贵州遵义市第四中学高中数列的概念知识点和相关练习试题 百度文库
- 格式:doc
- 大小:2.62 MB
- 文档页数:26
4.1 第一课时 数列的概念[A 级 基础巩固]1.下列说法正确的是( )A .数列1,3,5,7与数集{1,3,5,7}是一样的B .数列1,2,3与数列3,2,1是相同的C .数列⎩⎨⎧⎭⎬⎫1+1n 是递增数列 D .数列⎩⎨⎧⎭⎬⎫1+(-1)n n 是摆动数列 解析:选D 数列是有序的,而数集是无序的,所以A ,B 不正确;选项C 中的数列是递减数列;选项D 中的数列是摆动数列.2.已知数列12,23,34,…,n n +1,则0.96是该数列的( ) A .第20项B .第22项C .第24项D .第26项 解析:选C 由n n +1=0.96,解得n =24. 3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( )A .11B .12C .13D .14解析:选C 观察数列可知,后一项是前两项的和,故x =5+8=13.4.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( )A.15B .5C .6D .log 23+log 31325 解析:选B a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132=log 232=log 225=5.5.已知递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( )A .RB .(0,+∞)C .(-∞,0)D .(-∞,0]解析:选C a n +1-a n =k (n +1)-kn =k <0. 6.数列-1,1,-2,2,-3,3,…的一个通项公式为________.解析:注意到数列的奇数项与偶数项的特点即可得a n=⎩⎨⎧ -n +12,n =2k -1(k ∈N *),n 2,n =2k (k ∈N *).答案:a n=⎩⎨⎧-n +12,n =2k -1(k ∈N *),n 2,n =2k (k ∈N *)7.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为________.解析:由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9. 答案:98.已知数列{a n }的通项公式a n =n n +1,则a n ·a n +1·a n +2=________. 解析: a n ·a n +1·a n +2=n n +1·n +1n +2·n +2n +3=n n +3. 答案:n n +3 9.观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式:(1)34,23,712,________,512,13,…; (2)53,________,1715,2624,3735,…; (3)2,1,________,12,…; (4)32,94,________,6516,….解:(1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号1 2 3 4 5 6↓ ↓ ↓ ↓ ↓ ↓912 812 712 ________ 512 412于是应填612,而分子恰为10减序号, 故应填12,通项公式为a n =10-n 12. (2)53=4+14-1,1715=16+116-1,2624=25+125-1,3735=36+136-1. 只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故应填108, 通项公式为a n =(n +1)2+1(n +1)2-1. (3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n . (4)先将原数列变形为112,214,________,4116,…,所以应填318,数列的通项公式为a n =n +12n . 10.根据数列的通项公式,写出数列的前5项,并用图象表示出来:(1)a n =(-1)n +2;(2)a n =n +1n .解:(1)a 1=1,a 2=3,a 3=1,a 4=3,a 5=1.图象如图①.(2)a 1=2,a 2=32,a 3=43,a 4=54,a 5=65.图象如图②.[B级综合运用]11.(多选)一个无穷数列{a n}的前三项是1,2,3,下列可以作为其通项公式的是() A.a n=nB.a n=n3-6n2-12n-6C.a n=12n2-12n+1D.a n=6n2-6n+11解析:选AD对于A,若a n=n,则a1=1,a2=2,a3=3,符合题意;对于B,若a n=n3-6n2-12n+6,则a1=-11,不符合题意;对于C,若a n=12n2-12n+1,当n=3时,a3=4≠3,不符合题意;对于D,若a n=6n2-6n+11,则a1=1,a2=2,a3=3,符合题意.故选A、D.12.对任意的a1∈(0,1),由关系式a n+1=f(a n)得到的数列满足a n+1>a n(n∈N*),则函数y=f(x)的图象是()解析:选A据题意,由关系式a n+1=f(a n)得到的数列{a n},满足a n+1>a n,即该函数y=f(x)的图象上任一点(x,y)都满足y>x,结合图象,只有A满足,故选A.13.已知数列2,74,2,…的通项公式为a n=an2+bcn,则a4=________,a5=________.解析:将a 1=2,a 2=74代入通项公式,得⎩⎨⎧ a +b c =2,4a +b 2c =74,解得⎩⎪⎨⎪⎧b =3a ,c =2a , ∴a n =n 2+32n ,∴a 4=42+32×4=198,a 5=52+32×5=145. 答案:198 14514.已知数列{a n }的通项公式为a n =p n +q (p ,q ∈R ),且a 1=-12,a 2=-34. (1)求{a n }的通项公式;(2)-255256是{a n }中的第几项? (3)该数列是递增数列还是递减数列?解:(1)∵a n =p n +q ,且a 1=-12,a 2=-34, ∴⎩⎨⎧ p +q =-12,p 2+q =-34,解得⎩⎪⎨⎪⎧p =12,q =-1, 因此{a n }的通项公式是a n =⎝⎛⎭⎫12n -1.(2)令a n =-255256,即⎝⎛⎭⎫12n -1=-255256, 所以⎝⎛⎭⎫12n =1256,解得n =8.故-255256是{a n }中的第8项. (3)由于a n =⎝⎛⎭⎫12n -1,且⎝⎛⎭⎫12n 随n 的增大而减小,因此a n 的值随n 的增大而减小,故{a n }是递减数列. [C 级 拓展探究]15.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1. (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,是第几项?若没有,说明理由.解:(1)设a n =f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831. (2)令3n -23n +1=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3n -23n +1=1-33n +1, 且n ∈N *,∴0<1-33n +1<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内.(4)令13<a n =3n -23n +1<23, ∴⎩⎪⎨⎪⎧ 3n +1<9n -6,9n -6<6n +2,∴⎩⎨⎧ n >76,n <83.∴当且仅当n =2时,上式成立,故在区间⎝⎛⎭⎫13,23内有数列中的项,且只有一项为a 2=47.。
一、等比数列选择题1.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .82.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =3.已知等比数列{}n a 的前n 项和为,n S 且639S S =,则42aa 的值为( )AB .2C.D .44.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312 C .15D .65.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20076.若1,a ,4成等比数列,则a =( ) A .1B .2±C .2D .2-7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里8.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n nb b +,则b 2020=( )A .22017B .22018C .22019D .220209.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( ) A .1B .2C .3D .410.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1611.题目文件丢失!12.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则5678a a a a +++=( )A .80B .20C .32D .255313.古代数学名著《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:一女子善于织布,每天织的布是前一天的2倍,已知她5天共织布5尺,问该女子每天分别织布多少?由此条件,若织布的总尺数不少于20尺,该女子需要的天数至少为 ( ) A .6B .7C .8D .914.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列15.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102316.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a14a =,则14m n +的最小值为( ) A .53B .32C .43D .11617.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏18.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .8B .7C .6D .419.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-B .2-或1C .1D .2二、多选题21.题目文件丢失!22.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( )A .12B C D .12-+ 23.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-24.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A .{}n a 是等比数列 B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+25.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-26.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >27.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34228.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列29.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---30.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值31.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---32.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列C .S 8=510D .数列{lga n }是公差为2的等差数列33.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-34.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】利用等比数列的性质运算求解即可. 【详解】根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 2.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 3.D 【分析】设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q,故2424a q a ==. 【详解】解:设等比数列{}n a 的公比为q ,因为639S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3456123a a a q a a a ++=++,所以38q =,故2q,所以2424a q a ==. 故选:D. 4.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =, 2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 5.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 6.B 【分析】根据等比中项性质可得24a =,直接求解即可. 【详解】由等比中项性质可得:2144a =⨯=,所以2a =±, 故选:B 7.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D .