Ramet population ecology of Panicum virgatum in the field - Competitively random growth of ramet
- 格式:pdf
- 大小:555.96 KB
- 文档页数:6
Ecology 生态学individuals 个体population 种群communities 群落ecosystems 生态系统behavioral ecology 行为生态学physiological ecology 生理生态学evolutionary ecology 进化生态学molecular ecology 分子生态学fitness 适合度natural selection 自然选择adaptation 适应genotype 基因型phenotype 表型phenotypic plasticity 表型可塑性offspring 后代genes 基因nongenetic factors 非遗传因素not inherited 不遗传conditions 条件resources 资源environmental variation 环境变异internal regulation 内调节homeostasis 稳态negative feedback 负反馈tolerance 耐受性temperature 温度not depletable 不能耗掉solar radiation 太阳辐射decouple 退耦niche 生态位habitat 栖息地multidimensional niche space多维生态位空间Fundamental niche基础生态位Realized niche 实际生态位Prey 猎物Foraging 觅食Dimension 轴或维Global wind pattern 地球的风型The circulation of oceans 洋流Rain 降雨Havoc['hævək]灾害Hurricane 飓风Latitude 纬度Irradiance[i'reidiəns,-si]辐射度Summer solstice 夏至Winter solstice 冬至Adiabatic cooling 绝热冷却Scale 尺度Coriolis effect 科里奥利效应Intertropical convergence zone热带辐合带Jet streams 急流Albedo 反照率Gulf stream 墨西哥湾流Lee of a continent 背风面Upwelling 上涌流Adiabatic lapse rate 绝热温度递减率Inversion 逆温Heat of condensation 凝结热Heat 热Temperature profiles温度剖面Relative humidity 相对湿度Saturated water 饱和水water vapor 水蒸汽microclimate 微气候thermal['θə:məl]conductivity 热传导chemical properties of water 水的化学特性penetration of light through water光线穿透水Energy transfer and water phases能量转化和水相Deplete 耗竭Ions 离子Electropositive 正电性的Electronegative 负电性的Beer’s law 比尔定律Heat capacity 热容量Maximum density 最大密度Latent heat of vaporization增发潜热Heat of fusion 溶解热Sublimation 升华Soil water 土壤水Field capacity 田间持水量The uptake of water by roots根对水的吸收Aquatic plants 水生植物Water availability 水的可利用性Plant productivity 植物生产力Permanent wilting point 永久萎焉点Potential evapotranspiration rate潜在蒸发蒸腾速率Capillary pores 毛细管孔隙Resource depletion zone 资源枯竭区Halophytes 盐生植物Water balance in fish 鱼类的水平衡Amphibians 两栖类Water conservation by terrestrial animals 陆生动物的水保持Mammalian 哺乳动物Kidneys 肾脏Bladder 膀胱Beavers 河狸Osmoregulation 渗透调节Countercurrent exchange 逆流调节Hypertonic 高渗的Homeotherms 恒温动物Poikilotherms 变温动物Ectotherms 外温动物Endotherms 内温动物Temperature thresholds 温度阀Mechanisms 机理Enzyme 酶The thermoneutral zone 热中性区Dehydration 脱水Rates of development and growth发育和生长速度Acclimation and acclimatization 驯化和气候驯化Developmental threshold Temperature 发育温度阀Physiological time 生理时间Vernalization 春化Species distribution 物种分布Evolved response 进化反应Mean temperature 平均温度Isotherm 等温线Radiant energy 辐射能Photosynthesis 光合作用Efficiency of radiant energy conversion 辐射能的转换效率Changes in the intensity of radiation 辐射强度的变化Strategic and tactical response of plants to radiation 植物对辐射的战略和战术响应Compensation point 补偿点Photosynthetically active radiation (PAR)光和活性辐射Efficiency of Photosynthesis 光合作用效率Photosynthetic capacity 光合能力Diurnal and annual rhythms of solar radiation 太阳辐射日节律和年节律Resource depletion zone 资源耗竭带Strategic difference 战略差异Tactical response 战术响应Transpiration 蒸腾Net assimilation 净同化量Nutrient sources 营养物资源Nutrient budgets 营养预算Terrestrial communities 陆地群落Aquatic communities 水生群落Geochemistry 地球化学Global biogeochemical cycles 全球生物地球循环Mechanical weathering 机械风化Chemical weathering 化学腐蚀Wetfall 湿降落Dryfall 干降落Rainout component 雨水冲失成分Washout component 水冲失成分Streamflow 溪流Denitrification 脱氮Endorheic内陆湖泊Biogeochemistry 生物地球化学Hydrosphere carbon 水圈的碳Weathering 风化作用Nitrogen cycle 氮循环Phosphorus 氮Sediment 沉积型Lithospheric 岩石圈Sulfur 硫The fate of matter in the community群落中物质的命运Producers 生产者Consumers 消费者Decomposers 分解者Autotrophs 自养生物Grazing mammals 草食哺乳动物Phytoplankton 浮游植物Zooplankton 浮游动物Bacteria 细菌Fungi 真菌Nonliving 无生命Food chains 食物链Primary and secondary production 初级和次级生产力Net Primary production 净初级生产力Aphotic zone 无光区Photic zone 透光区Primary consumers 初级消费者Secondary consumer 次级消费者Soil formation 土壤形成The soil profile 土壤剖面Primary classification:the great soil groups 主要分类:大土壤群Higher vegetation 高等植物Dynamic mixture 动态混合物Organic matter 有机质Cells 细胞Pedology 土壤学Subsoil 亚土壤Mineral soil 矿物质土壤Parent material 母质Soil series 土系Soil surveyor 土壤勘测员Succession 演替Ecosystem patterns 生态系统格局Soil horizons 土层Humic acids 腐植酸Great soil groups 土壤群Population size 种群大小Age and stage structure 年龄和时期结构Zygote 受精卵Unitary organism 单体生物Modular organism 构件生物Ramets 无性系分株Clone 无性系Genet 基株Evolutionary individuals 进化个体Immediate ecological impact 直接生态作用Stable age distribution 稳定年龄分布Age pyramid 年龄金字塔Stationary age distribution 固定的年龄分布Stage structure 时期结构Sizes classes 个体大小群Natality 出生率Mortality 死亡率Survivorship 存活率Life tables 生命表K-factor analysis k-因子分析The fecundity schedule 生殖力表Population growth 种群增长Density-independent Population growth 非密度制约性种群增长Density-dependent growth-the logistic equation 密度制约性种群增长:逻辑斯缔方程Life expectancy 生命期望Survivorship curve 存活曲线Cohort 同生群Age-specific survival rate 特定年龄存活率Key factors 关键因子Killing factor 致死因子Basic reproduction rate 基础繁殖率Carrying capacity 环境容纳量Estimating density 估计密度Mark release recapture 标记重捕法H3Density dependence密度制约Equilibrium population density 平衡种群密度Relative density相对密度Allee effect阿利效应Exactly compensating准确补偿Undercompensating补偿不足Overcompensating过度补偿H4Population fluctuations 种群波动Chaos 混沌Expanding and contracting populations 增长种群和收缩种群Stable limit cycle 稳定极限环I1Competition 竞争Predation 捕食Parasitism 寄生Mutualism互利共生Intraspecific competition种内竞争Interspecific competition种间竞争Exploitation competition利用性竞争Interference competition干扰性竞争Cannibalism 自相残杀Altruism 利他主义Commensualism 偏利共生Amensualism偏害共生I2Dispersal扩散Territoriality领域性Niche shift生态位转移Allelopathy异株克生Competive asymmetry 竞争不对称Scramble competition争夺竞争Contest competition格斗竞争Zero net growth isocline零增长等斜线Self-thinning自疏Inbreeding近亲繁殖Reproductive value繁殖价值Leks 求偶场I3Competitive exclusion 竞争排斥Limiting similarity 极限相似性Competitive release 极限释放Character displacement 性状替换Apparent competition 表观竞争Enemy-free space 无敌空间Highly heterogeneous 高度异质性Gaps 断层Probability refuge 隐蔽机率J1Herbivores 食草动物Carnivores 食肉动物Omnivores 杂食动物Chemical defences 化学防御Behavioral strategies 行为对策Specialists 特化种Generalist 泛化种Monophagous单食者Oligophagous寡食者Polyphagous 多食者Parasites 寄生者J2Predator switching 捕食者转换Profitability of prey 猎物收益率Plant defence 植物防御The ideal free distribution 理想自由分布Functional response 功能反应Superpredation 超捕食K1Parasites 寄生物Modes of transmission 传播方式Social parasites 社会性寄生物Helminth worms 寄生蠕虫Insects 昆虫Necrotrophs 食尸动物Parasitoids 拟寄生物The cellular immune response 细胞免疫反应Vectors 媒介Optimal habitat use 最佳生境利用Brood parasitism 窝寄生Evolutionary constraint 进化约束K2Immunity 免疫Cevolution协同进化Gene for gene 基因对基因Mimics 模仿Herd immunity 群体免疫Antigenic stability 抗原稳定L1Pollination 传粉Symbiotic 共生性Obligate 专性Lichens 地衣Outcrossing 异型杂交Mitochondria 线粒体Chloroplasts 叶绿体M1Reproductive values 生殖价Hypothetical organism 假定生物Migration 迁移Senescence衰老Diapause 滞育Dormancy 休眠Longevity 寿命Enormous variation 巨大变异Energy allocation 能量分配Semelparity 单次生殖Iteroparity 多次生殖Carrying capacity 容纳量Current/future reproduction当前/未来繁殖Habitat disturbance 环境干扰The current/future reproductive output 当前/未来繁殖输出A high/low cost of reproduction 高/低繁殖付出Seed bank 种子库Torper蛰伏Hibernation 冬眠Cryptobiosis 隐生现象Aestivation 夏眠Migration 迁徙Morphological forms 形态学性状Generations世代Mechanistic level 机制水平N1Cooperation 合作Grouping-benefits 集群-好处Altruism 利他行为Group defens e 群防御Inclusive fitness 广义适合度Eusociality 真社会性Hymenoptera 膜翅目Haplodiploid 单倍二倍体Venomous sting毒刺N2Sex 性The costs of inbreeding 近交的代价Self-fertilization 自体受精Sexual versus asexual reproduction 有性和无性生殖Sex ratio 交配体制Monogyny 单配制Polygyny 一雄多雌制Polyandry 一雌多雄制Inbreeding depression 近交衰退Hermaphrodite 雌雄同体Recombine 重组Rare type advantage 稀少型有利Equal investment 相等投入Local mate competition局域交配竞争Epigamic 诱惑性Intrasexual selection 性内选择Intersexual selection 性间选择O1Alleles 等位基因Polymorphism 多型Genetic drift 遗传漂变Genetic bottleneck 遗传瓶颈Rare species 稀有物种Extinction 灭绝Chromosome染色体Genotype 遗传型Phenotype 表现型Gene pool 基因库Gel electrophoresis 凝胶电泳O2Gene flow 基因流Differentiation 分化Sibling species 姊妹种Genetic revolution 遗传演变Peripheral isolates 边缘隔离PTransfer efficiencies 转换效率(net)primary productivity (净)初级生产力Respiratory heat 呼吸热Grazer system 牧食者系统Food chains 食物链Pathways of nutrient flow营养物流Food webs 食物网QCommunity structure 群落结构Community boundaries 群落边界Guilds同资源种团Community organization 群落组织Species diversity 物种多样性Energy flow 能量流Superorganism 超有机体Species-poor/rich 物种贫乏/丰富Biomass stability 生物量稳定性Tundra 冻原Island biogeography 岛屿生物地理学Turnover rate 周转率Source of colonists 移植者源Relaxation松弛Edgespecies 边缘物种Interior species 内部物种Corridor 走廊Greenways 绿色通道Community assembly群落集合Grazers 食草动物Carnivores 食肉动物Keystone species 关键物种Dominance control 优势控制Habitat affinity生境亲和力Prey switching 猎物转换RSuccession 演替Climax Community 顶级群落Pioneer species 先锋物种Primary succession 原生演替Alluvial deposit 冲积层Secondary succession 次生演替Acidifying effect 酸化作用Opportunistic机会主义Cellulose 植物纤维素Lignin 木质素Resource ratio hypothesis 资源比假说Fluctuations 波动Cyclic succession 循环演替Disturbance 干扰Patch dynamics板块动态Mini-succession 微型演替Cambium 形成层Neotropical forest 新热带雨林Priority effect 优先效应SVegetation 植被Ecotones 群落交错区Climate map 气候图Biomes 生物群系Heat budget 热量预算Zonation 分带Grassland 草地Primary regions 基本区域Desertification 荒漠化Arctic tundra 北极冻原Alpine tundra 高山冻原Permafrost 永冻层Coniferous boreal forest北方针叶林Temperature forest 温带森林Tropical forest 热带森林Salinization 盐渍化Primary saltwater regions 基本盐水区域Opens oceans 开阔海洋Continental shelves 大陆架The intertidal zone 潮间带Salt marsh 盐沼Mudflats淤泥滩Mangroves 红树林Pelagic 浮游生物Photic zone 有光带Phyto plankton 浮游植物Nekton 自泳动物Benthic 底栖Rocky shore 岩岸Zonation 分带Streams 溪流Ponds 池塘Environmental concerns 环境关系Catchment area 集水区Temperature inversion 温度逆转Biomanipulation 生物处理TThe goals of harvesting 收获目标Quota limitation 配额限制Environmental fluctuation环境波动Maximum possible yiel最大可能产量Net recruitment 净补充量Surplus yield 过剩产量Age structure 年龄结构Population data 种群数据Stable equilibrium 稳定平衡Harvesting effort 收获努力Gun licences 猎枪执照Rod licences钓鱼许可证Upwelling of cold water冷水上升流Fisheries 渔业Ocean productivity 大洋生产力The tragedy of the common公共灾难Overexploitation 过捕Pollution 污染Global decline 全球性下降By-catch 附带收获Community perturbations 群落扰动Oil spills 原油泄漏Eutrophication 富营养化Algal blooms 水华Red tides 赤潮Biomagnification 生物放大作用UPest 有害生物Natural enemies 天敌Ruderal 杂草型Economic/aesthetic injury level 经济/美学损害水平Cultural 栽培Biological control 生物防治‘Silent spring’寂静的春天Chemical toxicity 化学毒性Evolution of resistance抗性进化Microbial insecticide微生物杀虫剂Inoculation接种Augmentation扩大Inundation 爆发VRare species 稀有种Genetic diversity 遗传多样性Extinction 灭绝Endemic species 特有种Habitat fragmentation 生境片段化Insularization 岛屿化Biodiversity 生物多样性Strategies for conservation保育对策Antarctic treaty 南极协议Ecotourism生态旅游WAir pollution空气污染Acid rain 酸雨Water pollutants 水体污染物Soil pollution 土壤污染Acid deposition 酸降Pathogens病源体Chemical oxygen demand 化学需氧量Anaerobes 厌氧菌The greenhouse effect 温室效应Carbon dioxide 二氧化碳Ozone 臭氧Photochemical smog 光化学烟雾XOverview 概述Soil erosion 土壤侵蚀Soil compaction 土壤硬结Contour ploughing等高耕作Cover crops 覆盖作物No-till farming 免耕农业。
