A 1C 上的动点(包含线段端点),则下列结论正确的是________.①当A 1C →=3A 1P →时,D 1P ∥平面BDC 1;②当A 1C →=5A 1P →时,A 1C ⊥平面D 1AP ;③∠APD 1的最大值为90°;④AP +PD 1的最小值为 5.答案 ①②解析 以D 为坐标原点建立空间直角坐标系,则A (1,0,0),A 1(1,0,1),C (0,3,0),D 1(0,0,1),C 1(0,3,1),B (1,3,0),则A 1C →=(-1,3,-1),设P (x ,y ,z ),A 1P →=(x -1,y ,z -1).对于①,当A 1C →=3A 1P →时,(-1,3,-1)=3(x -1,y ,z -1),解得P ⎝⎛⎫23,33,23, D 1P →=⎝⎛⎭⎫23,33,-13, 设平面BDC 1的法向量为n 1=(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ n 1·DB →=0,n 1·DC 1→=0, 解得n 1=(-3,1,-3),由于D 1P →·n 1=0,所以D 1P ∥平面BDC 1成立;对于②,当A 1C →=5A 1P →时,(-1,3,-1)=5(x -1,y ,z -1),解得P ⎝⎛⎭⎫45,35,45,由⎩⎪⎨⎪⎧A 1C →·D 1A →=0,A 1C →·D 1P →=0, 可知A 1C ⊥平面D 1AP 成立;对于③,设A 1C →=λA 1P →,即(-1,3,-1)=λ(x -1,y ,z -1),解得P ⎝⎛⎭⎫1-1λ,3,1-1λ, 由cos 〈P A →,PD 1→〉 =⎝⎛⎭⎫1λ,-3λ,1λ-1⎝⎛⎭⎫1λ-1,-3λ,1λ⎝⎛⎭⎫1λ2+⎝⎛⎭⎫-3λ2+⎝⎛⎭⎫1λ-12, 其分子化简得5-2λλ2, 当λ>52时,cos 〈P A →,PD 1→〉<0, 故∠APD 1的最大值可以为钝角,③错误.对于④,根据③计算的数据,P A →=⎝⎛⎭⎫1λ,-3λ,1λ-1,PD 1→=⎝⎛⎭⎫1λ-1,-3λ,1λ, |P A →|+|PD 1→|=2⎝⎛⎭⎫1λ2+⎝⎛⎭⎫-3λ2+⎝⎛⎭⎫1λ-12=25·1λ2-2·1λ+1, 在对称轴1λ=15, 即λ=5时取得最小值245=455,故④错误.11.如图,已知圆锥OO 1和圆柱O 1O 2的组合体(它们的底面重合),圆锥的底面圆O 1半径为r =5, OA 为圆锥的母线,AB 为圆柱O 1O 2的母线,D ,E为下底面圆O 2上的两点,且DE =6,AB =6.4,AO =52,AO ⊥AD .(1)求证:平面ABD ⊥平面ODE;(2)求二面角B —AD —O 的正弦值.(1)证明 依题易知,圆锥的高为h =(52)2-52=5,又圆柱的高为AB =6.4,AO ⊥AD ,所以OD 2=OA 2+AD 2,因为AB ⊥BD ,所以AD 2=AB 2+BD 2,连接OO 1,O 1O 2,DO 2,易知O ,O 1,O 2三点共线,OO 2⊥DO 2,所以OD 2=OO 22+O 2D 2,所以BD 2=OO 22+O 2D 2-AO 2-AB 2=(6.4+5)2+52-(52)2-6.42=64,解得BD =8,又因为DE =6,圆O 2的直径为10,圆心O 2在∠BDE 内,所以∠BDE =90°,所以DE ⊥BD .因为AB ⊥平面BDE ,所以DE ⊥AB ,因为AB ∩BD =B ,AB ,BD ⊂平面ABD ,所以DE ⊥平面ABD .又因为DE ⊂平面ODE ,所以平面ABD ⊥平面ODE .(2)解 如图,以D 为原点, DB ,DE 所在的直线为x ,y 轴,建立空间直角坐标系.则D (0,0,0),A (8,0,6.4),B (8,0,0),O (4,3,11.4).所以DA →=(8,0,6.4),DB →=(8,0,0),DO →=(4,3,11.4),设平面DAO 的法向量为u =(x ,y ,z ),所以DA →·u =8x +6.4z =0,DO →·u =4x +3y +11.4z =0,令x =12,则u =(12,41,-15).可取平面BDA 的一个法向量为v =(0,1,0),所以cos 〈u ,v 〉=u·v |u||v |=41582=8210, 所以二面角B —AD —O 的正弦值为3210. 12.(2017届北京市丰台区综合练习)如图所示的几何体中,四边形ABCD 为等腰梯形, AB ∥CD, AB =2AD =2, ∠DAB =60°,四边形CDEF 为正方形,平面CDEF ⊥平面ABCD .(1)若点G 是棱AB 的中点,求证: EG ∥平面BDF ;(2)求直线AE 与平面BDF 所成角的正弦值;(3)在线段FC 上是否存在点H ,使平面BDF ⊥平面HAD ?若存在,求FH HC的值;若不存在,说明理由.(1)证明 由已知得EF ∥ CD ,且EF =CD .因为四边形ABCD 为等腰梯形,所以BG ∥CD .因为G 是棱AB 的中点,所以BG =CD .所以EF ∥BG ,且EF =BG ,故四边形EFBG 为平行四边形,所以EG ∥FB .因为FB ⊂平面BDF , EG ⊄平面BDF ,所以EG ∥平面BDF .(2)解 因为四边形CDEF 为正方形,所以ED ⊥DC .因为平面CDEF ⊥平面ABCD ,平面CDEF ∩平面ABCD =DC ,DE ⊂平面CDEF ,所以ED ⊥平面ABCD .在△ABD 中,因为∠DAB =60°, AB =2AD =2,所以由余弦定理,得BD =3,所以AD ⊥BD .在等腰梯形ABCD 中,可得DC =CB =1.如图,以D 为原点,以DA ,DB ,DE 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,则D ()0,0,0,A ()1,0,0, E ()0,0,1, B ()0,3,0,F ⎝⎛⎭⎫-12,32,1,所以AE →=()-1,0,1, DF →=⎝⎛⎭⎫-12,32,1, DB →=()0,3,0. 设平面BDF 的法向量为n =()x ,y ,z ,因为⎩⎪⎨⎪⎧ n ·DB →=0,n ·DF →=0, 所以⎩⎪⎨⎪⎧3y =0,-12x +32y +z =0.取z =1,则x =2,y =0,则n =()2,0,1.设直线AE 与平面BDF 所成的角为θ,则sin θ=||cos 〈AE →,n 〉=||AE →·n ||AE →||n =1010, 所以AE 与平面BDF 所成角的正弦值为1010. (3)解 线段FC 上不存在点H ,使平面BDF ⊥平面HAD .证明如下:假设线段FC 上存在点H ,设H ⎝⎛⎭⎫-12,32,t ()0≤t ≤1, 则DH →=⎝⎛⎭⎫-12,32,t . 设平面HAD 的法向量为m =()a ,b ,c ,因为⎩⎪⎨⎪⎧ m ·DA →=0,m ·DH →=0, 所以⎩⎪⎨⎪⎧a =0,-12a +32b +tc =0.取c =1,则a =0,b =-23 t ,得m =⎝⎛⎭⎫0,-23 t ,1. 要使平面BDF ⊥平面HAD ,只需m·n =0,即2×0-23t×0+1×1=0, 此方程无解.所以线段FC上不存在点H,使平面BDF⊥平面HAD.。