【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.9.D 【分析】利用已知条件求得1,a q ,由此求得1a q +. 【详解】依题意222111131912730a a q a q a a q q q ⎧⋅===⎧⎪=⇒⎨⎨=⎩⎪>⎩,所以14a q +=. 故选:D 10.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D.12.A 【分析】由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】根据题意,由于{}n a 是各项均为正数的等比数列,121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q则()()456781234161480a a a a q a a a a +++=+++=+=.故选:A 13.B 【分析】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =,由此能求出该女子所需的天数至少为7天. 【详解】设女子第一天织布1a 尺,则数列{}n a 是公比为2的等比数列,由题意得515(12)512a S -==-,解得1531a =, 5(12)312012n n S -∴=-,解得2125n . 因为6264=,72128=∴该女子所需的天数至少为7天.故选:B 14.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23nn n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D .关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 15.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 16.B 【分析】设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得22q q =+,解得2q,根据存在两项m a 、n a14a =14a =,6m n +=.对m ,n 分类讨论即可得出. 【详解】解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,22q q ∴=+,解得2q,存在两项m a 、n a14a =,∴14a =,6m n ∴+=,m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),则14m n+的最小值为143242+=.故选:B . 17.C 【分析】根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,13为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-, 解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C 【点睛】思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 18.A 【分析】利用已知条件化简,转化求解即可. 【详解】已知{}n a 为等比数列,1322a a a ∴=,且22a =,满足13123321231322111124a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:(1)先利用等比数列的性质,得1322a a a ∴=,(2)通分化简312311124S a a a ++==. 19.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=.∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 20.A 【分析】由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,所以()2131416a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A .二、多选题 21.无22.AB 【分析】因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2111qq q q -=-+,因为1q ≠,所以21q q =+, 因为0q >,所以解得12q +=, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即321q q =+,整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=,因为0q >,所以解得12q -+=,综上q =或q =,故选:AB 23.BD 【分析】根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,逐项判断选项可得答案. 【详解】由638a a =,可得3338q a a =,则2q,当首项10a <时,可得{}n a 为单调递减数列,故A 错误;由663312912S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11122121n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;故选:BD . 【点睛】关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求和公式. 24.ABC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确;由A 可得1p =时,44111521812S -==-,故B 正确; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确; 故选:ABC. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 25.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 26.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确;对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 27.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 28.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 29.AD 【分析】由已知可得11222n n n n S n S nS n S n ++++==++,结合等比数列的定义可判断A ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由1231,1,3a a a ===可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故B 错误;由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即32211111a a a a ++≠++,故C 错; 因为1222n n S n +=-,所以2311222...2221222 (2)2n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前n 项和,考查了分组求和.30.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n na a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确.【详解】由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n n a q a a a q +-⨯--+++===--,故选项C 错误;6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 31.BD 【分析】设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项∴2428a a a =,即()()()211137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,故1n a =或n a n =,所以n b q =或nn b n q =⋅,设{}n b 的前n 项和为n S ,①当n b q =时,n S nq =;②当nn b n q =⋅时,23123n n S q q q n q =⨯+⨯+⨯+⋯⋯+⨯(1), 2341123n n qS q q q n q +=⨯+⨯+⨯+⋯⋯+⨯(2),(1)-(2)得:()()2311111n nn n n q q q S q q q q n qn q q++--=+++-⨯=-⨯-+⋅⋅,所以121122(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-⨯+--=-=---,故选:BD 【点睛】本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型. 32.BC 【分析】先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项. 【详解】由题意,根据等比中项的性质,可得 a 2a 3=a 1a 4=32>0,a 2+a 3=12>0, 故a 2>0,a 3>0. 根据根与系数的关系,可知a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根. 解得a 2=4,a 3=8,或a 2=8,a 3=4. 故必有公比q >0, ∴a 12a q=>0. ∵等比数列{a n }是递增数列,∴q >1. ∴a 2=4,a 3=8满足题意. ∴q =2,a 12a q==2.故选项A 不正确. a n =a 1•q n ﹣1=2n . ∵S n ()21212n -==-2n +1﹣2.∴S n +2=2n +1=4•2n ﹣1.∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确. S 8=28+1﹣2=512﹣2=510.故选项C 正确. ∵lga n =lg 2n =n .∴数列{lga n }是公差为1的等差数列.故选项D 不正确. 故选:BC 【点睛】本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题. 33.AC 【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确;在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=, ()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列, 2213a a a ∴=,()461r ∴=+,解得13r =-,故D 错误. 故选:AC . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 34.ABD 【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】 对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>.11a >,0q ∴>.又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确;对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>, ()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD . 【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ACD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1, ∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD. 【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。