生态学发展史英文参考文献1. Jin Lan Environmental ecology Higher education press, 19922. Wang Rusong, et al Research on hot issues of modern ecology China Science and Technology Press, 19963. Li Bo Ecology Higher education press, 20024. Li Zhenji, et al Ecology Science Press, 20005. Li Bo General ecology Published by Inner Mongolia University, Du, 19936. Wu Yegang, Li habin Contemporary ecology China Science and Technology Press, 19927.McIntosh,RobertP. (translated by xusongling) The development of ecological concepts and theories China Science and Technology Press, 19928. Ma Shijun, Wang rushong Social economic natural complex ecosystem Journal of ecology, 19849. National Natural Science Foundation of China Research Report on the development strategy of ecology natural science discipline Science Press, 199710. Chen Tianyi Fundamentals of ecology Nankai UniversityPress, 199511. Niu Wenyuan, preface, Ma Shijun Perspective of modern ecology Science Press, 199012. Sun Chengyong Introduction to environmental science Renmin University of China Press, 199413. He Qiang, et al Introduction to Environmental Science (Second Edition) Tsinghua University Press, 199414.Beeby A. Applying Ecology. London: Chapman & Hall,199315 .Bramwell A. Ecology in the 20th Century: A History. New Haven Yale University Press, 198916.Clark JS, Carpenter SR, Barber M, et al. Ecological forecasts: An emerging imperative. Science, 200117.Mackenzie, A., A.S. Ball, S.R. Virde. Ecology. Bios Scientific Publishers Limited, 199918. Sun Ruyong, et al Basic ecology Higher education press, 200319. Sun Ruyong Principles of Animal Ecology (Third Edition) Beijing Normal University Press, 200120. Wang xunling, Wang Jing Plant morphological structure and environment Lanzhou University Press, 198921. Jia Huixian, Zhao Manrong Investigation on Halophyte in Hexi Corridor of Gansu Province Journal of Gansu Agricultural University, 198422. Wang zunguo, Jia Huixian Discussion on the distribution and utilization of salt land resource plants in Northwest China Gansu Agricultural Science and Technology Press, 199523. Cui Cui, Wang Jichun, he Fengfa Effects of illumination time and carbon source on the formation of test tube potato Science and technology research and application, 199924. Compilation group of pedology Pedology China Forestry Press, 199225. Jiang Zhixue, Deng Shijin Environmental biology China Environmental Science Press, 198926. Jiang xiamin Effects of temperature, light and nitrogen content on the growth and fatty acid composition of Chlorella aeruginosa Marine science, 200227. Shen Zehao, Fang Jingyun, et al Species diversity patternanalysis of vegetation vertical bands on the eastern slope of Gongga mountain Journal of plant ecology, 200128. Yang Limin, Han Mei, Li Jiandong Changes of plant diversity in grassland communities disturbed by grazing in Northeast China transect Journal of plant ecology, 200129. Li Qinghe, Yang Liwen, Zhou Jinxing Comparative analysis of plant community diversity characteristics in Jiulong Mountain, Beijing Journal of Applied Ecology, 200230. Wang qingsuo, Feng Zongwei, Luo juchun Study on biodiversity of forest grassland ecotone in northern Hebei and Eastern Inner Mongolia Journal of plant ecology, 200031 .D. Tilman, The ecological consequences of changes in biodiversity: a search for general principles, The Robert H. MacArthur Award Lecture. Ecology, 199932.Ash C, Priest F G, Collins M D. Moleclari dentification of RRNA group bacilli (Ash, Farrow. Wall bank sand Collins) using PCR probetest. Antonie Leeuwenhoek, 199333.A. Emmett, Biocomplexity: a new science for survival, The Scientist, 200034.Duffy L C, Leavens A, Griffiths E, etal. Perspectives on bifi-dobacteria as biotherapy euticagent sing as trointestin alhealth. Dig Dis Sci, 199935.Dieter Strack, etal. NeaSetanin. Anewnrural plant consistuent. Phytochemistory. one thousand nine hundred and eighty-seven36 .Matthew J. Paul and Christine H. Foyer ,Sink regulation of photosynthesis ,Journal of Experimental Botany, Vol. 52, No. 360, pp. 1383-1400, July 1, 200137. Weng Suying, et al Environmental microbiology Science Press, 198538. Li Shaowen Ecological biochemistry Peking University Press, 200139. Yan Chuanhai Phytogeography Science Press, 200140. Lin Peng Phytocoenology Shanghai Science and Technology Press, 198641. Caixiaoming Ecosystem ecology Science Press, 200042. China Vegetation Editorial Committee Chinese vegetation Science Press, 198043. Sun Hongzhi Biological population dynamics model Northeast Forestry University Press, 199744. Piro ec Mathematical ecology second edition Translated by Lu Taiyu Science Press, 198845. Mark Ping, ye Wanhui, et al Study on plant community diversity in Dongling Mountain Area of Beijing Journal of ecology, 199746. Yu Kongjian Landscape security pattern of biological protection Journal of ecology, 199947. Shang Yuming, Ding Zixian, Tong Haihong Analysis of the ecological environment impact of the west route of the South-to-North Water Transfer Project People's Yellow River, 200148. Yu Liping, et al Application and development trend of environmental biotechnology Urban environment and urban ecology, 200249. Yang zaixue, Zheng Yuanli, Hu Zhixian, etc Comparative study on age group division criteria of Apodemus agrarius population Southwest Agricultural Journal, 200250. Dongzheren River morphological diversity and biologicalcommunity diversity Journal of water conservancy, 20。
N:P ratios,light limitation,and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollutionKarl E.Havens a,*,R.Thomas James a ,Therese L.East a ,Val H.Smith baSouth Florida Water Management District,West Palm Beach,Florida 33406,USAbU niversity ofKansas,Lawrence,Kansas 66045,U SAReceived 2May 2002;accepted 19July 2002‘‘Capsule’’:Low ratios ofN:P and low underwater irradiance control dominance ofcyanobacteria in a subtropical lake.AbstractA long-term (28-year)data set was used to investigate historical changes in concentrations of phosphorus (P),nitrogen (N),N:P ratios,and Secchi disk transparency in a shallow subtropical lake (Lake Okeechobee,Florida,USA).The aim was to evaluate changes in the risk of N 2-fixing cyanobacterial blooms,which have infrequently occurred in the lake’s pelagic zone.Predictions regarding bloom risk were based on previously published N:P ratio models.Temporal trends in the biomass of cyanobacteria were evaluated using phytoplankton data collected in 1974,1989–1992,and 1997–2000.Concentrations of pelagic total P increased from near 50m g l À1in the mid-1970s to over 100m g l À1in the late 1990s.Coincidentally,the total N:P (mass)ratio decreased from 30:1to below 15:1,and soluble N:P ratio decreased from 15:1to near 6:1,in the lake water.Published empirical models predict that current conditions favor cyanobacteria.The observations confirm this prediction:cyanobacteria presently account for 50–80%of total phytoplankton biovolume.The historical decrease in TN:TP ratio in the lake can be attributed to a decreased TN:TP ratio in the inflow water and to a decline in the lake’s assimilation of P,relative to N.Coincident with these declines in total and soluble N:P ratios,Secchi disk transparency declined from 0.6m to near 0.3m,possibly due to increased mineral turbidity in the lake water.Empirical models predict that under the turbid,low irradiance conditions that prevail in this lake,non-heterocystous cyanobacteria should dominate the phytoplankton.Our observations confirmed this prediction:non-N 2-fixing taxa (primarily Oscillatoria and Lyngbya spp.)typically dominated the cyanobacteria community during the last decade.The only exception was a year with very low water levels,when heterocystous N 2-fixing Anabaena became dominant.In the near-shore regions of this shallow lake,low N:P ratios potentially favor blooms of N 2-fixing cyanobacteria,but their occurrence in the pelagic zone is restricted by low irradiance and lack of stable stratification.#2002Elsevier Science Ltd.All rights reserved.Keywords:Cyanobacteria;Nitrogen:phosphorus ratios;Transparency;Shallow lakes1.IntroductionCyanobacteria dominance,and sometimes bloom formation,are among the most visible symptoms of accelerated eutrophication of lakes and reservoirs (Moss et al.,1997).At high densities,cyanobacteria produce taste and odor problems in drinking water,impair aes-thetics,and kill aquatic biota due to conditions asso-ciated with their senescence (e.g.low dissolved oxygen and high ammonia concentrations)and/or the productionof toxins (Paerl et al.,2001).Understanding the cause of cyanobacteria dominance has been a focal point of classical and contemporary limnological research.Early experimental whole-lake research (Schindler,1977)established that high concentrations of P,and a low N:P supply ratio,are favorable for the production of cya-nobacteria blooms.Smith (1983)evaluated data from a wide range of temperate lakes and concluded that a total N:P ratio (TN:TP)of 29:1differentiates between lakes with cyanobacteria dominance (TN:TP <29:1by mass)and lakes without such dominance (TN:TP >29:1).Smith et al.(1995)concluded that a mass ratio of 22:1provided a more distinct boundary0269-7491/03/$-see front matter #2002Elsevier Science Ltd.All rights reserved.P I I :S 0269-7491(02)00304-4Environmental Pollution 122(2003)379–390/locate/envpol*Corresponding author.Tel.:+1-561-682-6534;fax:+1-561-682-6442.E-mail address:khavens@ (K.E.Havens).between lakes dominated by N-fixing cyanobacteria and lakes with low occurrence of these algae.The mechanism proposed(Smith,1983)to link cya-nobacteria dominance to a low TN:TP ratio is that all species of cyanobacteria are better able to compete for nitrogen than other phytoplankton when N is scarce. Therefore,when excessive P loading creates a surplus supply of phosphorus,N becomes relatively scarce and cyanobacteria are predicted to become dominant.Sub-sequent multi-lake surveys and controlled experiments (Smith and Bennett,1999)have generally supported this hypothesis(for a contrasting view,however,see Down-ing et al.,2001).Cyanobacterial blooms in moderately deep,stratified eutrophic lakes typically are comprised of N2-fixing taxa,including Anabaena and Aphanizomenon(Paerl et al.,2001).These bloom-forming members of the Nos-tocaceae are strong resource competitors under condi-tions of nitrogen limitation because they canfix new nitrogen from N2,a gaseous source of inorganic nitro-gen that is not available to other phytoplankton (Horne,1979;Howarth et al.,1988;Tilman,1982).In contrast,shallow eutrophic lakes typically are domi-nated by cyanobacterial taxa that do notfix N2,in par-ticular the family Oscillatoriaceae,including Oscillatoria,Planktothrix,and Limnothrix(Berger, 1989;van Duin et al.,1995).The dominance of non-N2-fixing cyanobacteria is attributed to their ability to maintain net growth at low underwater irradiance(van Duin et al.,1995).Oscillatoriaceae can attain high bio-mass in shallow eutrophic lakes,but do not form sur-face blooms.They continue to grow even when biomass and light attenuation become extremely high,possibly setting up a stable feedback loop that maintains their dominance over other phytoplankton species(Scheffer et al.,1997).A long-term(28-year)data set from a large sub-tropical lake(Lake Okeechobee,Florida,USA)pro-vides an opportunity to further evaluate the factors that control cyanobacterial biomass and taxonomic compo-sition in phytoplankton communities.This lake has displayed a wide range of TN:TP ratios,underwater irradiances,and phytoplankton composition,and has infrequent blooms of N2-fixers such as Anabaena circi-nalis(Jones,1987).Most often it is dominated by Oscillatoria and Lyngbya(Havens et al.,1998).The lake also experiences frequent wind resuspension of its mud bottom sediments(Jin et al.,2000),and has a corre-spondingly high contribution of abiotic seston to underwater light attenuation(Havens,1995a).During winter the phytoplankton can include a high relative biovolume of small centric diatoms and pico-plankton (Phlips et al.,1997).Our objective is to use a long-term water chemistry data set(1973–2000),and historic phy-toplankton data sets(1974,1989–1992,1997–2000)to address the following questions:1.Have pelagic nutrient concentrations and N:Pratios changed in a direction that favors bloom-forming,N2-fixing cyanobacteria?2.Have there been historical changes in the abso-lute and the relative biomass of cyanobacteria,and are those changes consistent with predictionsbased on nutrient-ratio theory?3.Is there evidence that low underwater irradiancesuppresses dominance by N2-fixing cyano-bacteria,relative to what would be predictedfrom N:P ratios?4.What are the lake management implications ofthese results,from the perspective of LakeOkeechobee and other shallow eutrophic lakes?2.Study siteLake Okeechobee(Fig.1)is a natural lake located at 27 000N,80 500W in south Florida,USA.A dike that was constructed in the early part of the20th century for regionalflood control encircles the lake,and its hydrol-ogy is constrained by water control structures on all outflows and all but one inflow.Depth in the pelagic zone averages3m,with a maximal depth of4.5m.In addition to providingflood protection and water sup-ply,the lake’s littoral zone is an important wildlife habitat,and the ecosystem supports a valuable recrea-tionalfishery(Furse and Fox,1993).3.Data sourcesWater chemistry data were obtained from the long-term monitoring program of the South Florida Water Management District(SFWMD),and included monthly (October–April)or twice monthly(May–September) data from eight pelagic stations(Fig.1).The period of record was January1973to December2000.We exam-ined data for near-surface samples of TP,TN,soluble reactive P(SRP),dissolved inorganic N(DIN= NO x-N+NH4-N),chlorophyll a,and Secchi transpar-ency.The methods of sample collection,processing, analysis,and quality control follow established standard protocols of the Florida Department of Environmental Protection that are described in detail in James et al. (1995a).Unless otherwise indicated,data reported in this paper for any given year are arithmetic means from the eight pelagic stations.Full yearly data,rather than data from some speci-fied‘‘growing season’’were used here for several rea-sons.First,conditions in this Florida lake are favorable for phytoplankton growth year-round in some lake regions.Water temperatures in the pelagic region vary only from approximately18to30 C between winter and mid-summer,respectively(Havens380K.E.Havens et al./Environmental Pollution122(2003)379–390et al.,1994).In the central pelagic region,a higher degree of sediment resuspension during the windy win-ter season does restrict phytoplankton growth (Phlips et al.,1993),but at that same time of year,phyto-plankton maxima have been observed in western pela-gic regions (Phlips et al.,1993).Second,use of yearly-averaged data allows for consistency when comparing in-lake TN:TP ratios with ratios in total yearly loads from the watershed.Third,when we compared historic trends in TP,TN,TN:TP and other attributes pre-sented in this paper,on both a yearly average vs.sum-mer average (May-September)basis,no substantive differences were found.Nutrient loading data were examined with a focus on the loading ratio of TN:TP and the relative residence times of N vs.P (t N or t P =lake mass+annual change in lake mass/output mass+mass loss to sediments).The net sedimentation coefficient for P (calculated here as (input Àoutput)/change in lake mass)also was calcu-lated from the lake nutrient budget.These attributes were examined in order to explain observed historic changes in lake water TN:TP ratios.Water andnutrientFig.1.Map of Lake Okeechobee,showing locations of long-term (1973–2000)water quality monitoring stations (open circles),and the stations where data were collected for evaluation of phytoplankton biovolume and taxonomic composition by Marshall (1977,black circles),Cichra et al.(1995,grey circles),and the ongoing SFWMD sampling program (grey squares).The small inset map shows the location of this lake in Florida,USA.K.E.Havens et al./Environmental Pollution 122(2003)379–390381budgets for Lake Okeechobee are determined based on data collected at32inflow/outflow monitoring sites plus the eight in-lake pelagic monitoring stations.Flows at tributary structures are continuously monitored and nutrient sampling is done with a combination of monthly or twice monthly grab samples and time-com-posite autosamplers.Water depths in the lake were determined from a network of12stage recorders main-tained by the SFWMD and United States Army Corps of Engineers.Details of this sampling program and nutrient budget calculations are provided in James et al. (1995b).Phytoplankton data were compiled from a number of successive programs carried out on the lake since the early1970s.Sampling carried out by Marshall(1977) during1974included the eight long-term water quality monitoring stations.Cichra et al.(1995)sampled21 stations from1988to1990,and the SFWMD collected phytoplankton samples from four pelagic stations from 1997to2000.Marshall(1977)and Cichra et al.(1995) sampled monthly.The SFWMD sampling was every other month from1994to1999and monthly thereafter. To maintain spatial continuity in the data set,we inclu-ded only data from the four stations located closest to the current SFWMD phytoplankton sampling stations in our analyses.In all sampling programs,the phyto-plankton was preserved in Lugols solution and counted with an inverted microscope at1000Âmagnification or higher following the methods of Lund et al.(1958). Species’cell volumes were determined by measuring cells and approximating their shapes to regular geo-metric solids,and data are expressed as population bio-volumes(m m3mlÀ1).Here we focus on both the absolute and the relative biovolumes of all cyano-bacteria;of N2-fixing cyanobacteria;and of selected cyanobacterial taxa including Anabaena,Aphanizome-non,Microcystis,Oscillatoria,and Lyngbya.All of these taxa have been dominant at one time or another in the recent history of the lake(Havens et al.,1998)and they all are implicated with water quality problems in other eutrophic lakes and reservoirs(Paerl et al.,2001).For comparative purposes,we also evaluated data from Lake Okeechobee in the context of other published studies,drawing upon datasets published in Smith (1985,1986).4.Results and discussionke nutrient statusTotal P concentrations in Lake Okeechobee display year-to-year variation(Fig.2A)that is positively corre-lated with water levels in the lake(Canfield and Hoyer, 1988);this variation has been explained based on a number of physical and biological mechanisms(Havens,1997).Over the28-year period of record,there has been a general increase in TP,with concentrations in the early1970s averaging near50m g lÀ1,compared to>100 m g lÀ1since the late1990s.Total N concentrations (Fig.2B)also increased from the early1970s to1981, but then declined to near the original values in the1980s and1990s.As a result of these historic changes,the lake water TN:TP ratio decreased from approximately30:1 (with considerable variability)prior to1982to below 15:1in the1980s and1990s.According to Smith et al. (1995),lake water TN:TP ratios below22:1favor dom-inance by N2-fixing cyanobacteria.Soluble reactive P concentrations(Fig.3A)display year-to-year variation that tracks changes in TP.There generally are high concentrations of SRP in the pelagic water of Lake Okeechobee,reflecting a surplus of P and explaining why the phytoplankton almost never are found to be limited by P in nutrient-addition bioassays (Aldridge et al.,1995;Phlips et al.,1997).Although DIN also displays high seasonal and year-to-year var-iation(Fig.3B),there is no significant long-termtrend Fig.2.Yearly average concentrations of total phosphorus,TP(A), total nitrogen,TN(B),and the TN:TP ratio(C)in Lake Okeechobee from1973to2000.The data are means calculated from monthly or semi-monthly sampling at the eight pelagic