一、等差数列选择题1.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21SB .20SC .19SD .18S2.设数列{}n a 的前n 项和21n S n =+. 则8a 的值为( ).A .65B .16C .15D .143.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 4.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( )A .11B .12C .23D .245.已知等差数列{}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是( )A .7B .8C .7或8D .96.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .857.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60B .120C .160D .2408.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2mB .21m +C .22m +D .23m +9.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11B .10C .6D .310.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237n n S n T n =+,则63a b 的值为( ) A .511B .38C .1D .211.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( )A .132项B .133项C .134项D .135项12.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .1913.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .46514.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25B .11C .10D .915.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4216.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7217.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .32B .92C .2D .918.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .54钱 B .43钱 C .23钱 D .53钱 19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333122n n n a a a ++=+,则10a 等于( )A .10B C .64D .420.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .12尺布 B .518尺布 C .1631尺布 D .1629尺布 二、多选题21.题目文件丢失!22.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =-B .201912a =C .332S =D . 2 01920192S =23.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .324.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1225.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202226.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <27.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T < 28.定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .2020202320202S = D .2S ,4S ,6S 成等差数列29.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =D .15S 是最大值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.B 【分析】设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系1392a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392a d =-. 又10a >,所以0d <,因此222120(20)2002222n d d d dS n a n n dn n d ⎛⎫=+-=-=-- ⎪⎝⎭, 所以20S 最大. 故选:B. 2.C 【分析】利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】由21n S n =+得,12a =,()2111n S n -=-+,所以()221121n n n a S S n n n -=-=--=-,所以2,121,2n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.故选:C. 【点睛】本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 3.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 4.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 5.C 【分析】215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.【详解】22152251524n S n n n ⎛⎫=-=--⎪⎝⎭,∴数列{}n S 的图象是分布在抛物线21522524y x ⎛⎫=--⎪⎝⎭上的横坐标为正整数的离散的点.又抛物线开口向上,以152x =为对称轴,且1515|7822-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 6.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果.因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C . 7.B 【分析】根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()11515815152a a S a +==,从而可得出结果.【详解】解:由题可知,2938a a a +=+,由等差数列的性质可知2938a a a a +=+,则88a =,故()1158158151521515812022a a a S a +⨯====⨯=. 故选:B. 8.C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 9.A利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,213a a d =+=,解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 10.C 【分析】令22n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则63a b 可得. 【详解】令22n S n λ=,()37n T n n λ=+,可得当2n ≥时,()()221221221n n n a S S n n n λλλ-=-=--=-,()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,()232n b n λ=+故622a λ=,322b λ=, 故631a b =. 【点睛】由n S 求n a 时,11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 11.D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤,所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 13.B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B 14.D 【分析】利用等差数列的性质直接求解. 【详解】 因为131,5a a ==,315529a a a a =+∴=,故选:D . 15.C 【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =,所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.16.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 17.A 【分析】由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】设公差为d ,则423634222a a d --===--, 所以5433322a a d =+=-=. 故选:A 18.C 【分析】根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,则根据题意有(2)()()(2)5(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨-+-=++++⎩,解得116a d =⎧⎪⎨=-⎪⎩,所以戊所得为223a d +=, 故选:C . 19.D 【分析】利用等差中项法可知,数列{}3n a 为等差数列,根据11a =,22a =可求得数列{}3n a 的公差,可求得310a 的值,进而可求得10a 的值. 【详解】对*n N ∀∈都有333122n n n a a a ++=+,由等差中项法可知,数列{}3n a 为等差数列,由于11a =,22a =,则数列{}3n a 的公差为33217d a a =-=,所以,33101919764a a d =+=+⨯=,因此,104a .故选:D. 20.D 【分析】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,根据15a =,30390S =可求得d 的值. 【详解】设该女子第()N n n *∈尺布,前()N n n *∈天工织布n S 尺,则数列{}n a 为等差数列,设其公差为d ,由题意可得30130293015015293902S a d d ⨯=+=+⨯=,解得1629d =.故选:D.二、多选题 21.无22.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解. 23.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题. 24.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 25.BCD 【分析】由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++++++++n n n a a a a a a a a a a a a a a +-=----即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a a a a =---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 26.ABD 【分析】结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()117179171702a a S a +==<,故D 正确.故选:ABD. 【点睛】关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及()12n n n a a S +=,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 27.AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112xf x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 28.AC 【分析】 由题意可知112222n n nn a a a H n-+++==,即112222n n n a a a n -+++=⋅,则2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n nn a a a H n-+++==,得112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错,故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 29.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确;对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题. 30.CD 【分析】根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案; 【详解】1118S S =,∴0d <,设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,抛物线的开口向下,对称轴为14.5x =,∴1514S S =且为n S 的最大值,1118S S =12131815070a a a a ⇒+++=⇒=,∴129291529()2902a a S a +===, 故选:CD. 【点睛】本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。