stations shown in Fig.1. The critical ratio of22:1by mass(Smith et al.,1995),below which cyanobacteria dominance is predicted to occur,is shown in panel C.382K.E.Havens et al./Environmental Pollution122(2003)379–390in this attribute.During mid-summer,DIN concentra-tions typically decline to levels that are limiting for phytoplankton growth (Phlips et al.,1997).The ratio of DIN:SRP declined from near 20:1by mass (with con-siderable variation)in the early 1970s to ratios below 10:1after this time (Fig.3C).DIN:SRP ratios <10:1by mass are considered to indicate strongly nitrogen-limit-ing conditions that favor the growth and proliferation of N 2-fixing cyanobacteria (Horne and Commins,1987;Smith et al.,1995).4.2.Nutrient loading ratiosThe historical trend in TN:TP loading ratio (by mass)is similar to that displayed by lake water TN:TP ratios (Fig.4A).Loading ratios averaged near 18:1in the 1970s,and then declined after 1982to near 12:1.Both lake and loading ratios declined from the first to the second decade of sampling (Fig.4B).However,from the second to third decade,TN:TP ratios in the lake waterdeclined further,without a corresponding change in loading ratios.There also has been a parallel decrease in the N:P residence time ratio (Fig.5A).Vollenweider (1974)sug-gested that a shift in the N:P residence time ratio to values below 1may mark a change from phosphorus to nitrogen limitation of algal productivity,and indeed this shift in nutrient limitation status has been documented for Lake Okeechobee (Havens,1995b).Janus et al.(1990)concluded,‘‘if the [N:P residence time ratio]trend continues to a value below about 1,the implica-tion is that blooms of blue-green N 2-fixers will become a more prominent feature of the lake,which may result in chronic water quality problems.’’In regard to the mechanism underlying the lake’s decreasing N:P resi-dence time ratio,we suspect that after decades of excessive P loads,the system has experienced a decrease in its ability to process incoming P.A downward trend in the net P sedimentation coefficient (Fig.5B)confirms that the lake’s capacity to assimilate P is decreasing,favoring a greater development of P surplus and N lim-itation (Havens and Schelske,2001).The recent finding (Fisher et al.,2001)of increased sedimentporewaterFig.4.Yearly average loading ratio of TN:TP (by mass)for inflows to Lake Okeechobee from 1973to 2000(A),and relationship between lake water TN:TP and inflow loading TN:TP (B).Three decades of data are differentiated in panel B to more clearly illustrate the changes that have occurred over time.Critical ratios for cyanobacteria dom-inance are taken from Smith et al.(1995)for the lake water and Flett et al.(1980)for theloads.Fig.3.Yearly average concentrations of soluble reactive phosphorus,SRP (A),dissolved inorganic nitrogen,DIN (B),and the DIN:SRP ratio (C)in Lake Okeechobee from 1973to 2000.The data are means calculated from monthly or semi-monthly sampling at the eight pelagic stations shown in Fig.1.The critical ratio of 10:1by mass (Horne and Commins,1987),below which cyanobacteria dominance is predicted to occur,is shown in panel C.K.E.Havens et al./Environmental Pollution 122(2003)379–390383SRP concentrations relative to porewater conditions that were measured one decade ago provides additional support for this hypothesis.The nutrient loading study by Janus et al.(1992)occurred just after a large pelagic bloom of Anabaena circinalis occurred in summer 1986(Jones,1987;Swift et al.,1987).However,despite a consistently low N:P residence time ratio,large pelagic Anabaena blooms have not re-occurred on the lake.Blooms of hetero-cystous cyanobacteria are instead frequently observed in sheltered regions near the lake shore,where there is a strong positive correlation between algal blooms and concentrations of TP in the water (Havens and Walker,2002).4.3.Other water quality attributesCoincident with the increasing TP concentrations in Lake Okeechobee there has been a decline in Secchi disk transparency (Fig.6A).There has not,however,been a corresponding increase in phytoplankton chlorophyll a (Fig.6B),suggesting that the lake may have experienced an increase in the amount of mineral turbidity in its water column,possibly due to greater sediment resus-pension.There is unfortunately no long-term record of non-volatile suspended solids for this lake,so it is not possible to test this hypothesis directly.However,Havens and James (1999)documented that there has been lateral expansion of the soft fluid mud sediments that occur in the lake’s central pelagic area,and that site-specific declines in Secchi disk transparency coin-cide temporally with sediment migration into certain lake regions.The observed decline in average Secchi depth may therefore indicate a progressive increase in the number of pelagic stations with low transparencies,as mud sediment has migrated outward over time from the lake’s center.Other hypotheses,such as tightly cou-pled primary production/zooplankton grazing/detritus production,seem less likely,because it has been experi-mentally documented that zooplankton grazing has no significant effects on phytoplankton in this lake (Havens et al.,1996).Diminished light conditions in the lake might favor Oscillatoriaceae,as noted above.Alternatively,the lower light levels could suppress dominance by all spe-cies of cyanobacteria,in favor of other phytoplankton,if the concentrations of inorganic suspended seston become sufficiently high (van Duin et al.,1995;Knowl-ton and Jones,1996;Smith and Bennett,1999).4.4.Cyanobacteria biomass and dominanceIn 1974,the biovolume of cyanobacteria averaged ca.3Â106m m 3ml À1,accounting for roughly 30%of the total phytoplankton biovolume in the lake (Fig.7A,B).The total biovolumes of cyanobacteria in 1989,1990,Fig.6.Yearly average Secchi disk transparencies (A)and concentra-tions of plankton chlorophyll a (B)in Lake Okeechobee from 1973to 2000.The data are means calculated from monthly or semi-monthly sampling at the eight pelagic stations shown in Fig.1.Fig.5.Ratio of nitrogen to phosphorus residence time (t N /t P )in Lake Okeechobee from 1973to 2000(A).The solid line is a least-squares linear regression model fit to the phosphorus assimilation by the lake from 1973to 2000(B).The solid line is a polynomial regres-sion model fit to the data.Methods for calculating residence time and assimilation are described in the text.384K.E.Havens et al./Environmental Pollution 122(2003)379–3901992and 1997–2000were not dramatically different than in 1974,but their contribution to the total phyto-plankton biovolume was consistently higher than in 1974,with the relative biomass of all cyanobacteria ranging from 50to 80%.This increase in cyanobacterial dominance agrees with expectations based on the observed reductions in lake water TN:TP ratios,and with the widespread N-limitation of phytoplankton production that has been documented in Lake Okee-chobee during the past decade (Aldridge et al.,1995;Phlips et al.,1997).In the document containing phytoplankton data from 1974(Marshall,1977),there are no quantitative data regarding individual taxa of algae.Therefore it is not possible to evaluate the relative biomass of N 2-fixing vs.non N 2-fixing cyanobacterial species in that year.How-ever,in 1989,1990and 1992,the contributions of het-erocystous cyanobacteria to the total (Fig.8A)were only 20–40%,and similar results were obtained in 1997to 1999.A much higher relative biomass (80%)of N 2-fixing cyanobacteria occurred in 2000,a year when water levels dropped by nearly 1.5m during a regional drought,and large near-shore areas exhibited con-siderably enhanced light penetration through the water column (Havens et al.,2001).These improved lightconditions might have stimulated growth of N 2-fixing cyanobacteria,which subsequently were transported to the pelagic region.In 2000,the cyanobacteria was dominated by Anabaena spp.(A.circinalis and A.lim-netica ),whereas Oscillatoria and Lyngbya were domi-nant in the other years when water column light availability was lower (Fig.8B).In certain years (1989and 1997),Cylindrospermopsis also had a relatively high biovolume.This alga is a N 2-fixer in the family Nosto-caceae,but it has morphological and ecological char-acteristics resembling members of the family Oscillatoriaceae (see below).The dominance by Oscillatoria and Lyngbya in most years of the survey,when Secchi disk transparency was low,is consistent with the general model presented in Havens et al.(1998),and with research results from other shallow turbid lakes.Berger (1989)concluded that lakes with mean depth of <3.0m and low Secchi depth are expected to be dominated by Oscillatoriaceae,which have adaptations to permit effective light harvesting under low irradiance conditions.These adaptations include high chlorophyll-to-biovolume ratios,high con-centrations of accessory photo-pigments,and a large surface-to-volume ratio (Zevenboom et al.,1982;Fig.8.Percent of yearly averaged cyanobacteria biovolumes due to N 2-fixing and non-N 2-fixing taxa (A)in Lake Okeechobee in 1989–1992,and 1997–2000.Corresponding data for the dominant cyano-bacteria genera (B).There are no comparable data at this level of resolution available from the 1974study.Fig.7.Yearly average biovolumes (A)of total phytoplankton and cyanobacteria in Lake Okeechobee in 1974,1989–1992,and 1997–2000.The data are means of monthly sampling at the four pelagic stations shown in Fig.1.Relative cyanobacterial biomass (percent of total biovolume due to cyanobacteria)(B)based on the same data.K.E.Havens et al./Environmental Pollution 122(2003)379–390385Hosper,1997;Phlips et al.,1997).Reynolds(1984) called these taxa the‘‘shade plants’’of the phyto-plankton,and there are many reports in the literature of near-complete dominance of the plankton by Oscilla-toria,Lyngbya,and Planktothrix in strongly light-lim-ited lakes(e.g.Berger1989;Rucker et al.,1997;Scheffer et al.,1997).A detailed evaluation of phytoplankton responses to light and nutrients in Lake Okeechobee(Phlips et al., 1997)supports the hypothesis that low light conditions have a strong controlling influence on phytoplankton community structure.A series of controlled experiments were performed in1994and1995to evaluate growth responses of the lake’s phytoplankton to a range of irradiances and N and P concentrations;these experi-ments were coupled with simultaneousfield observa-tions of heterocyst abundance,N2fixation,and DIN concentrations.The experiments confirmed that low light availability in the pelagic zone,during winter to spring,limits algal growth to a level below that poten-tially supported by available supplies of N and P. Nitrogen limits algal growth in summer and early fall,at which time there is a significant relationship in the lake between heterocyst density,N2fixation,and the deple-tion of DIN.Phlips et al.(1997)also documented that during1994–1995(a period not covered by our routine sampling program),the dominant phytoplankton taxa were non-heterocystous cyanobacteria(Oscillatoria and Lyngbya),small centric diatoms,and1–2m m pico-phy-toplankton.The authors suggested that the small cell size/filament diameter of these species allows them to make better use of the low amounts of light in the water column,and that this largely determines their dom-inance.On one occasion(May–June1994),however,the phytoplankton at a northern station(L001)was instead dominated by Anabaena.This species shift coincided with high rates of N2fixation,a high density of hetero-cysts,a peak in total phytoplankton biomass,and importantly,an increase in the mean water column irradiance.Taken together,these results support the hypothesis that in Lake Okeechobee a low lake water TN:TP ratio provides nutrient conditions that are potentially favorable for dominance by N2-fixing cya-nobacteria,but that their occurrence is often modified or restricted by low light availability.The occurrence of Cylindrospermopsis in Lake Okee-chobee is consistent with the hypothesis that low irra-diances affect taxonomic structure in the cyanobacteria assemblage(Havens et al.,1998).Although this alga can fix N2,it often does not produce heterocysts,and unlike other members of the family Nostocaceae,when it pro-liferates,thefilaments remain mixed through the water column(i.e.it does not form surface blooms;St. Amand,2002).The cells are very small(2–3m m),pro-viding a large surface to volume ratio,and active growth can occur under low light conditions.Cylindrospermopsis has invaded many eutrophic Florida lakes(Chapman and Schelske,1997;St. Amand,2002),filling a niche typically exploited by Oscillatoria and Lyngbya.Further research is needed to quantify competition between Cylindrospermopsis and the native phytoplankton taxa for resources,including dissolved inorganic N.Research should also be designed to tease apart the interactive effects of nutrient supply, light levels,and turbulence on control of cyanobacterial community structure and competitive interactions with eukaryotic phytoplankton.parisons with published data and empirical modelsSmith(1985)presented data fromfive sources in Eur-ope and North America,which when plotted as growing season averages,indicate an inverse relationship between cyanobacterial dominance and TN:TP ratios. When his data were re-plotted with the data from Lake Okeechobee(Fig.9A),it is apparent that our new resultsfit the general inverse pattern,with percent cya-nobacteria values at the higher end of the range observed by Smith(1985),except for the1974datum. Fig.9.Relationship between percent of total phytoplankton biovo-lume due to cyanobacteria(A)and percent due to N2-fixing cyano-bacteria(B)and water column TN:TP ratios.Open circles are data from various lakes compiled by Smith(1985);closed triangles are the data from Lake Okeechobee.In panel B there are only7data points, because the report of phytoplankton studies from1974(Marshall, 1977)did not quantify the percentage of N2-fixing cyanobacteria in the community.386K.E.Havens et al./Environmental Pollution122(2003)379–390。
第39卷第8期2019年4月生态学报ACTAECOLOGICASINICAVol.39,No.8Apr.,2019基金项目:国家自然科学基金面上项目(41471054);中国科学院百人计划项目(KZZD⁃EW⁃TZ⁃14)收稿日期:2018⁃05⁃08;㊀㊀网络出版日期:2019⁃01⁃18∗通讯作者Correspondingauthor.E⁃mail:wdkong@itpcas.ac.cnDOI:10.5846/stxb201805081021刘金波,孔维栋,王君波,刘晓波,张国帅,康世昌.纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子.生态学报,2019,39(8):2772⁃2783.LiuJB,KongWD,WangJB,LiuXB,ZhangGS,KangSC.Abundance,communitystructure,andthedrivingfactorsofCarbonfixingmicroorganismsintheNamCoLake.ActaEcologicaSinica,2019,39(8):2772⁃2783.纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子刘金波1,3,孔维栋1,∗,王君波2,刘晓波1,张国帅2,康世昌21中国科学院青藏高原研究所,高寒生态学与生物多样性重点实验室,北京㊀1001012中国科学院青藏高原研究所,青藏高原环境变化与地表过程重点实验室,北京㊀1001013西南医科大学附属医院,肝胆外科,泸州㊀646000摘要:湖泊是微生物固碳的主要生态系统之一,但青藏高原湖泊水体固碳微生物群落的研究还罕见报道㊂以纳木错为例,采用定量PCR和克隆文库方法,研究湖水中cbbLID基因丰度和固碳微生物群落组成,并分析其与环境参数的关系㊂结果显示:纳木错湖水中存在较高丰度的cbbLID类型固碳微生物,从表层到底层呈增加趋势,T2点底层达到最高值(6.37ˑ108拷贝L-1湖水)㊂cbbLID类型固碳微生物共分四个类群,即不等鞭毛类(Stramenopiles),定鞭藻纲(Haptophyceae),蓝藻(Cyanobacteria)和隐藻门(Cryptophyta)㊂其中占主要的是Stramenopiles和Haptophyceae㊂Stramenopiles类群的多样性较高(含7个纲,13个科),其他类群只有1个科㊂相关性分析表明Stramenopiles和Haptophyceae出现频率存在显著的负相关关系(P<0.01)㊂湖水深度和pH与湖水cbbLID基因丰度显著相关(P<0.05,P<0.01)㊂叶绿素含量与Stramenopiles和Haptophyceae出现频率显著相关(P<0.01)㊂关键词:纳木错;固碳;微生物;群落结构;驱动因子Abundance,communitystructure,andthedrivingfactorsofCarbonfixingmicroorganismsintheNamCoLakeLIUJinbo1,3,KONGWeidong1,∗,WANGJunbo2,LIUXiaobao1,ZHANGGuoshuai2,KANGShichang21KeyLaboratoryofAlpineEcologyandBiodiversity,InstituteofTibetanPlateauResearch,ChineseAcademyofSciences,Beijing100101,China2KeyLaboratoryofTibetanEnvironmentChangesandLandSurfaceProcesses,InstituteofTibetanPlateauResearch,ChineseAcademyofSciences,Beijing100101,China3DepartmentofHepatobiliarySurgery,theAffiliatedHospitalofSouthwestMedicalUniversity,Luzhou646000,ChinaAbstract:Lakesareoneofthemainecosystemsforcarbonfixation;however,themicrobialcommunityforcarbonfixationinthelakesoftheTibetanPlateauhaverarelybeenreported.Inthisstudy,theNamCoLakewaschosentostudytheabundanceofcbbLIDgenesandtheircompositionusingquantitativePCRandaclonelibrarymethod.Wealsodiscusstheirrelationshipwithenvironmentalparameters.TheresultsshowedthattherewasahighabundanceofthecbbLIDgeneintheNamCoLake,andtherewasanincreasingtrendfromthesurfacetothebottom,andthehighestamountwasinthebottomsampleofT2(6.37ˑ108copies/Lwater).ThecommunitywasmainlycomposedofStramenopilesandHaptophyceae,andafewCyanobacteriaandCryptophytaappearedonindividuallayers.TheStramenopilesgrouphadahigherdiversity(including7classesand13families)thanthatoftheothergroups,andtherewasonly1familyofanothertaxa.Acorrelationanalysisshowedtherewasasignificantnegativecorrelation(P<0.01)oftheoccurrencefrequencyofStramenopilesandHaptophyceae.WaterdepthandpHhadasignificantcorrelationwithcbbLIDgeneabundance(P<0.05,P<0.01,respectively).ChlorophyllcontenthadasignificantcorrelationwiththeoccurrencefrequencyofStramenopilesandHaptophyceae.KeyWords:NamCoLake;carbonfixation;microorganism;communitystructure;drivingfactor湖泊是驱动水体地球元素循环和生态系统运行的关键系统之一,是地球表层系统碳循环的主要场所㊂微生物是驱动湖泊碳循环的关键,微生物组成研究对揭示其结构与功能至关重要㊂然而,我国在湖泊碳循环微生物驱动机制方面的研究还处于起步阶段[1]㊂在自然界中,微生物有多种CO2固定途径,包括卡尔文循环途径,厌氧乙酰辅酶A途径㊁还原性三羧酸循环途径㊁3⁃羟基丙酸途径㊁3⁃羟基丙酮/4⁃羟基丁酸循环途径㊁琥珀酰辅酶A途径㊁草酰乙酸盐途径㊁嘧啶和嘌呤核苷酸途径等[2⁃3]㊂其中,卡尔文循环(CBB)途径广泛存在于真核藻类和自养原核细菌中[4⁃5]㊂核酮糖⁃1,5⁃二磷酸羧化酶/加氧酶(RubisCO)是CBB途径中的一个关键的酶,它催化CO2固定到生物圈的第一步反应㊂RubisCO酶含有大小两个亚基,最保守的位点位于大亚基㊂功能基因cbbL编码RubisCO酶的大亚基,可分成4种类型(formI IV),其中,formI是自养微生物中最主要的类群㊂FormIRubisCO可以进一步被分为不同的类型formsIA,IB,IC和ID[6]㊂cbbL基因已经被广泛用于系统发育生物标志物来研究不同环境条件下自养微生物的群落结构和多样性[7⁃11]㊂尽管前人利用RubisCO基因调查了许多不同生境类型的固碳微生物群落多样性,但是在高寒湖泊环境中进行的研究相对较少㊂目前,南极湖泊中的微生物群落结构及其在元素地球化学循环的作用已取得一些重要进展[9⁃10,12⁃15]㊂在一个永久冰覆盖的南极湖泊中,含cbbLIDRubisCO基因的微生物是主要的固碳微生物类群[9]㊂青藏高原是世界上面积最大且海拔最高的高原,该区域气候独特,湖泊广泛发育,数量大和类型多㊂此外,这些湖泊受人为活动影响相对较小,有利于研究自然状态下湖泊微生物群落组成及其对环境的响应㊂但作为世界第三极的青藏高原湖泊中微生物生态学研究还处于起步阶段,目前主要是研究湖泊水和沉积物中细菌及古菌群落结构[16],以及环境因素(例如,pH㊁盐度㊁碱度和地理距离等)对细菌㊁古菌㊁以及真核生物群落结构和多样性的影响[17⁃21]㊂但是,湖水中哪些微生物参与固碳作用的研究还罕见报道㊂青藏高原湖水固碳微生物群落组成和多样性还不清楚㊂因此,研究青藏高原湖水固碳微生物群落特征具有重要的生态学意义㊂本研究以青藏高原纳木错为例,研究湖水中固碳基因丰度㊁群落组成,并初步探讨其驱动因子㊂1㊀研究区域与方法1.1㊀纳木错概况纳木错位于藏北高原东南部,西藏自治区当雄和班戈县境内,介于30ʎ30ᶄ 30ʎ35ᶄN,90ʎ16ᶄ 91ʎ03ᶄE之间㊂湖水主要依赖位于其南缘的念青唐古拉山脉冰雪融化补给㊂纳木错湖面海拔4718m,总面积为1982km2[22]㊂是我国第二大咸水湖,也是世界上海拔最高的咸水湖,纳木错湖地区基本不受人为影响,纳木错湖水深超过90m[23]㊂1.2㊀样品采集以及水质参数测定2012年9月在纳木错湖从东到西的方向上分别采集4个样点的水柱样本,分别标记为T0(N:30ʎ47.782ᶄ,E:90ʎ58.133ᶄ),T1(N:30ʎ47.031ᶄ,E:90ʎ49.473ᶄ),T2(N:30ʎ44.573ᶄ,E90ʎ45.317ᶄ)和T3(N:30ʎ38.025ᶄ,E:90ʎ28.634ᶄ),采样位置如图1所示㊂根据每个位置湖水深度,水样用采水器直接采集,分层取表层到最底层,并用1L无菌广口瓶保存,每层水样3次重复,采集后置于冰盒中带回纳木错野外综合观测实验站㊂在实3772㊀8期㊀㊀㊀刘金波㊀等:纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子㊀图1㊀纳木错采样位置示意图Fig.1㊀NamCosamplingsketchmap㊀T0:终端0,Terminal0;T1:终端1,Terminal1;T2:终端2,Terminal2;T3:终端3,Terminal3验室采用0.45μm孔径滤膜进行过滤,所用装置为六联过滤器(Millipore,美国)㊂过滤完毕带有水体微生物的滤膜保存在5mL无菌冻存管中(Corning,美国),置于-80ħ冰箱中冻存备用㊂采集水样的同时,利用美国哈希公司生产的HydrolabDS5多参数水质仪在野外工作现场对垂直剖面上的水质数据进行采集[24]㊂1.3㊀样本总DNA提取及基因丰度检测分别取滤膜在无菌操作台上剪碎,之后采用DNA提取试剂盒(MP)进行总DNA提取㊂DNA浓度和质量采用Nanodrop2000(Thermo,英国)进行测定㊂采用引物cbbLID⁃F(5ᶄ⁃GATGATGARAAYATTAACTC⁃3ᶄ)和cbbLID⁃R(5ᶄ⁃ATTTGDCCACAGTGDATACCA⁃3ᶄ)[4]对样本cbbLID基因丰度进行定量PCR检测㊂采用绝对定量法,以含有目标片段的质粒10倍稀释做为标准曲线㊂所有定量PCR均采用荧光标记法,所用试剂为SYBRGreenII(宝生物,大连),所用仪器为LightCycler 480system(Roche,美国)㊂反应体系为20μL,包括10μLSYBR预混液(TaKaRa,大连),10 20ngDNA,0.6μmol/L上/下游引物㊂扩增条件为,95ħ预变性2min,之后是35个循环的定量PCR㊂94ħ变性30s,退火温度52ħ,在72ħ收集荧光信号,检测结果用定量PCR仪专用分析软件进行计算㊂同时对cbbLIA/B[25]以及cbbLIC[26]基因丰度进行检测,检测方法相同,cbbLIA/B的退火温度为54ħ;cbbLIC的退火温度为52ħ㊂1.4㊀样本克隆文库及测序分析根据基因丰度的结果,对丰度较高的cbbLID基因进行克隆文库构建和系统发育分析㊂选取水深度较深且代表湖水面积较大的T2(0m,5m,20m,60m,80m和底层)和T3(0m,5m,10m,20m,40m和底层)水样进行克隆文库构建和测序㊂每层水样3次重复分别采用cbbLID⁃F/R引物进行PCR扩增,扩增条件同定量PCR㊂3个重复产物混合进行凝胶电泳检测,采用胶回收试剂盒(Axygen)对PCR产物进行切胶纯化㊂将切胶纯化的PCR产物采用PEGM⁃T载体连接试剂盒(Promega)转到DH⁃5α感受态细胞中,进行蓝白斑筛选,每个样本选取阳性克隆35 70个送北京华大基因有限公司进行测序㊂1.5㊀数据统计分析与作图不同深度及不同样点间ID类固碳微生物数量ANOVA显著性检验(P<0.05),湖水理化性质与固碳微生物数量以及不同类群出现频率之间Pearson相关性分析采用SPSS18.0进行㊂基因丰度及理化性质图采用SigmaPlot10.0绘制㊂克隆文库测序覆盖度用公式C=1-n/N计算(其中C为覆盖度,即Coverage,n为文库中只出现一次的克隆数量,N为该文库克隆总数)㊂测序结果在NCBI上进行Blast比对㊂采用mothur[27]以97%相似性进行可操作分类单元(OTU)划分,选取代表OTU采用MEGA5[28]构建系统发育树㊂构建系统进化树时,迭代运算1000次㊂固碳微生物类群在湖水不同深度出现频率,按每个层中该物种的克隆数占该水层总克隆数的比例计算㊂1.6㊀基因序列号用于构建系统发育树的代表OTU序列均已提交至NCBI的GenBank数据库中,检索号分别为MH557362 MH557411㊂2㊀结果与分析2.1㊀纳木错湖水中固碳微生物数量纳木错湖水中,固碳基因cbbLID的丰度最高,所有样本中cbbLID基因丰度在2.46ˑ107 6.37ˑ108拷贝/L湖水(图2);cbbLI/B基因丰度在7.59ˑ106 3.96ˑ107拷贝/L湖水之间,仅次于cbbLID基因(图2);cbbLIC4772㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀基因的丰度最低,大部分基因丰度在5.16ˑ104 