一、数列的概念选择题1.已知数列{}n a 的通项公式为2n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞B .(),2-∞C .(),1-∞D .(),0-∞2.在数列{}n a 中,11a =,11n na a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞3.数列{}n a 的通项公式是276n a n n =-+,4a =( )A .2B .6-C .2-D .14.已知数列{}n a 的前n 项和223n S n n =-,则10a =( )A .35B .40C .45D .505.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 6.数列{}n a 满足()11121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )A .1006B .1176C .1228D .23687.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-8.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( )A .1(1)n n a a n n --=>B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 11.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3D .312.已知数列{}n a 的通项公式为()()211nn a n=--,则6a =( )A .35B .11-C .35-D .1113.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .22514.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .615.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-16.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个17.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .318.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21620.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 202222.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数C .2020201820223a a a =+D .123a a a +++…20202022a a +=23.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >24.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6525.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦26.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 27.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列28.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >29.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 30.已知数列{}2nn a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列31.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-32.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( )A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <33.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 34.数列{}n a 满足11,121nn n a a a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列35.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( ) A .17aB .35SC .1719a a -D .1916S S -【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于λ的不等式,解之可得λ的取值范围. 【详解】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=,所以3λ<, 故选:A. 【点睛】本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.2.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.3.B解析:B 【分析】 令4n = 代入即解 【详解】令4n =,2447466a =-⨯+=-故选:B. 【点睛】数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.4.A解析:A 【分析】利用()n n n a S S n 12-=-,根据题目已知条件求出数列的通项公式,问题得解.【详解】223n S n n =-,n 2∴≥时,1n n n a S S -=-22(23[2(1)3(1)]n n n n )=-----=45n1n = 时满足11a S = ∴ =45n a n ,∴ 10a =35故选:A. 【点睛】本题考查利用n a 与n S 的关系求通项. 已知n S 求n a 的三个步骤: (1)先利用11a S =求出1a .(2)用1n -替换n S 中的n 得到一个新的关系,利用()n n n a S S n 12-=-便可求出当n 2≥时n a 的表达式.(3)对1n =时的结果进行检验,看是否符合n 2≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与n 2≥两段来写. .5.C解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.6.B解析:B根据题意,可知()11121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组求和法,即可求出{}n a 的前48项和. 【详解】解:由题可知,()11121n n n a a n ++=-+-,即:()11121n n n a a n ++--=-,则有:211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,8713a a -=,9815a a +=,,474691a a +=,484793a a -=.所以,132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++++++,()()1357454724684648a a a a a a a a a a a a =+++++++++++++12111221281611762⨯=⨯+⨯+⨯=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.7.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-=== ∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,故选:B.本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.8.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n af n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D.【点睛】本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.C解析:C 【分析】根据题设条件,得到数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=,再由2020336644a a a ⨯+==,即可求解.【详解】由题意,数列{}n a 中,13a =,26a =,且21n n n a a a ++=-, 可得3214325436547653,3,6,3,3,a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,可得数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=, 所以20203366443a a a ⨯+===-. 故选:C. 【点睛】本题主要考查了数列的递推关系式,以及数列的周期性的应用,其中解答中得出数列的周期性是解答的关键,着重考查了推理与运算能力,属于基础题.12.A解析:A 【分析】直接将6n =代入通项公式可得结果. 【详解】 因为()()211nn a n=--,所以626(1)(61)35a =--=.故选:A 【点睛】本题考查了根据通项公式求数列的项,属于基础题.13.D解析:D 【分析】利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1112()nnn S S S S 可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,所以11515()15(291)1522522a a S ++===, 故选:D . 【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.14.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。
一、等比数列选择题1.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2052.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8B .8±C .8-D .13.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q << B .61a > C .121T > D .131T > 4.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( )A .6B .16C .32D .645.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078a a a a +=+( ) A1B1C.3-D.3+6.已知等比数列{}n a 中,1354a a a ⋅⋅=,公比q =,则456a a a ⋅⋅=( ) A .32B .16C .16-D .32-7.已知数列{}n a 满足112a =,*11()2n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A .(,1)-∞B .3(1,)2-C .3(,)2-∞D .(1,2)-8.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( )A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项9.已知等比数列{}n a 的前n 项和为,n S 且639S S =,则42aa 的值为( )AB .2C.D .410.12与12的等比中项是( )A .-1B .1C.2D.2±11.题目文件丢失!12.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .2202013.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕=大吕=太簇.据此,可得正项等比数列{}n a 中,k a =( )A.n -B.n -C. D. 14.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >15.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则5678a a a a +++=( )A .80B .20C .32D .2553 16.正项等比数列{}n a 满足:241a a =,313S =,则其公比是( ) A .14B .1C .12D .1317.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-B .1C .2或2-D .218.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .719.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6D .320.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里二、多选题21.题目文件丢失!22.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-23.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列24.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =D .()222lg lg lg 3n n n a a a n -+=+≥25.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T26.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a << C .n S 的最大值为7SD .n T 的最大值为6T27.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---28.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-29.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1na n nb a q q =≠,则{}n b 的前n 项和可以是( )A .nB .nqC .()121n n n q nq nq q q ++---D .()21121n n n q nq nq q q ++++---30.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列31.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( )A .数列{}1n a +是等差数列B .数列{}1n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <32.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;33.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S34.对于数列{}n a ,若存在正整数()2k k ≥,使得1k k a a -<,1k k a a +<,则称k a 是数列{}n a 的“谷值”,k 是数列{}n a 的“谷值点”,在数列{}n a 中,若98na n n=+-,下面哪些数不能作为数列{}n a 的“谷值点”?( ) A .3B .2C .7D .535.对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。