1.17ˑ106拷贝/L湖水之间,但最底层的基因丰度均高于1.0ˑ107拷贝/L湖水(图2)㊂以固碳基因丰度最高的cbbLID为例,丰度从表层到底层有增加的趋势,尤其是在水深大于60m以及水和底泥交界面的底层最高㊂T0,T2和T3点的最底层基因丰度显著高于上层(P<0.05)㊂成对比较表明,T0点和T1与T2点之间基因丰度差异显著,其他样点之间无显著差异(P<0.05)㊂图2㊀纳木错湖水中cbbLID,IA/B和IC基因拷贝数Fig.2㊀cbbLID,IA/BandICgenecopynumberinNamColakewaterT0,T1,T2和T3代表从东到西4个水样剖面采样点,所有数据为平均值ʃSe(n=3)2.2㊀ID类固碳微生物群落组成选取湖泊中心区域水深较深的T2(6层)和西部湖面积较大的T3(6层)代表样品进行克隆文库和测序,并构建系统发育树㊂所有样本测序共得到有效序列535条,去除相似性高的同一序列后,得到单一序列275条,经过OTU划分,共得到代表OTU序列50条㊂每个样本克隆文库的饱和度均在81.8% 96.6%之间(表1),测序数量接近饱和,能够代表基因文库所有ID功能基因的类型㊂系统发育分析显示(图3),纳木错湖水中含cbbLID基因的微生物可划分为4个类群,其中不等鞭毛类(Stramenopiles)占主要地位,除了在T2点60m水深出现频率较低外(25%),其他深度均较高,最高达到100%,在相同深度T3点水样中的出现频率高于T2点㊂第二大类是定鞭藻纲(Haptophyceae),其在T2点60m水深出现频率最高(75%),其他样点较低,最低的为0,在相同深度T3点水样中的出现频率低于T2点㊂蓝藻(Cyanobacteria)出现频率较低,且只在T2点80m水样中检测到;隐藻门(Cryptophyta)只在T3点0m和40m水层检测到(表1)㊂5772㊀8期㊀㊀㊀刘金波㊀等:纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子㊀6772㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀图3㊀纳木错湖水cbbLID群落系统发育树Fig.3㊀cbbLIDcommunityphylogenetictreeofNamColakewater系统发育树中OTU序列名称为位点+深度+克隆编号+NCBI编号表1㊀纳木错湖水cbbLID类群在不同深度出现频率Table1㊀OccurrencefrequencyofcbbLIDgroupinNamColakewateratdifferentdepths深度覆盖度/%蓝藻/%隐藻门/%定鞭藻纲/%不等鞭毛类/%DepthCoverageCyanobacteriaCryptophytaHaptophyceaeStramenopiles0m(T3)94.120.002.0810.4287.505m(T3)97.060.000.006.0693.9410m(T3)82.350.000.008.8291.1820m(T3)94.120.000.000.00100.0040m(T3)83.820.006.250.0093.75底层(T3)92.650.000.000.00100.000m(T2)98.530.000.0045.4554.555m(T2)98.530.000.0021.4378.5720m(T2)98.530.000.0055.5644.4460m(T2)97.060.000.0075.0025.0080m(T2)95.595.560.0033.3361.11底层(T2)91.180.000.005.0095.00㊀㊀T3:终端3,Terminal3;T2:终端2,Terminal22.3㊀ID类固碳微生物多样性根据代表OTU最相近的物种进行归类,主要类群的Stramenopiles的多样性最高,其他3类的多样性低(表2)㊂Stramenopiles包括44个代表OTU,归属于7个纲㊂分别是属于硅藻门(Bacillariophyta)的硅藻纲(Bacillariophyceae),脆杆藻纲(Fragilariophyceae)和圆筛藻纲(Coscinodiscophyceae),以及金藻纲(Chrysophyceae),黄群藻纲(Synurophyceae),真眼点藻纲(Eustigmatophyceae)和硅鞭藻纲(Dictyochophyceae)㊂其中硅藻纲下包括4个已知科:长曲壳藻科(Achnanthidiaceae),硅藻科(Bacillariaceae),Catenulaceae和双菱藻科(Surirellaceae)和1个未定科的类群;金藻纲下包括3个已知科:单鞭金藻科(Chromulinaceae),金囊藻科(Chrysocapsaceae)和锥囊藻科(Dinobryaceae);其他5个纲只有1个科㊂总计13个科㊂Haptophyceae共有3个代表OTU,属于金色藻科(Chrysochromulinaceae)㊂Cyanobacteria有1个代表OTU,属于聚球藻科(Synechococcaceae)㊂另外2个代表OTU与Cryptophyta的Geminigeraceae相似度最大㊂此外,属于Stramenopiles的44条序列中,占绝对优势的是Fragilariaceae,共14个代表OTU,占该类的31.8%;纳木错湖水中Fragilariaceae的最相似种Fragilariacrotonensis(KF959640)分离自法国的湖泊[29],相似性为99%㊂其次是Bacillariaceae,共7个代表OTU,占该类的15.9%;纳木错湖水中Bacillariaceae的最相似种是Nitzschiacf.pusilla(HF675119),这个种曾经在淡水中被分离到[30],和分离自西班牙河水的Nitzschiadraveillensis(KC736605)[31],相似性均为98%㊂第三位的是Stephanodiscaceae,共5个代表OTU,占该类的11.4%㊂纳木错湖水中Stephanodiscaceae的最相似种是Stephanodiscussp.(JQ217354),相似性为99%;和来源与美国LakeErie的Stephanodiscussp.FHTC11(DQ514825)[32],相似性为99%㊂Surirellaceae,共有3个代表OTU,占该类的6.8%㊂纳木错湖水中Surirellaceae的最近似种是Surirellabrebissonii(KX120621)[33],相似性为99%㊂Monodopsidaceae,共有3个代表OTU,占该类的6.8%㊂纳木错湖水中Monodopsidaceae的最近似种是淡水来源的Nannochloropsissp.MDL3⁃4(DQ977732)[34],相似性为99%㊂Dictyochophyceae纲的一个未知科,有3个代表OTU,占该类的6.8%㊂纳木错湖水中该科的最近似种是分离自日本brackishpond的Helicopedinellatricostata(AB097409)[35],相似性为98%㊂Catenulaceae只有1个代表OTU,占该类的2.3%㊂纳木错湖水中Catenulaceae的最近似种是Amphoraindistincta(KJ463463)[36],相似性为99%㊂在2个采样点的12个克隆文库中,5个主要科的相对比例如图4所示,其中占主要的Fragilariaceae在所有克隆文库中均有分布㊂在T3点水样中的相对比例略高于T2点相同深度水样㊂除底层外,均是主要类群㊂而底层则主要是以Stephanodiscaceae占绝对优势㊂7772㊀8期㊀㊀㊀刘金波㊀等:纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子㊀表2㊀纳木错cbbLID基因OTU分类及其最相似序列Table2㊀NamColakecbbLIDgeneOTUclassificationandtheirnearestsequences类Division纲Class科FamilyOTU编号OTUID相似度/%IdentitiesGenBank号AccessionStramenopilesBacillariophyceaeAchnanthidiaceaeT2⁃D⁃892KT943613StramenopilesBacillariophyceaeBacillariaceaeT3⁃40m⁃3598HF675119StramenopilesBacillariophyceaeBacillariaceaeT3⁃5m⁃63/T2⁃DD⁃2297/96HF675068StramenopilesBacillariophyceaeBacillariaceaeT3⁃10m⁃11/T3⁃40m⁃4098KC736605StramenopilesBacillariophyceaeBacillariaceaeT3⁃20m⁃4994KC736605StramenopilesBacillariophyceaeBacillariaceaeT3⁃40m⁃2595HF675067StramenopilesBacillariophyceaeCatenulaceaeT2⁃DD⁃1499KJ463463StramenopilesBacillariophyceaeSurirellaceaeT3⁃10m⁃1899KX120621StramenopilesBacillariophyceaeSurirellaceaeT3⁃60m⁃6798JX032961StramenopilesBacillariophyceaeSurirellaceaeT3⁃60m⁃2995KX120655StramenopilesBacillariophyceae T3⁃40m⁃2294KY693719StramenopilesCoscinodiscophyceaeStephanodiscaceaeT3⁃0m⁃1899JQ217354StramenopilesCoscinodiscophyceaeStephanodiscaceaeT3⁃0m⁃49/T2⁃D⁃999/97DQ514825StramenopilesCoscinodiscophyceaeStephanodiscaceaeT3⁃60m⁃3/T2⁃60m⁃396DQ514825StramenopilesChrysophyceaeChromulinaceaeT3⁃0m⁃6589KJ877675StramenopilesChrysophyceaeChrysocapsaceaeT3⁃10m⁃1289EF165148StramenopilesChrysophyceaeDinobryaceaeT3⁃0m⁃3486EF165156StramenopilesDictyochophyceae T3⁃20m⁃5998AB097409StramenopilesDictyochophyceae T3⁃10m⁃4486AB097409StramenopilesDictyochophyceae T3⁃40m⁃2786HQ710601StramenopilesEustigmatophyceaeMonodopsidaceaeT3⁃10m⁃70/T2⁃80m⁃2699/98DQ977732StramenopilesEustigmatophyceaeMonodopsidaceaeT3⁃40m⁃6891DQ977732StramenopilesFragilariophycidaeFragilariaceaeT2⁃80m⁃14/T3⁃0m⁃2199KF959640StramenopilesFragilariophycidaeFragilariaceaeT3⁃5m⁃59/T2⁃80m⁃33/T3⁃10m⁃2396KF959640StramenopilesFragilariophycidaeFragilariaceaeT2⁃DD⁃35/T2⁃0m⁃5895/92KF959640StramenopilesFragilariophycidaeFragilariaceaeT2⁃80m⁃4/T3⁃0m⁃1095AB430674StramenopilesFragilariophycidaeFragilariaceaeT3⁃60m⁃41/T3⁃20m⁃4494AB430674StramenopilesFragilariophyceaeFragilariaceaeT3⁃10m⁃2496HQ912451StramenopilesFragilariophyceaeFragilariaceaeT3⁃60m⁃21/T3⁃60m⁃2899/93HQ828199StramenopilesSynurophyceaeMallomonadaceaeT3⁃10m⁃4589JX946355StramenopilesSynurophyceaeMallomonadaceaeT2⁃80m⁃16/T3⁃0m⁃6488KM590889HaptophyceaeChrysochromulinaceaeT2⁃80m⁃1/T3⁃0m⁃1199MG520331T2⁃5m⁃4492MG520331CyanobacteriaSynechococcaceaeT2⁃80m⁃1892AM701775CryptophytaGeminigeraceaeT3⁃0m⁃2096KP899713T3⁃40m⁃4793KP8997132.4㊀纳木错湖水基本理化性质及其与ID类固碳微生物群落的相关性纳木错水质比较均一,各个监测点理化性质差异不大㊂本研究以湖水最深处T2点为例,基本理化性质如图5所示,水温在表层(0 15m)较高,在20m以下较低,溶解氧在表层0 20m有增加趋势,之后下降㊂pH从表层到下层呈下降趋势,叶绿素的含量在表层和底层都很低,在60m深处有一个峰值㊂电导率在表层到底层变化不大,环境光从表层到底层有下降趋势㊂相关分析表明cbbLID基因丰度与水深(r=0.718,P<0.05)和pH(r=-0.760,P<0.01)有显著相关㊂不等鞭毛类(Stramenopiles)和定鞭藻纲(Haptophyceae)出现频率均与叶绿素含量显著相关,其中不等鞭毛类(Stramenopiles)是负相关(r=-0.894,P<0.01),而定鞭藻纲8772㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀㊀图4㊀Stramenopiles中5个主要科代表OTUs在克隆文库中的相对比例Fig4㊀RelativeabundanceofOTUswithinthefivemainFamiliesofStramenopilesintheclonelibraries横坐标为每个克隆文库,克隆文库名字为采样点⁃深度,如T3 0m代表T3采样点,0m水样的克隆文库,DD代表最下面一层水样㊂图中5个科分别是硅藻科(Bacillariaceae),脆杆藻科(Fragilariaceae),单珠微藻科(Monodopsidaceae),圆筛藻科(stephanodiscaceae)和双菱藻科(Surirellaceae)(Haptophyceae)是正相关(r=0.910,P<0.01)㊂不等鞭毛类(Stramenopiles)和定鞭藻纲(Haptophyceae)出现频率显著负相关(r=-0.994,P<0.01)㊂3㊀讨论3.1㊀固碳微生物主要类群Stramenopiles本研究中不等鞭毛类(Stramenopiles)是优势固碳微生物类群,在所有水层样品中出现,除T2点60m出现频率较低外,其他水层均高于40%,最大的达到100%(表1)㊂本研究结果与前人研究结果相似,例如,太湖中Stramenopiles是主要的真核生物类群之一,其出现频率约为22%[37],此出现频率远低于纳木错湖大部分水层,与T2点60m接近㊂两个湖泊的维度接近,但其他环境因子差异较大,纳木错地区海拔大于4800m,紫外线辐射较强,且温度低;而太湖位于我国东部低海拔地区,海拔低,紫外线和辐射较纳木错弱,且温度高于纳木错地区;此外,纳木错水来源主要是冰川融水,且人为影响比较小,湖水寡营养[38⁃39];而太湖地区水来源多,并受人类活动影响较大,湖水营养盐含量较高[40]㊂这可能是两个湖中都存在Stramenopiles,但出现频率差异较大的主要原因㊂相反,在永久冰雪覆盖的南极湖泊中,Stramenopiles被报道是主要的固碳微生物类群,且其出现频率与Haptophyceae的出现频率之间存在此消彼长的关系[9,15],这个结果与本研究得到的结果一致㊂虽然两个湖地理位置差异较大,但都是极端环境,属于高寒地区,且受人为因素影响小㊂其中南极的Bonney湖处于永久冰川覆盖环境下,能反映此环境下原始情况㊂而纳木错湖的结果与其基本一致,从另一个方面验证了纳木错湖水受到人为因素影响小㊂此外,Stramenopiles还在非洲碱湖纳库鲁[41],波罗的海[42]和洞里萨湖[43],以及Salzkammergut地区到LowTauern地区不同海拔的高山湖泊[44],坦噶尼喀湖[45]中被检测到㊂但其出现频率差异很大,其中在非洲碱湖纳库鲁只检测到一个克隆[41],在波罗的海检测到4% 10%[42],在洞里萨湖可以达到105L-1水[43]㊂在不同海拔的高山湖泊中,Chrysophyceae占14.6%,其他Stramenopiles占9.6%[44]㊂坦噶尼喀湖中Stramenopiles占35%[45]㊂说明,Stramenopiles是湖泊中广泛分布的类群,且耐受极端环境,是重要的固碳微生物类群㊂3.2㊀固碳微生物主要类群Haptophyceae本研究发现,Haptophyceae的出现频率仅次于Stramenopiles㊂纳木错湖中代表OTU最相近的是淡水来源的Chrysochromulinaparva(MG520331),相似度为99%㊂在本研究中,其出现频率在T2点60m处最多,并且与叶绿素含量有关㊂这个种在中国最早在武汉东湖被发现[46]㊂此种在冬季出现,春末消失,高的种群密度在水温为6 8ħ时形成[46]㊂说明此种比较耐寒,与纳木错地区条件类似㊂Chrysochromulinaparva是世界广泛分布的种类,生长在寒带㊁温带㊁热带和亚热带地区的湖泊㊁水库㊁池塘和河流中,湖泊中发现的占多数[46]㊂最近,有研究报道在加拿大安大略湖中此类群被一种病毒所侵染[47]㊂Chrysochromulinaparva是南安第斯湖中重要的类群[48⁃50]㊂夏季的几个月里,在寡营养的南安第斯湖中观察到了一种独特的深层叶绿素的发展㊂最深的叶绿素位于共光区的极限附近,刚好低于金属离子的上限[49]㊂此外,有研究报道在梅洛米茨湖中存在暗碳固定[51]㊂Haptophytes主要是单细胞水生生物,主要是海洋光合作用真核生物,淡水中的研究较少[52]㊂然而,在一些湖中的小型真核生物,主要的克隆最相近的是Chrysochromulinaparva[53⁃54]㊂在一个寡营养亚高山湖泊9772㊀8期㊀㊀㊀刘金波㊀等:纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子㊀图5㊀纳木错湖水主要理化性质Fig.5㊀BasicphysicalandchemicalpropertiesinNamCoLakewater中,单细胞淡水蓝藻Synechococcus和混合营养的鞭毛藻类(Chrysochromulinaparva为主要类群)被证明是与湖泊功能相关的类群[55]㊂以上Chrysochromulinaparva为主要类群的大部分湖泊基本上都是寡营养的,可见Chrysochromulinaparva在寡营养淡水环境中具有重要的生态位,在淡水生态系统碳固定中起重要作用㊂3.3㊀固碳微生物群落驱动因子纳木错湖泊中存在大量的固碳微生物,其中ID类cbbL基因丰度最高且与湖水深度和pH显著相关㊂本研究结果与在南极冰下湖中结果相似[9]㊂这些结果说明,湖水深度和pH对固碳基因丰度有影响㊂类似的,pH被发现是调控湖水中需氧的不产氧光养细菌的多样性和群落结构的潜在因子[20]㊂有研究报道,湖水中真核生物的遗传多样性与湖水营养状态有关[37,56]㊂沿海拔梯度高山湖泊的原生生物多样性差异受到多个因素的影响,其中pH和营养浓度是最重要的[44]㊂此外,纳木错湖水中不等鞭毛类(Stramenopiles)的出现频率与叶绿素含量显著相关,这与在南极冰下湖的结果一致[9]㊂有研究报道色素组成是影响不等鞭毛类(Stramenopiles)生态演替的关键因子之一[57]㊂在本研究中,采集一个时间点的水样,纳木错湖中Stramenopiles占绝对优势,Haptophyceae只在T2点60m的出现频率较高㊂而在Bonney两个采样时间点中,0872㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀6m(ELB)和10m(WLB)的水样,一个时间点是Stramenopiles占绝对优势,而另一个时间点是Haptophyceae占绝对优势;而13m的水样,2个时间点均以Haptophyceae占绝对优势[9]㊂其原因是在不同的时间点和采样点,水体的环境因素发生改变,影响了两者出现频率㊂在本研究中,两种固碳微生物类群的出现频率与水体中叶绿素含量显著相关,在叶绿素含量出现峰值的60m水样中,Haptophyceae的出现频率最高(75%),而其他层则以Stramenopiles为优势类群(表1)㊂在Bonney湖中,13m也是叶绿素含量出现峰值的水层[9]㊂这进一步说明,叶绿素含量是调控两者在湖水中出现频率的主要环境因子㊂4㊀结论在纳木错湖水中存在丰度较高的含cbbLID基因的固碳微生物,从表层到底部有增加的趋势,T2底层达到最高值(6.37ˑ108拷贝/L湖水)㊂T0,T2和T3点的最底层基因丰度显著高于上层(P<0.05)㊂成对比较表明,T0和T1与T2之间差异显著,其他样点之间无显著差异(P<0.05)㊂含cbbLID基因固碳微生物群落组成主要是不等鞭毛类(Stramenopiles)和定鞭藻纲(Haptophyceae),以及个别层出现少量的蓝藻(Cyanobacteria)和隐藻门(Cryptophyta)㊂Stramenopiles具有较高的多样性,包括7个纲和13个科㊂其他类群只有1个科㊂Stramenopiles中占主要的是Fragilariaceae,占该类群的31.8%;其次是Bacillariaceae,占该类群的15.9%;第三位的是Stephanodiscaceae,占该类群的11.4%㊂其他科的比例均小于10%㊂相关分析表明,不等鞭毛类(Stramenopiles)和定鞭藻纲(Haptophyceae)出现频率之间存在显著的负相关关系㊂湖水深度和pH与cbbLID基因丰度显著相关㊂叶绿素含量与不等鞭毛类(Stramenopiles)和触丝藻纲(Haptophyceae)出现频率显著相关㊂表明纳木错湖水中的cbbLID基因丰度较高,群落组成大类较单一,但Stramenopiles类多样性高㊂影响基因丰度的主要因素是湖水深度和pH,影响群落组成的主要因素是叶绿素含量㊂致谢:感谢王明达和杨瑞敏在湖泊采样和湖水理化性质测定中的帮助,感谢纳木错多圈层综合观测研究站对采样过程提供的帮助㊂参考文献(References):[1]㊀吴庆龙,江和龙.中国湖泊微生物组研究.中国科学院院刊,2017,32(3):273⁃279.[2]㊀BergIA.EcologicalaspectsofthedistributionofdifferentautotrophicCO2fixationpathways.AppliedandEnvironmentalMicrobiology,2011,77(6):1925⁃1936.[3]㊀LongXE,YaoHY,WangJ,HuangY,SinghBK,ZhuYG.CommunitystructureandsoilpHdeterminechemoautotrophiccarbondioxidefixationindrainedpaddysoils.EnvironmentalScience&Technology,2015,49(12):7152⁃7160.[4]㊀PaulJH,AlfreiderA,WawrikB.Micro⁃andmacrodiversityinrbcLsequencesinambientphytoplanktonpopulationsfromthesoutheasternGulfofMexico.MarineEcologyProgressSeries,2000,198:9⁃18.[5]㊀KovalevaOL,TourovaTP,MuyzerG,KolganovaTV,SorokinDY.DiversityofRuBisCOandATPcitratelyasegenesinsodalakesediments.FEMSMicrobiologyEcology,2011,75(1):37⁃47.[6]㊀TabitaFR,SatagopanS,HansonTE,KreelNE,ScottSS.DistinctformI,II,III,andIVRubiscoproteinsfromthethreekingdomsoflifeprovidecluesaboutRubiscoevolutionandstructure/functionrelationships.JournalofExperimentalBotany,2008,59(7):1515⁃1524.[7]㊀ElsaiedHE,KimuraH,NaganumaT.Compositionofarchaeal,bacterial,andeukaryalRuBisCOgenotypesinthreeWesternPacificarchydrothermalventsystems.Extremophiles,2007,11(1):191⁃202.[8]㊀JohnDE,WangZHA,LiuXW,ByrneRH,CorredorJE,LópezJM,CabreraA,BronkDA,TabitaFR,PaulJH.Phytoplanktoncarbonfixationgene(RuBisCO)transcriptsandair⁃seaCO2fluxintheMississippiRiverplume.TheISMEJournal,2007,1(6):517⁃531.[9]㊀KongWD,ReamDC,PriscuJC,Morgan⁃KissRM.DiversityandexpressionofRubisCOgenesinaperenniallyice⁃coveredAntarcticlakeduringthepolarnighttransition.AppliedandEnvironmentalMicrobiology,2012,78(12):4358⁃4366.[10]㊀KongWD,DolhiJM,ChiuchioloA,PriscuJ,Morgan⁃KissRM.EvidenceofformIIRubisCO(cbbM)inaperenniallyice⁃coveredAntarcticlake.FEMSMicrobiologyEcology,2012,82(2):491⁃500.[11]㊀YuanHZ,GeTD,ChenCY,OᶄDonnellAG,WuJS.Significantroleformicrobialautotrophyinthesequestrationofsoilcarbon.Appliedand1872㊀8期㊀㊀㊀刘金波㊀等:纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子㊀2872㊀生㊀态㊀学㊀报㊀㊀㊀39卷㊀EnvironmentalMicrobiology,2012,78(7):2328⁃2336.[12]㊀PriscuJC,FritsenCH,AdamsEE,GiovannoniSJ,PaerlHW,McKayCP,DoranPT,GordonDA,LanoilBD,PinckneyJL.PerennialAntarcticlakeice:anoasisforlifeinapolardesert.Science,1998,280(5372):2095⁃2098.[13]㊀PriscuJC,TulaczykS,StudingerM,KennicuttIIMC,ChristnerBC,ForemanCM.Antarcticsubglacialwater:origin,evolutionandecology//VincentW,Laybourn⁃ParryJ,eds.PolarLakesandRivers:LimnologyofArcticandAntarcticAquaticEcosystems.Oxford:OxfordUniversityPress,2008:119⁃135.[14]㊀MikuckiJA,PearsonA,JohnstonDT,TurchynAV,FarquharJ,SchragDP,AnbarAD,PriscuJC,LeePA.Acontemporarymicrobiallymaintainedsubglacialferrous"Ocean".Science,2009,324(5925):397⁃400.[15]㊀BielewiczS,BellE,KongWD,FriedbergI,PriscuJC,Morgan⁃KissRM.Protistdiversityinapermanentlyice⁃coveredAntarcticLakeduringthepolarnighttransition.TheISMEJournal,2011,5(9):1559⁃1564.[16]㊀JiangHC,DongHL,YuBS,LvG,DengSC,BerzinsN,DaiMH.Diversityandabundanceofammonia⁃oxidizingarchaeaandbacteriainQinghaiLake,northwesternChina.GeomicrobiologyJournal,2009,26(3):199⁃211.[17]㊀XiongJB,LiuYQ,LinXG,ZhangHY,ZengJ,HouJZ,YangYP,YaoTD,KnightR,ChuHY.GeographicdistanceandpHdrivebacterialdistributioninalkalinelakesedimentsacrossTibetanPlateau.EnvironmentalMicrobiology,2012,14(9):2457⁃2466.[18]㊀WuQL,HahnMW.Highpredictabilityoftheseasonaldynamicsofaspecies‐likePolynucleobacterpopulationinafreshwaterlake.EnvironmentalMicrobiology,2006,8(9):1660⁃1666.[19]㊀WuQL,ChatzinotasA,WangJJ,BoenigkJ.GeneticdiversityofeukaryoticplanktonassemblagesineasternTibetanlakesdifferingbytheirsalinityandaltitude.MicrobialEcology,2009,58(3):569⁃581.[20]㊀JiangHC,DongHL,YuBS,LvG,DengSC,WuYJ,DaiMG,JiaoNZ.AbundanceanddiversityofaerobicanoxygenicphototrophicbacteriainsalinelakesontheTibetanplateau.FEMSMicrobiologyEcology,2009,67(2):268⁃278.[21]㊀ZhangR,WuQL,PicenoYM,DesantisTZ,SaundersFM,AndersenGL,LiuWT.DiversityofbacterioplanktonincontrastingTibetanlakesrevealedbyhigh⁃densitymicroarrayandclonelibraryanalysis.FEMSMicrobiologyEcology,2013,86(2):277⁃287.[22]㊀鲁安新,姚檀栋,王丽红,刘时银,郭治龙.青藏高原典型冰川和湖泊变化遥感研究.冰川冻土,2005,27(6):783⁃792.[23]㊀WangJB,ZhuLP,DautG,JuJT,LinX,WangY,ZhenXL.InvestigationofbathymetryandwaterqualityofLakeNamCo,thelargestlakeonthecentralTibetanPlateau,China.Limnology,2009,10(2):149⁃158.[24]㊀王君波,朱立平,DautG,鞠建廷,林晓,汪勇,甄晓林.西藏纳木错水深分布及现代湖沼学特征初步分析.湖泊科学,2009,21(1):128⁃134.[25]㊀CorredorJE,WawrikB,PaulJH,TranH,KerkhofL,LópezJM,DieppaA,CárdenasO.Geochemicalrate⁃RNAintegrationstudy:ribulose⁃1,5⁃bisphosphatecarboxylase/oxygenasegenetranscriptionandphotosyntheticcapacityofplanktonicphotoautotrophs.AppliedandEnvironmentalMicrobiology,2004,70(9):5459⁃5468.[26]㊀AlfreiderA,VogtC,Geiger⁃KaiserM,PsennerR.DistributionanddiversityofautotrophicbacteriaingroundwatersystemsbasedontheanalysisofRubisCOgenotypes.SystematicandAppliedMicrobiology,2009,32(2):140⁃150.[27]㊀SchlossPD,WestcottSL,RyabinT,HallJR,HartmannM,HollisterEB,LesniewskiRA,OakleyBB,ParksDH,RobinsonCJ,SahlJW,StresB,ThallingerGG,VanHornDJ,WeberCF.Introducingmothur:open⁃source,platform⁃independent,community⁃supportedsoftwarefordescribingandcomparingmicrobialcommunities.AppliedandEnvironmentalMicrobiology,2009,75(23):7537⁃7541.[28]㊀TamuraK,PetersonD,PetersonN,StecherG,NeiM,KumarS.MEGA5:molecularevolutionarygeneticsanalysisusingmaximumlikelihood,evolutionarydistance,andmaximumparsimonymethods.MolecularBiologyAndEvolution,2011,28(10):2731⁃2739.[29]㊀LarrasF,KeckF,MontuelleB,RimetF,BouchezA.LinkingDiatomSensitivitytoHerbicidestoPhylogeny:AStepForwardforBiomonitoring?EnvironmentalScience&Technology,2014,48(3):1921⁃1930.[30]㊀Abou⁃ShanabRAI,HwangJH,ChoY,MinB,JeonBH.Characterizationofmicroalgalspeciesisolatedfromfreshwaterbodiesasapotentialsourceforbiodieselproduction.AppliedEnergy,2011,88(10):3300⁃3306.[31]㊀KermarrecL,FrancA,RimetF,ChaumeilP,HumbertJF,BouchezA.Next⁃generationsequencingtoinventorytaxonomicdiversityineukaryoticcommunities:atestforfreshwaterdiatoms.MolecularEcologyResources,2013,13(4):607⁃619.[32]㊀AlversonAJ,JansenRK,TheriotEC.Bridgingtherubicon:Phylogeneticanalysisrevealsrepeatedcolonizationsofmarineandfreshwatersbythalassiosiroiddiatoms.MolecularPhylogeneticsandEvolution,2007,45(1):193⁃210.[33]㊀RuckEC,NakovT,AlversonAJ,TheriotEC.Phylogeny,ecology,morphologicalevolution,andreclassificationofthediatomordersSurirellalesandRhopalodiales.MolecularPhylogeneticsandEvolution,2016,103:155⁃171.[34]㊀FawleyKP,FawleyMW.ObservationsonthediversityandecologyoffreshwaterNannochloropsis(Eustigmatophyceae),withdescriptionsofNewTaxa.Protist,2007,158(3):325⁃336.[35]㊀SekiguchiH,KawachiM,NakayamaT,InouyeI.Ataxonomicre⁃evaluationofthePedinellales(Dictyochophyceae),basedonmorphological,behaviouralandmoleculardata.Phycologia,2003,42(2):165⁃182.[36]㊀StepanekJG,KociolekJP.MolecularphylogenyofAmphorasensulato(Bacillariophyta):Aninvestigationintothemonophylyandclassificationoftheamphoroiddiatoms.Protist,2014,165(2):177⁃195.[37]㊀ChenMJ,ChenFZ,YuY,JiJ,KongFX.GeneticdiversityofeukaryoticmicroorganismsinLakeTaihu,alargeshallowsubtropicallakeinChina.MicrobialEcology,2008,56(3):572⁃583.[38]㊀丁宁,王陈园,常海霞.三大高原湖泊常见无机离子色谱分析研究.绿色科技,2017(24):56⁃58.[39]㊀刘晓波,康世昌,刘勇勤,韩文武.青藏高原纳木错湖细菌群落特征及其与高山湖泊的对比.冰川冻土,2008,30(6):1041⁃1047.[40]㊀狄贞珍,张洪,单保庆.太湖内源营养盐负荷状况及其对上覆水水质的影响.环境科学学报,2015,35(12):3872⁃3882.[41]㊀LuoW,KotutK,KrienitzL.HiddendiversityofeukaryoticplanktoninthesodalakeNakuru,Kenya,duringaphaseoflowsalinityrevealedbyaSSUrRNAgeneclonelibrary.Hydrobiologia,2013,702(1):95⁃103.[42]㊀StockA,JürgensK,BungeJ,StoeckT.ProtistandiversityinsuboxicandanoxicwatersoftheGotlandDeep(BalticSea)asrevealedby18SrRNAclonelibraries.AquaticMicrobialEcology,2009,55(3):267⁃284.[43]㊀OhtakaA,WatanabeR,ImS,ChhayR,TsukawakiS.SpatialandseasonalchangesofnetplanktonandzoobenthosinLakeTonleSap,Cambodia.Limnology,2010,11(1):85⁃94.[44]㊀GrossmannL,JensenM,PandeyRV,JostS,BassD,PsennerR,BoenigkJ.Molecularinvestigationofprotistandiversityalonganelevationtransectofalpinelakes.AquaticMicrobialEcology,2016,78(1):25⁃37.[45]㊀Anne⁃LaureT,StephaneS,VanessaB,DannyS,Jean⁃PierreD,RamonM.Molecularcharacterisationofthesmall⁃eukaryotecommunityinatropicalGreatLake(LakeTanganyika,EastAfrica).AquaticMicrobialEcology,2011,62(2):177⁃190.[46]㊀魏印心.中国新记录──小金色藻在武汉东湖的季节消长.水生生物学报,1996,20(4):317⁃321.[47]㊀MirzaSF,StaniewskiMA,ShortCM,LongAM,ChabanYV,ShortSM.IsolationandcharacterizationofavirusinfectingthefreshwateralgaeChrysochromulinaparva.Virology,2015,486:105⁃115.[48]㊀QueimaliñosCP.Somephysicalandbiologicalfactorsaffectingaspring⁃summerphytoplanktondynamicsinashallow,temperatelakeofSouthAndes(Argentina).InternationaleRevuederGesamtenHydrobiologieundHydrographie,1997,82(2):147⁃160.[49]㊀QueimaliñosCP,ModenuttiBE,BalseiroEG.SymbioticassociationoftheciliateOphrydiumnaumanniwithChlorellacausingadeepchlorophyllamaximuminanoligotrophicSouthAndeslake.JournalofPlanktonResearch,1999,21(1):167⁃178.[50]㊀ModenuttiBE,BalseiroEG,QueimaliñosCP,SuárezDAA,DiéguezMC,AlbariñoRJ.StructureanddynamicsoffoodwebsinAndeanlakes.Lakes&Reservoirs:ResearchandManagement,1998,3(3/4):179⁃186.[51]㊀CamachoA,ErezJ,ChicoteA,FlorínM,SquiresMM,LehmannC,BackofenR.Microbialmicrostratification,inorganiccarbonphotoassimilationanddarkcarbonfixationatthechemoclineofthemeromicticLakeCadagno(Switzerland)anditsrelevancetothefoodweb.AquaticSciences,2001,63(1):91⁃106.[52]㊀SimonM,López⁃GarcíaP,MoreiraD,JardillierL.Newhaptophytelineagesandmultipleindependentcolonizationsoffreshwaterecosystems.EnvironmentalMicrobiologyReports,2013,5(2):322⁃332.[53]㊀RichardsTA,VepritskiyAA,GouliamovaDE,Nierzwicki⁃BauerSA.Themoleculardiversityoffreshwaterpicoeukaryotesfromanoligotrophiclakerevealsdiverse,distinctiveandgloballydispersedlineages.EnvironmentalMicrobiology,2005,7(9):1413⁃1425.[54]㊀LepèreC,DomaizonI,DebroasD.Unexpectedimportanceofpotentialparasitesinthecompositionofthefreshwatersmall⁃eukaryotecommunity.AppliedandEnvironmentalMicrobiology,2008,74(10):2940⁃2949.[55]㊀CallieriC,CaravatiE,MorabitoG,OggioniA.TheunicellularfreshwatercyanobacteriumSynechococcusandmixotrophicflagellates:evidenceforafunctionalassociationinanoligotrophic,subalpinelake.FreshwaterBiology,2006,51(2):263⁃273.[56]㊀ZhaoBY,ChenMJ,SunY,YangJX,ChenFZ.Geneticdiversityofpicoeukaryotesineightlakesdifferingintrophicstatus.CanadianJournalofMicrobiology,2011,57(2):115⁃126.[57]㊀SassenhagenI,RengeforsK,RichardsonTL,PinckneyJL.PigmentcompositionandphotoacclimationaskeystotheecologicalsuccessofGonyostomumsemen(Raphidophyceae,Stramenopiles).JournalofPhycology,2014,50(6):1146⁃1154.3872㊀8期㊀㊀㊀刘金波㊀等:纳木错湖水体固碳微生物数量㊁群落结构及其驱动因子㊀。