§4.3等比数列4.3.1等比数列的概念第1课时等比数列的概念及通项公式学习目标 1.通过实例,理解等比数列的概念.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程.4.灵活应用等比数列通项公式的推广形式及变形.知识点一等比数列的概念1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).2.递推公式形式的定义:a na n-1=q(n∈N *且n>1)⎝⎛⎭⎫或a n+1a n=q,n∈N*.思考为什么等比数列的各项和公比q均不能为0?答案由于等比数列的每一项都可能作分母,故每一项均不能为0,因此q也不能为0.知识点二等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时,G2=ab.思考当G2=ab时,G一定是a,b的等比中项吗?答案不一定,如数列0,0,5就不是等比数列.知识点三等比数列的通项公式若等比数列{a n}的首项为a1,公比为q,则a n=a1q n-1(n∈N*).知识点四等比数列通项公式的推广和变形等比数列{a n}的公比为q,则a n=a1q n-1①=a m q n-m②=a1 q·qn.③其中当②中m=1时,即化为①.当③中q>0且q≠1时,y=a1q·qx为指数型函数.1.数列1,-1,1,-1,…是等比数列.( √ )2.若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列.( × )3.等比数列的首项不能为零,但公比可以为零.( × )4.常数列一定为等比数列.( × )一、等比数列中的基本运算例1 在等比数列{a n }中:(1)a 1=1,a 4=8,求a n ;(2)a n =625,n =4,q =5,求a 1;(3)a 2+a 5=18,a 3+a 6=9,a n =1,求n .解 (1)因为a 4=a 1q 3,所以8=q 3,所以q =2,所以a n =a 1q n -1=2n -1.(2)a 1=a n q n -1=62554-1=5, 故a 1=5.(3) 因为⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①,得q =12,从而a 1=32. 又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,故n =6.反思感悟 等比数列的通项公式涉及4个量a 1,a n ,n ,q ,只要知道其中任意三个就能求出另外一个,在这四个量中,a 1和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.跟踪训练1 在等比数列{a n }中:(1)若它的前三项分别为5,-15,45,求a 5;(2)若a 4=2,a 7=8,求a n .解 (1)因为a 5=a 1q 4,而a 1=5,q =a 2a 1=-3, 所以a 5=405.(2)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6, 所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4, 从而q =34,而a 1q 3=2,于是a 1=2q 3=12, 所以a n =a 1q n -1=2532n -.二、等比中项的应用例2 如果-1,a ,b ,c ,-9成等比数列,那么b =__________,ac =___________. 答案 -3 9解析 因为b 是-1,-9的等比中项,所以b 2=9,b =±3.又等比数列奇数项符号相同,得b <0,故b =-3,而b 又是a ,c 的等比中项,故b 2=ac ,即ac =9.反思感悟 (1)由等比中项的定义可知G a =b G⇒G 2=ab ⇒G =±ab ,所以只有a ,b 同号时,a ,b 的等比中项有两个,异号时,没有等比中项.(2)在一个等比数列中,从第二项起,每一项(有穷数列的末项除外)都是它的前一项和后一项的等比中项.(3)a ,G ,b 成等比数列等价于G 2=ab (ab >0).跟踪训练2 在等比数列{a n }中,a 1=-16,a 4=8,则a 7等于( )A .-4B .±4C .-2D .±2答案 A解析 因为a 4是a 1与a 7的等比中项,所以a 24=a 1a 7,即64=-16a 7,故a 7=-4.三、等比数列通项公式的推广及应用例3 在等比数列{a n }中.(1)已知a 3=4,a 7=16,且q >0,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n .解 (1)∵a 7a 3=q 7-3=q 4=4, ∴q 2=2,又q >0,∴q =2,∴a n =a 3·q n -3=4·(2)n -3=122n +(n ∈N *).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5,又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n ,∵a n ≠0,∴2(1+q 2)=5q ,解得q =12或q =2. ∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2. ∴a n =2·2n -1=2n (n ∈N *).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1.(2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练3 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( )A .21B .42C .63D .84答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.四、灵活设元求解等比数列问题例4 (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.答案 45解析 (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧ 2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6, 解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们的和为12,求这四个数.解 方法一 设前三个数分别为a q,a ,aq , 则a q·a ·aq =216, 所以a 3=216.所以a =6.因此前三个数为6q,6,6q . 由题意知第4个数为12q -6.所以6+6q +12q -6=12,解得q =23. 故所求的四个数为9,6,4,2.方法二 设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2, 由题意知14(4-d )2×(4-d )×4=216, 解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.反思感悟 几个数成等比数列的设法(1)三个数成等比数列设为a q,a ,aq . 推广到一般:奇数个数成等比数列设为…,a q 2,a q,a ,aq ,aq 2,… (2)四个符号相同的数成等比数列设为a q 3,a q,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为…,a q 5,a q 3,a q,aq ,aq 3,aq 5,… (3)四个数成等比数列,不能确定它们的符号是否相同时,可设为a ,aq ,aq 2,aq 3.跟踪训练4 在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D.352答案 B解析 设插入的第一个数为a ,则插入的另一个数为a 22. 由a ,a 22,20成等差数列得2×a 22=a +20. ∴a 2-a -20=0,解得a =-4或a =5.当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为( )A .±12B .±2 C.12D .-2 答案 D解析 因为a 5a 2=q 3=-8,故q =-2. 2.(多选)已知a 是1,2的等差中项,b 是-1,-16的等比中项,则ab 等于( )A .6B .-6C .-12D .12答案 AB解析 ∵a =1+22=32,b 2=(-1)×(-16)=16,b =±4, ∴ab =±6.3.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32答案 C解析 由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.4.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( )A .(-2)n -1B .-(-2n -1) C .(-2)nD .-(-2)n 答案 A解析 设公比为q ,则a 1q 4=-8a 1q ,又a 1≠0,q ≠0,所以q 3=-8,q =-2,又a 5>a 2,所以a 2<0,a 5>0,从而a 1>0,即a 1=1,故a n =(-2)n -1.5.在等比数列{a n }中,a 1=-2,a 3=-8,则数列{a n }的公比为________,通项公式为a n =______________.答案 ±2 (-2)n 或-2n解析 ∵a 3a 1=q 2, ∴q 2=-8-2=4,即q =±2. 当q =-2时,a n =a 1q n -1=-2×(-2)n -1=(-2)n ;当q =2时,a n =a 1q n -1=-2×2n -1=-2n .1.知识清单:(1)等比数列的概念.(2)等比数列的通项公式.(3)等比中项的概念.(4)等比数列的通项公式推广.2.方法归纳:方程(组)思想、构造法、等比数列的设法.3.常见误区:(1)x ,G ,y 成等比数列⇒G 2=xy ,但G 2=xy ⇏x ,G ,y 成等比数列.(2)四个数成等比数列时设成a q 3,a q,aq ,aq 3,未考虑公比为负的情况. (3)忽视了等比数列中所有奇数项符号相同,所有偶数项符号相同而出错.1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( )A .108B .54C .36D .18答案 B解析 因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54.2.(多选)在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( ) A .-4 B .4 C .-14 D.14答案 AB解析 由题意得a 26=a 4a 8,因为a 1=18,q =2, 所以a 4与a 8的等比中项为±a 6=±4.3.在等比数列{a n }中,a n >0,且a 1+a 2=1,a 3+a 4=9,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 ∵a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍去),∴a 4+a 5=(a 3+a 4)q =27.4.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( ) A. 2 B .4 C .2 D.12答案 C解析 因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设数列{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2. 5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式a n 等于( )A .22n -1B .2nC .22n +1D .22n -3答案 A解析 由a 2n +1-3a n +1a n -4a 2n =0, 得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4. 由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.6.若{a n }为等比数列,且a 3+a 4=4,a 2=2,则公比q =________.答案 1或-2解析 根据题意,⎩⎪⎨⎪⎧a 1q 2+a 1q 3=4,a 1q =2, 解得⎩⎪⎨⎪⎧ a 1=2,q =1或⎩⎪⎨⎪⎧ a 1=-1,q =-2.7.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,且a 1=________,d =________.答案 23-1 解析 ∵a 2,a 3,a 7成等比数列,∴a 23=a 2a 7,∴(a 1+2d )2=(a 1+d )(a 1+6d ),即2d +3a 1=0.①又∵2a 1+a 2=1,∴3a 1+d =1.②由①②解得a 1=23,d =-1. 8.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________.答案 4×⎝⎛⎭⎫32n -1解析 由已知可得(a +1)2=(a -1)(a +4),解得a =5,所以a 1=4,a 2=6,所以q =a 2a 1=64=32, 所以a n =4×⎝⎛⎭⎫32n -1.9.在等比数列{a n }中,a 3=32,a 5=8.(1)求数列{a n }的通项公式a n ;(2)若a n =12,求n . 解 (1)因为a 5=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 3q n -3=32×⎝⎛⎭⎫12n -3=28-n ;当q =-12时,a n =a 3q n -3=32×⎝⎛⎭⎫-12n -3.所以a n =28-n 或a n =32×⎝⎛⎭⎫-12n -3.(2)当a n =12时,即28-n =12或32×⎝⎛⎭⎫-12n -3=12,解得n =9.10.在等比数列{a n }中:(1)已知a 3=2,a 5=8,求a 7;(2)已知a 3+a 1=5,a 5-a 1=15,求通项公式a n .解 (1)因为a 5a 3=q 2=82,所以q 2=4,所以a 7=a 5q 2=8×4=32.(2)a 3+a 1=a 1(q 2+1)=5,a 5-a 1=a 1(q 4-1)=15,所以q 2-1=3,所以q 2=4,所以a 1=1,q =±2,所以a n =a 1q n -1=(±2)n -1.11.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于()A .3B .2C .1D .-2答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18答案 C解析 方法一 ∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8,∴q =2,∴a 2=a 1q =14×2=12.方法二 ∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.(多选)已知等差数列a ,b ,c 三项之和为12,且a ,b ,c +2成等比数列,则a 等于() A .-2 B .2 C .-8 D. 8答案 BD解析 由已知得⎩⎪⎨⎪⎧ a +c =2b ,a +b +c =12,a (c +2)=b 2,解得⎩⎪⎨⎪⎧a =2,b =4,c =6或⎩⎪⎨⎪⎧a =8,b =4,c =0.故a =2或a =8.14.若数列{a n}的前n项和为S n,且a n=2S n-3,则{a n}的通项公式是________.答案a n=3·(-1)n-1解析由a n=2S n-3得a n-1=2S n-1-3(n≥2),两式相减得a n-a n-1=2a n(n≥2),∴a n=-a n-1(n≥2),又a1=3,故{a n}是首项为3,公比为-1的等比数列,∴a n=3·(-1)n-1.15.已知在等差数列{a n}中,a2+a4=16,a1+1,a2+1,a4+1成等比数列,把各项按如图所示排列.则从上到下第10行,从左到右的第11个数值为________.答案275或8解析设公差为d,由a2+a4=16,得a1+2d=8,①由a1+1,a2+1,a4+1成等比数列,得(a2+1)2=(a1+1)(a4+1),化简得a1-d=-1或d=0,②当d=3时,a n=3n-1.由题图可得第10行第11个数为数列{a n}中的第92项,a92=3×92-1=275.当d=0时,a n=8,a92=8.16.设数列{a n}是公比小于1的正项等比数列,已知a1=8,且a1+13,4a2,a3+9成等差数列.(1)求数列{a n}的通项公式;(2)若b n=a n(n+2-λ),且数列{b n}是单调递减数列,求实数λ的取值范围.解(1)设数列{a n}的公比为q.由题意,可得a n=8q n-1,且0<q<1.由a1+13,4a2,a3+9成等差数列,知8a2=30+a3,所以64q=30+8q2,解得q=12或152(舍去),所以a n=8×⎝⎛⎭⎫12n-1=24-n,n∈N*.(2)b n=a n(n+2-λ)=(n+2-λ)·24-n,由b n>b n+1,得(n+2-λ)·24-n>(n+3-λ)·23-n,即λ<n+1,所以λ<(n+1)min=2,故实数λ的取值范围为(-∞,2).。
第六章 数列第一节 数列的概念与简单表示一、基础知识 1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{1,2,…,n })为定义域的函数a n =f (n )当自变量按照从小到大的顺序依次取值时所对应的一列函数值.数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.(3)数列有三种表示法,它们分别是列表法、图象法和解析法. 2.数列的分类(1)按照项数有限和无限分:⎩⎪⎨⎪⎧有限数列:项数有限个;无限数列:项数无限个;(2)按单调性来分:⎩⎪⎨⎪⎧递增数列:a n +1>a n ,递减数列:a n +1<a n,常数列:a n +1=a n=C常数,摆动数列.3.数列的两种常用的表示方法(1)通项公式:如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.1并不是所有的数列都有通项公式;2同一个数列的通项公式在形式上未必唯一. (2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.通项公式和递推公式的异同点不同点相同点通项公式 可根据某项的序号n 的值,直接代入求出a n 都可确定一个数列,也都可求出数列的任意一项递推公式可根据第一项(或前几项)的值,通过一次(或多次)赋值,逐项求出数列的项,直至求出所需的二、常用结论(1)若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,n ∈N *. (2)在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧ a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1. 考点一 由a n 与S n 的关系求通项a n[典例] (1)(2018·广州二模)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为____________.(2)(2018·全国卷Ⅰ改编)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则a n =________. [解析] (1)由log 2(S n +1)=n +1,得S n +1=2n +1, 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.(2)∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1, ∴a n =S n -S n -1=2a n -2a n -1,即a n =2a n -1. 当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1为-1,公比q 为2的等比数列, ∴a n =-1×2n -1=-2n -1.[答案] (1)a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 (2)-2n -1[解题技法]1.已知S n 求a n 的3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 2.S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.[题组训练]1.设数列{a n }的前n 项和为S n ,且S n =2(a n -1)(n ∈N *),则a n =( ) A .2n B .2n -1 C .2nD .2n -1解析:选C 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2, 当n ≥2时,a n =S n -S n -1=2a n -2a n -1, ∴a n =2a n -1,∴数列{a n }为首项为2,公比为2的等比数列, ∴a n =2n .2.设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________. 解析:因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1). 两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1. 答案:22n -1考点二 由递推关系式求数列的通项公式[典例] (1)设数列{a n }满足a 1=1,且a n +1=a n +n +1(n ∈N *),则数列{a n }的通项公式为________________.(2)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),则数列{a n }的通项公式为________________. (3)已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________________. [解析] (1)累加法由题意得a 2=a 1+2,a 3=a 2+3,…,a n =a n -1+n (n ≥2), 以上各式相加,得a n =a 1+2+3+…+n .又∵a 1=1,∴a n =1+2+3+…+n =n 2+n 2(n ≥2).∵当n =1时也满足上式,∴a n =n 2+n2(n ∈N *).(2)累乘法∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n (n ∈N *).(3)构造法∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2, ∴a n +1=2·3n -1, ∴a n =2·3n -1-1(n ∈N *).[答案] (1)a n =n 2+n 2(n ∈N *) (2)a n =1n (n ∈N *) (3)a n =2·3n -1-1(n ∈N *)[解题技法]1.正确选用方法求数列的通项公式(1)对于递推关系式可转化为a n +1=a n +f (n )的数列,通常采用累加法(逐差相加法)求其通项公式.(2)对于递推关系式可转化为a n +1a n=f (n )的数列,并且容易求数列{f (n )}前n 项的积时,采用累乘法求数列{a n }的通项公式.(3)对于递推关系式形如a n +1=pa n +q (p ≠0,1,q ≠0)的数列,采用构造法求数列的通项. 2.避免2种失误(1)利用累乘法,易出现两个方面的问题:一是在连乘的式子中只写到a 2a 1,漏掉a 1而导致错误;二是根据连乘求出a n 之后,不注意检验a 1是否成立.(2)利用构造法求解时应注意数列的首项的正确求解以及准确确定最后一个式子的形式.[题组训练] 1.累加法设数列{a n }满足a 1=3,a n +1=a n +1nn +1,则通项公式a n =________. 解析:原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n-1+1n -1-1n ,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n ,故a n =4-1n .答案:4-1n2.累乘法设数列{a n }满足a 1=1,a n +1=2n a n ,则通项公式a n =________.解析:由a n +1=2n a n ,得a n a n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n n -12.又a 1=1适合上式,故a n =2n n -12.答案:2nn -123.构造法在数列{a n }中,a 1=3,且点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,则数列{a n }的通项公式为________.解析:因为点P n (a n ,a n +1)(n ∈N *)在直线4x -y +1=0上,所以4a n -a n +1+1=0,即a n+1=4a n +1,得a n +1+13=4⎝⎛⎭⎫a n +13,所以⎩⎨⎧⎭⎬⎫a n +13是首项为a 1+13=103,公比为4的等比数列,所以a n +13=103·4n -1,故a n =103·4n -1-13.答案:a n =103·4n -1-13考点三 数列的性质及应用考法(一) 数列的周期性[典例] 数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n≤12,2a n-1,12<a n<1,a a 1=35,则数列的第 2 019项为________.[解析] 因为a 1=35,故a 2=2a 1-1=15,a 3=2a 2=25,a 4=2a 3=45,a 5=2a 4-1=35,a 6=2a 5-1=15,a 7=2a 6=25,…,故数列{a n }是周期数列且周期为4,故a 2 019=a 504×4+3=a 3=25.[答案] 25考法(二) 数列的单调性(最值)[典例] (1)(2018·百校联盟联考)已知数列{a n }满足2S n =4a n -1,当n ∈N *时,{(log 2a n )2+λlog 2a n }是递增数列,则实数λ的取值范围是________.(2)已知数列{a n }的通项公式为a n =(n +2)·⎝⎛⎭⎫78n,则当a n 取得最大值时,n =________. [解析] (1)∵2S n =4a n -1,2S n -1=4a n -1-1(n ≥2), 两式相减可得2a n =4a n -4a n -1(n ≥2), ∴a n =2a n -1(n ≥2). 又2a 1=4a 1-1,∴a 1=12,∴数列{a n }是公比为2的等比数列,∴a n =2n -2, 设b n =(log 2a n )2+λlog 2a n =(n -2)2+λ(n -2), ∵{(log 2a n )2+λlog 2a n }是递增数列,∴b n +1-b n =2n -3+λ>0恒成立,∴λ>3-2n 恒成立, ∵(3-2n )max =1,∴λ>1, 故实数λ的取值范围是(1,+∞).(2)当a n 取得最大值时,有⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎨⎧n +2⎝⎛⎭⎫78n≥n +1⎝⎛⎭⎫78n -1,n +2⎝⎛⎭⎫78n≥n +3⎝⎛⎭⎫78n +1,解得⎩⎪⎨⎪⎧n ≤6,n ≥5,∴当a n 取得最大值时,n =5或6. [答案] (1)(1,+∞) (2)5或6[解题技法]1.解决数列的单调性问题的3种方法2.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.[题组训练]1.设数列{a n },a n =nanb +c,其中a ,b ,c 均为正数,则此数列( ) A .递增 B .递减 C .先增后减D .先减后增解析:选A 因为a n =na bn +c=a b +c n ,而函数f (x )=ab +c x(a >0,b >0,c >0)在(0,+∞)上是增函数,故数列{a n }是递增数列.2.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 019=( )A .-1 B.12C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 019=a 3×673=a 3=-1.[课时跟踪检测]A 级1.(2019·郑州模拟)已知数列1,3,5,7,…,2n -1,若35是这个数列的第n 项,则n =( )A .20B .21C .22D .23解析:选D 由2n -1=35=45,得2n -1=45,即2n =46,解得n =23,故选D. 2.(2019·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.-1n +1n +1B.-1nn +1C.-1nnD.-1n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪1n +1,故此数列的一个通项公式为-1n +1n +1.故选A. 3.(2019·莆田诊断)已知数列{a n }中,a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 5的值为( )A .-2B .-1C .1D .2解析:选A 由题意可得,a n +2=a n +1-a n ,则a 3=a 2-a 1=2-1=1,a 4=a 3-a 2=1-2=-1,a 5=a 4-a 3=-1-1=-2.故选A.4.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列, 所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3.6.若数列{a n }满足12≤a n +1a n≤2(n ∈N *),则称{a n }是“紧密数列”.若{a n }(n =1,2,3,4)是“紧密数列”,且a 1=1,a 2=32,a 3=x ,a 4=4,则x 的取值范围为( )A .[1,3)B .[1,3]C .[2,3]D .[2,3)解析:选C 依题意可得⎩⎪⎨⎪⎧12≤x32≤2,12≤4x≤2,解得2≤x ≤3,故x 的取值范围为[2,3].7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析:当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.已知数列32,54,76,9m -n ,m +n 10,…,根据前3项给出的规律,实数对(m ,n )为________.解析:由数列的前3项的规律可知⎩⎪⎨⎪⎧m -n =8,m +n =11,解得⎩⎨⎧m =192,n =32,故实数对(m ,n )为⎝⎛⎭⎫192,32.答案:⎝⎛⎭⎫192,329.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2,n ∈N *),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2, 则a 3=S 3-S 2=-1, 所以a 1+a 3=0+(-1)=-1. 答案:-110.已知数列{a n }满足a n =(n -λ)2n (n ∈N *),若{a n }是递增数列,则实数λ的取值范围为________.解析:因为a n =(n -λ)2n (n ∈N *)且数列{a n }是递增数列,所以a n +1-a n =2n (n +2-λ)>0,所以n +2-λ>0,则λ<n +2.又n ∈N *,所以λ<3,因此实数λ的取值范围为(-∞,3).答案:(-∞,3)11.(2019·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式; (2)证明:a n +1+1a n +1=4.解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…, 所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4a n +1a n +1=4.12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).B 级1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:972.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:283.在数列{a n }中,a n =(n +1)⎝⎛⎭⎫1011n(n ∈N *). (1)讨论数列{a n }的增减性; (2)求数列{a n }的最大项.解:(1)由题意,知a n >0,令a na n -1>1(n ≥2),即n +1⎝⎛⎭⎫1011nn ⎝⎛⎭⎫1011n -1>1(n ≥2),解得2≤n <10,即a 9>a 8>…>a 1.11令a n a n +1>1,即n +1⎝⎛⎭⎫1011n n +2⎝⎛⎭⎫1011n +1>1, 整理得n +1n +2>1011,解得n >9,即a 10>a 11>…. 又a 9a 10=1,所以数列{a n }从第1项到第9项单调递增,从第10项起单调递减. (2)由(1)知a 9=a 10=1010119为数列{}a n 的最大项.。
第五章 数列5.1数列基础 5.1.1数列的概念一、知识点1. 定义:按照一定顺序排列的一列数成为数列。
2. 项:数列中的每一个数都称为这个数列的项,各项依次称为这个数列的第1项(或首项) ,第2项,…,第n 项 ,n a a a a ,......,,321,-1a 首项。
3. 通项:因为数列从首项起,每一项都与正整数对应,所以数列的一般形式可以写成n a a a a ,......,,321…,其中n a 表示数列的第n 项(也称n 为n a 的序号,其中n 为正整数,即n ∈N+),n a 称为数列的通项.此时,一般将整个数列简记为{an} ,这里的小写字母a 也可以换成其他小写英文字母.4. 通项公式:一般地,如果数列的第n 项n a 与n 之间的关系可以用 n a =f(n) 来表示,其中f (n)是关于n 的不含其他未知数的表达式,则称上述关系式为这个数列的一个通项公式 .不是所有的数列都能写出通项公式,如果数列有通项公式,那么通项公式的表达式不一定唯一.5. 与函数的关系:数列{n a }可以看成定义域为正整数集的子集的函数,数列中的数就是自变量从小到大依次取正整数值时对应的函数值,而数列的通项公式也就是相应函数的解析式.数列也可以用平面直角坐标系中的点来直观地表示.6. 分类:1)有穷数列:项数有限个2)无穷数列:项数无限个3)增数列:从第2项起,每一项都大于它的前一项的数列 4)减数列:从第2项起,每一项都小于它的前一项的数列 5)常数列:各项都相等6)摆动数列:时而增大时而减小二、典型题典型题一 数列定义的理解1.有下面四个结论,其中正确的为( ) ①数列的通项公式是唯一的;②数列可以看成是一个定义在正整数集或其子集上的函数; ③若用图像表示数列,则其图像是一群孤立的点; ④每个数列都有通项公式. A.①② B.②③ C.③④ D.①④2.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A.11B.12C.13D.143.(2020甘肃兰州高二期中)下列数列中,既是递增数列又是无穷数列的是( ) A.-1,-2,-3,-4,…B.-1,-,…C.-1,-2,-4,-8,…D.1,,…,典型题二 求数列的通项公式4.若数列{a n }的前4项依次是2,0,2,0,则这个数列的通项公式不可能是( ) A.a n =1+(-1)n+1B.a n =1-cos nπC.a n =2sin2D.a n =1+(-1)n-1+(n-1)(n-2)5.已知数列{a n }的通项公式为n n a n -=2,则下列各数中不是数列中的项是( )A.2B.40C.56D.906.(2020辽宁沈阳东北育才学校高二期中)如图是谢尔宾斯基三角形,在所给的四个三角形图案中,黑色的小三角形个数依次构成数列{a n }的前4项,则{a n }的通项公式可以是( )A.a n =3n-1B.a n =2n-1C.a n =3nD.a n =2n-17.已知数列{a n }的通项公式为13+=n na n ,那么这个数列是( ) A.递增数列B.递减数列C.摆动数列D.常数列 8.写出下列数列的一个通项公式.(1)-,…;(2),…;(3)7,77,777,7 777,….典型题三 数列的单调性9.在数列{a n }中,a n =n 2-kn(n ∈N +),且{a n }是递增数列,求实数k 的取值范围.10.(2020北京第十一中学高三一模)数列{a n }的一个通项公式为a n =|n-c|(n ∈N +),则“c<2”是“{a n }为递增数列”的( ) A.必要不充分条件 B.充要条件 C.充分不必要条件 D.既不充分也不必要条件 11.数列{a n }的通项公式为nan a n +=。
高中数列基础试题及答案一、选择题1. 已知数列\( \{a_n\} \)的前几项为1, 2, 3, ..., 则该数列的第10项是多少?A. 10B. 11C. 12D. 132. 一个等差数列的首项为2,公差为3,求第5项的值。
A. 17B. 14B. 13D. 12二、填空题3. 若数列\( \{a_n\} \)是等比数列,首项为2,公比为3,求第5项的值。
4. 已知数列\( \{b_n\} \)的通项公式为\( b_n = 2^n - 1 \),求第8项的值。
三、解答题5. 已知数列\( \{c_n\} \)的前几项为1, 4, 9, 16, ..., 请找出该数列的通项公式,并求出第10项的值。
6. 一个等差数列的前5项之和为40,首项为2,求公差。
答案一、选择题1. 答案:A. 10解析:这是一个等差数列,首项\( a_1 = 1 \),公差\( d = 1 \),根据等差数列的通项公式\( a_n = a_1 + (n - 1)d \),代入n=10得\( a_{10} = 1 + 9 = 10 \)。
2. 答案:A. 17解析:根据等差数列的通项公式\( a_n = a_1 + (n - 1)d \),代入n=5,\( a_1 = 2 \),\( d = 3 \)得\( a_5 = 2 + 4 \times 3 = 14 \),但选项中没有14,因此需要检查题目是否有误。
二、填空题3. 答案:162解析:等比数列的通项公式为\( a_n = a_1 \times r^{(n-1)} \),代入n=5,\( a_1 = 2 \),\( r = 3 \)得\( a_5 = 2 \times 3^4 = 162 \)。
4. 答案:255解析:根据通项公式\( b_n = 2^n - 1 \),代入n=8得\( b_8 =2^8 - 1 = 256 - 1 = 255 \)。
三、解答题5. 解答:该数列的通项公式为\( c_n = n^2 \)。
新人教A版高二第 1 课时数列的概念与表示(1212)1.数列−1,3,−5,7,−9,…的一个通项公式为()A.a n=2n−1B.a n=(−1)n(2n−1)C.a n=(−1)n(1−2n)D.a n=(−1)n+1(2n−1)2.数列13,14,15,…,1n,…的第11项是()A.110B.111C.112D.1133.数列2,6,12,20,…的第6项是()A.42B.56C.90D.724.已知n∈N∗,给出4个表达式:①a n={0,n为奇数,1,n为偶数;②a n=1+(−1)n2;③a n=1+cosnπ2;④a n=|sin nπ2|.其中能作为数列:0,1,0,1,0,1,0,1,⋯的通项公式的是()A.①②③B.①②④C.②③④D.①③④5.数列{a n}的通项公式为a n=−58+16n−n2,则()A.{a n}是递增数列B.{a n}是递减数列C.{a n}先增后减,有最大值D.{a n}先减后增,有最小值6.已知a n=n2+n,那么()A.0是数列中的项B.20是数列中的项C.3是数列中的项D.930不是数列中的项7.已知数列{a n}的通项公式为a n=n2−kn,且{a n}为递增数列,则k的取值范围是()A.(−∞,2]B.(−∞,3)C.(−∞,2)D.(−∞,3]8.已知数列{a n}的前4项分别为−12,34,−58,716,则数列{a n}的通项公式是()A.a n=2n−12n B.a n=(−1)n·(2n−1)2nC.a n=2n+12n D.a n=(−1)n·(2n+1)2n9.已知数列{a n}的通项公式为a n=(−1)n(2n−1),则a5=.10.若数列{a n}的通项满足a nn=n−2,那么15是这个数列的第项. 11.已知数列{a n}的通项公式为a n=19−2n,则使a n>0成立的正整数n的最大值为.12.已知对任意的正整数n,都有a n=n2+λn成立.若数列{a n}是递增数列,则实数λ的取值范围是.13.写出下列数列的一个通项公式.(1)0.9,0.99,0.999,0.9999,…;(2)112,245,3910,41617,…;(3)12,34,78,1516,…;(4)3,5,9,17,….14.根据数列{a n}的通项公式,写出数列的前5项,并用图象表示出来.(1)a n=3+(−1)n2;(2)a n=sin(n+1)π2+1.15.已知f(x)={(2a−1)x+4(x⩽1),a x(x>1),数列{a n}(n∈N∗)满足a n=f(n),且{a n}是递增数列,则a的取值范围是()A.(1,+∞)B.(12,+∞) C.(1,3) D.(3,+∞)16.如图所示,有一个n(n⩾2)行n+1列的士兵方阵.(1)写出一个数列,用它表示当n分别为2,3,4,5,6,…时方阵中的士兵人数;(2)说出(1)中数列的第5项与第6项表示的意义,并求a5,a6;(3)若把(1)中的数列记为{a n},求该数列的通项公式;(4)在(3)的数列{a n}中,求a10,并说明a10所表示的实际意义.参考答案1.【答案】:B【解析】:因为数列1,3,5,7,9,…的通项公式为a n=2n−1,由题中数列的奇数项为负,得所求数列的通项公式为a n=(−1)n(2n−1).故选B.2.【答案】:D【解析】:由题意可归纳出所给数列的通项公式为a n=1n+2,所以a11=113.故选 D.3.【答案】:A【解析】:因为2=1×2,6=2×3,12=3×4,20=4×5,…,所以所给数列的第6项为6×7=42.故选A.4.【答案】:A【解析】:①②③逐一写出均为0,1,0,1,0,1,⋯,满足题意,④逐一写出为1,0,1,0,1,0,1,⋯,不满足题意,故选A.5.【答案】:C【解析】:a n=−(n−8)2+6是关于n的二次函数,其图象开口向下.则当n⩽8时,{a n}是递增数列,当n>8时,{a n}是递减数列,当n=8时,a n取得最大值.故选 C.6.【答案】:B【解析】:令n2+n=0,解得n=0或n=−1,因为n∈N∗,所以0不是数列中的项,故选项A错误;令n2+n=20,解得n=4或n=−5(舍),则a4=20,故选项B正确;令n2+n=3,易知该方程无有理数根,则3不是数列中的项,故选项C错误;令n2+n=930,解得n=30或n=−31(舍),则a30=930,即930是数列中的项,故选项D错误.故选 B.7.【答案】:B【解析】:a n+1−a n=(n+1)2−k(n+1)−n2+kn=2n+1−k,因为{a n}为递增数列,所以应满足a n+1−a n>0恒成立,即2n+1−k>0恒成立,即k<2n+1恒成立,又n∈N∗,所以(2n+1)min=3,所以k<3.故选B.8.【答案】:B【解析】:观察数列{a n}的前4项,可知分母为2n,分子是奇数,为2n−1,同时符号正负相间,可用(−1)n表示,所以a n=(−1)n·(2n−1)2n.故选 B.9.【答案】:−9【解析】:令n=5,可得a5=−9.10.【答案】:5【解析】:由a nn =n−2可知an=n2−2n,令n2−2n=15,解得n=5(负值舍去),则15是这个数列的第5项.11.【答案】:9【解析】:由a n=19−2n>0,得n<192,因为n∈N∗,所以n⩽9,则满足题意的正整数n的最大值为9.12.【答案】:λ>−3【解析】:∵数列{a n}是递增数列,∴a n+1−a n=(n+1)2+λ(n+1)−n2−λn=2n+1+λ>0对任意的正整数n恒成立,即λ>−2n−1对任意的正整数n恒成立,∴λ>−3.13(1)【答案】0.9=1−0.1=1−10−1,0.99=1−10−2,0.999=1−10−3,0.9999=1−10−4,故a n=1−10−n(n∈N∗).(2)【答案】112=1+112+1,245=2+2222+1,3910=3+3232+1,41617=4+4242+1,故a n=n+n2n2+1(n∈N∗).(3)【答案】12=21−121=1−121,3 4=22−122=1−122,7 8=23−123=1−123,15 16=24−124=1−124,故a n=2n−12n =1−12n(n∈N∗).(4)【答案】3=1+2,5=1+22,9=1+23,17=1+24,故a n=1+2n(n∈N∗).14(1)【答案】a1=3+(−1)12=1,a2=3+(−1)22=2,a3=1,a4=2,a5=1.图象如图①所示.(2)【答案】a1=sin(1+1)π2+1=sinπ+1=1,a2=sin (2+1)π2+1=0,a3=sin (3+1)π2+1=1,a4=sin (4+1)π2+1=2,a5=sin(5+1)π2+1=1. 图像如图②所示.15.【答案】:D【解析】:因为{a n}是递增数列,所以{a>1,a2>2a−1+4,解得a>3,则a的取值范围是(3,+∞).故选 D.16(1)【答案】当n=2时,表示士兵方阵为2行3列,人数为6;当n=3时,表示士兵方阵为3行4列,人数为12.依此类推.故所求数列为6,12,20,30,42,….(2)【答案】方阵的行数比数列的序号大1,因此第5项表示6行7列方阵中的士兵人数,第6项表示7行8列方阵中的士兵人数,故a5=42,a6=56.(3)【答案】由(1)知该数列的前4项分别为6=2×3,12=3×4,20=4×5,30=5×6,因此a n=(n+1)(n+2).(4)【答案】由(3)知a10=11×12=132,a10表示11行12列方阵中的士兵的人数.。
一、数列的概念选择题1.已知数列{}n a 的前n 项和为n S ,若*1n S n N n=∈,,则2a =( ) A .12-B .16-C .16D .122.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .523.数列{}n a 满足()11121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )A .1006B .1176C .1228D .23684.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项5.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252436.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+7.已知数列{}n a 满足()()*622,6,6n n p n n a n pn -⎧--≤=∈⎨>⎩N ,且对任意的*n ∈N 都有1n n a a +>,则实数p 的取值范围是( )A .71,4⎛⎫ ⎪⎝⎭B .101,7⎛⎫⎪⎝⎭C .()1,2D .10,27⎛⎫⎪⎝⎭8.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30B .20C .40D .509.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1B .3C .2D .3-10.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .1211.下列命题中错误的是( ) A .()()21f n n n N+=-∈是数列的一个通项公式B .数列通项公式是一个函数关系式C .任何一个数列中的项都可以用通项公式来表示D .数列中有无穷多项的数列叫作无穷数列12.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .613.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1014.数列{}n a 满足1111,(2)2n n n a a a n a --==≥+,则5a 的值为( )A .18B .17 C .131D .1615.数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+16.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648B .722C .800D .88217.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6B .7C .8D .918.已知数列{}n a 满足1N a *∈,1,2+3,nn n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数,若{}n a 为周期数列,则1a 的可能取到的数值有( ) A .4个B .5个C .6个D .无数个19.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .320.数列1,3,5,7,9,--的一个通项公式为( )A .21n a n =-B .()1(21)nn a n =--C .()11(21)n n a n +=--D .()11(21)n n a n +=-+二、多选题21.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >22.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .223.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+25.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21FF ==C.()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦26.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( )A .数列{}n a 的前n 项和为1S 4n n=B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 27.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小B .130S =C .49S S =D .70a =28.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =29.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >D .110S >30.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-31.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列32.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <33.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列 D .1n a +是n a 与2n a +的等差中项34.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >35.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A2.A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.3.B解析:B 【分析】根据题意,可知()11121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组求和法,即可求出{}n a 的前48项和. 【详解】解:由题可知,()11121n n n a a n ++=-+-,即:()11121n n n a a n ++--=-,则有:211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,8713a a -=,9815a a +=,,474691a a +=,484793a a -=.所以,132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++++++,()()1357454724684648a a a a a a a a a a a a =+++++++++++++12111221281611762⨯=⨯+⨯+⨯=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.4.B解析:B 【分析】根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.5.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当n <2时,a n +1-a n >0,即a n +1>a n ;当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.6.C解析:C 【分析】根据数列的前几项的规律,可推出一个通项公式. 【详解】设所求数列为{}n a ,可得出()111111a+-=+,()212121a+-=+,()313131a+-=+,()414141a+-=+,因此,该数列的一个通项公式为()111n na n +-=+.故选:C. 【点睛】本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.7.D解析:D 【分析】根据题意,得到数列是增数列,结合通项公式,列出不等式组求解,即可得出结果. 【详解】因为对任意的*n ∈N 都有1n n a a +>, 则数列{}n a 单调递增;又()()*622,6,6n n p n n a n p n -⎧--≤=∈⎨>⎩N , 所以只需67201p p a a ->⎧⎪>⎨⎪<⎩,即21106p p p p<⎧⎪>⎨⎪-<⎩,解得1027p <<. 故选:D. 【点睛】本题主要考查由数列的单调性求参数,属于基础题型.8.B解析:B 【分析】利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】由13920a a a ++=,得131020a d +=,则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】考查等差数列通项公式的运用,知识点较为简单.9.C解析:C 【分析】根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得2019a 的值.【详解】数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.10.B解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B.【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.11.C解析:C 【分析】根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.12.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。