《普通生态学》专英词汇Ecology生态学Interaction相互作用Individual个体Population种群Community群落Ecosystem生态系统Assemblage集合Mixture混合体Biosphere生物圈Scale尺度Field approach野外研究法Experimental approach实验研究法Theoretical approach理论研究法Environment环境Macro environment大环境Micro environment小环境Marco climate大气候Micro climate小气候Biome生物群系Ecological factor生态因子Habitat生境Density dependent factor密度制约因子Density independent factor非密度制约因子Coevolution协同进化Liebig’s “law of minimum”利比希最小因子定律Law of limiting factors限制因子定律Limiting factor限制因子Law of tolerance耐受性定律Ecological amplitude生态幅Ecological valence生态价Eury-广,steno-狭Eurythermal广温性stenothermal 狭温性Euryhydric 广水性stenohydric 狭水性Euryhaline 广盐性stenohaline 狭盐性Euryphagic 广食性stenophagic 狭食性Euryphotic 广光性stenophot ic 狭光性Euryecious 广栖性stenoecious 狭栖性Euryedapic 广土性stenoedapic 狭土性Homeostasis 内稳性Epilimnion 上湖层Thermocline 斜温层、温梯层Hypolimnion 下湖层Photosynthetically active radiation 光合有效辐射Etiolation phenomenon 黄化现象Photosynthetic capacity 光合任用Daily rhythm 昼夜节律Photoperiodism 或photoperiodicity 光周期现象Long day plant 长日照植物Short day plant 短日照植物Day intermediate plant 中日照植物Day neutral plant 日中性植物Long day animal 长日照动物Short day animal 短日照动物Diaqause 滞育Homeotherm 常温动物Poikilothem 变温动物Ectotherm 外温动物Endotherm 内温动物The thermoneutral zone 热中性区Temperature coefficient 温度系数Freeze injury 冻害Chilling injury 冷害Developmental threshold temperature 发育阈温度Biological zero 生物学零度Sum of heat 总积温Sum of effective temperature 有效积温Phtsiological time 生理时间Vernalization 春化Acclimation 驯化Acclimatization 气候驯化Bergmann`s rule 贝格曼规律Allen`s rule 阿伦规律Countercurrent heat cxchange 逆流热交换Nonshivering thermogenesis 非颤抖性产热Brown adipose tissue 褐色脂肪组织Heterothermy 异温性Daily torpor 日麻痹Hibernation 冬眠Estivation 夏眠Heterotherm 异温动物Adaptive hypothermia 适应性低体温Polar nature 极性性质High heat capacity 高热容量Precipitation 降雨量Atmosphere humidity 大气湿度Relative humidity 相对湿度Transpiration 蒸腾Field capacity 田间持水量Hygrophyte 湿生植物Mesad 中生植物Siccocolous 旱生植物Apuatic plant 水生植物Water balance 水平衡Hypertonic 高渗性的Hypotonic 低渗性的Isotonic 等渗的Water loss 失水Countercurrent exchange 逆流交换Urea 尿素Uricacid 尿酸Humidity 湿度Snow cover 雪被Energy metabolism 能量代谢Hypoxia adaptation 高海拔低氧的适应2、3-diphosphoglycreate,DPG 2、3-二磷酸甘油酸Pco2 分压Green-house effect 温室效应Texture 土壤质地Soil structure 土壤结构Soil moisture 土壤水分Fossorial mammal 地下兽Soil temperature 土壤Soil acidity 土壤酸度Humus 腐殖质Psammophyte 沙生植物Crown fire 林冠火Surface fire 地面火Population 种群Unilary organism 单体生物Modular organism 构件生物Ramets 无性系分株Species 物种Size 大小Evolutionary individual进化个体Internal distribution pattern 内分布型Dispersion 分布Random 随机的Uniform 均匀的Clumped 成群的Architecture 建筑学结构Natality 出生率Mortality 死亡率Demography 种群统计学Age pyramid 年龄锥体Stage structure 时期结构Size classes个体大小群Sex ratio 性比Life table 生命表Cohort 同生群Cohort analysis 同生群分析Agespecific survival rate 特定年龄存活率Life expectancy 生命期望Killing power致死力Net reproductive rate净生产率Key factors关键因子k-factor analysis K-因子分析killing factor致死因子survivorship curve存活曲线generation time世代时间innate rate of increase内禀增长率density-independent growth与密度无关的种群增长per-capita rate of population growth每员增长率density-dependent growth 与密度有关的种群增长carrying capacity环境容纳量logistic equation逻辑斯谛方程minimum viable population最小可存活种群ecological invasion生态入侵nutrient recovery hypothesis营养物恢复学说Wyune-Edwards 行为调节学说(温-爱德华学说) Christian内分泌调节学说(克里斯琴学说) Chitty奇蒂学说Metapopulation集合种群Local population局域种群Patch斑块Local scale局域尺度Metapopulation scale集合种群尺度Geographical scale地理尺度Local breeding population局域繁殖种群Turnover周转Genotype基因型Phenotype表现型Diploid二倍体Homologous同源Gene基因Allele等位基因Locus座位Homozygous纯合的Herterozygous杂合的Codominant共显性的Dominant显性的Recessive隐性Polygenic多基因的Gene pool基因库Genotypic frequency基因型频率Gene frequency基因频率Hardy-Weinberg Law哈代-魏伯格定律Variation变异Gelelectrophoresis凝胶电泳Allozyme别构酶Polymorphism多态现象Geopraphic variation地理变异Cline渐变群Subspecies地理亚种Natural selection自然选择Fitness适合度Selective coefficient选择系数Genetic drift遗传漂变Fixation固定Evolutionary forces进化动力Founder effect建立者效应Founder population建立者种群Stabilizing selection稳定选择Directional selection定向选择Disruptive selection分裂选择Gamete selection配子选择Kin selection亲属选择Group selection群体选择Sexual selection性选择Speciation物种形成Gene flow基因流Geographical theory of speciation地理物种形成学说Reproductive isolating mechanism繁殖隔离机制Polyploidy多倍体Adaptive radiation适应辐射Life history生活史Body size身体大小Growth rate生长率Reproduction繁殖Longevity寿命Bionomic strategy生态对策Life history strategy生活史对策Darwinian demons达尔文魔鬼Trade-off权衡Energy allocation能量分配Semelparity单次繁殖Parental care亲体关怀Current reproduction当前繁殖Future reproduction未来的繁殖Reproductive value生殖价Bet—hedging两面下注Diapause滞育Dormancy休眠Seed bank种子库Crytobiosis潜生现象Torper蛰伏Hibernation冬眠Aestivation夏眠Migration迁徙Dispersal扩散Morphological form形态学形状Generation世代Metamorphosis变态Optimization in habitat utilization生境利用最优化Mechanistic level 机械水平Mutation-accumulation突变积累Antagonistic pleiotropy拮抗性多效Competition竞争Cannibalism自相残杀Predation捕食Parasition寄生Mutualism互利共生Parasitoidism拟寄生Commensualism偏利共生Amensualism偏害共生Intraspecific relationship种内关系Intraspecific competition 种内竞争Territoriality领域性Law of constant final yield最后产量法则Self-thinning自疏Ecology of ***性别生态学Parental investment亲代投入Hermaphrodite雌雄同体Self-compatibility自我兼容Cleistogamous闭花受精Recombine重组Red Queen effect红皇后效应Fisher’s *** ratio theory Fisher氏性比理论Rare typeadvantage稀少型有利Equal investment相等投入Local resource competition局域资源竞争Local mate competition局域交配竞争Sexual selection性选择Intra***ual selection性内选择。
BMBreports338BMB reports*Corresponding author. T el: 82-31-201-2688; Fax: 82-31-202-2687;E-mail: dcyang@khu.ac.krReceived 17 October 2007, Accepted 26 December 2007K eywords: Abiotic stress, Codonopsis lanceolata , Dehydrin (DHN), Semi-quantitative RT-PCRIsolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stressesRama Krishna Pulla 1,2, Yu-Jin Kim 1, Myung Kyum Kim 1, Kalai Selvi Senthil 3, Jun-Gyo In 4 & Deok-Chun Yang 1,*1Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, Seocheon-dong, Kiheung-gu Yongin, Kyunggi-do, South Korea, 2Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India. 3Avinashilingam University for Women, Coimbatore, 641043, India. 4Biopia Co., Ltd., Yongin, KoreaDehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development at low temperature or in water-deficit conditions. They are believed to play a protective role in freez-ing and drought-tolerance in plants. A full-length cDNA encod-ing DHN (designated as ClDhn ) was isolated from an oriental medicinal plant Codonopsis lanceolata , which has been used widely in Asia for its anticancer and anti-inflammatory properties. The full-length cDNA of ClDhn was 813 bp and contained a 477 bp open reading frame (ORF) encoding a polypeptide of 159 amino acids. Deduced ClDhn protein had high similarities with other plant DHNs. RT-PCR analysis showed that different abiotic stresses such as salt, wounding, chilling and light, trig-gered a significant induction of ClDhn at different time points within 4-48 hrs post-treatment. This study revealed that ClDhn assisted C. lanceolata in becoming resistant to dehydration. [BMB reports 2008; 41(4): 338-343]INTRODUCTIONPlants have developed defensive strategies against various stresses that arise from frequent environmental fluctuations to which they are exposed. Drought and low temperatures are the most severe factors limiting plant growth and yield. More than 100 genes have been shown to be responsive to such conditions and they are believed to function either during the physiological protection of cells from water-deficiencies or temperature-changes or in the regulation of gene expression (1-3).DHNs are proteins that are known to accumulate in vegetative plant tissues under stress conditions, such as low temperature, drought, or salt-stress (2, 4-6). These proteins have been catego-rized as late embryogenesis abundant (LEA) proteins (7, 8).DHNs have been subdivided into five classes according to thepresence of highly conservative segments: YnSK 2, Kn, KnS, SKn and Y 2Kn. The K-segment (EKKIGIMDKIKEKLPG) is a conserved 15-mer lysine-rich sequence characteristic of DHNs, which may be present in one or several copies (5). The K-segment can form an amphiphathic α-helix structure that may interact with lipid components of bio-membranes and partially denatured proteins like chaperones (6, 9). The S-segment consists of contiguous ser-ine residues in the centre of the protein, which may be phosphorylated. They are involved in nuclear transport through their binding to nuclear localization signal peptides (6). The Y-segment with the consensus sequence DEYGNP, shares some similarities to the nucleotide-binding site of chaperones in plants and bacteria (5, 10). Another conserved domain contained in many DHNs is ϕ-segment (repeated Gly and polar amino acids), which interacts with and stabilizes membranes and macro-molecules, preventing structural damage and maintaining the activity of essential enzymes (11).DHNs have been found in the cytoplasm (12), nucleus (12, 13), mitochondria (14), vacuole (15), and chloroplasts (16). They are known to associate with membranes (17, 18), pro-teins (19) and excess salt ions (15, 20). Several DHN genes have been isolated and characterized from different species, including cor47, erd10 and erd14 from Arabidopsis thaliana ; Hsp90, BN59, BN115 and Bnerd10 from Brassica napus ; cor39 and wcs19 from Triticum aestivum (bread wheat); and cor25 from Brassica rapa subsp. Pekinensis (21). Many studies have reported a positive correlation between the accumulation of DHN transcripts or proteins and tolerance to freezing, drought, and salinity (12, 17, 22-24). Moreover, mod-ulation of transcripts by light has been reported for many DHN-encoding genes in drought- or cold-stressed plants (25-28). Although the biochemical functions and physiological roles of DHNs are still unclear, their sequence character-izations and expression patterns suggest that they may play a positive role in plant-response and adaptation to abiotic stress that leads to cellular dehydration. Indeed, many studies have indicated that transgenic plants with DHNs have a better stress-tolerance, recovery or re-growth after drought and freez-ing stress than that of the control (8, 29, 30).Thus far, there are no reports on isolation of the DHN gene from the oriental medicinal plant Codonopsis lanceolata . ThisCodonopsis lanceolata dehydrin geneRama Krishna Pulla, et al.339BMBreportsFig. 1. Nucleotide sequence and de-duced amino acid sequence of a ClDhn cDNA isolated from C. lanceolata . Num-bers on the left represent nucleotide positions. The deduced amino acid se-quence is shown in a single-letter code below the nucleotide sequence. The as-terisk denotes the translation stop signal.Amino acids in two double boxes repre-sent the Y-segment and amino acids in a single box the S-segment, respectively.The two underlined sequences represent the K-segments.plant belongs to the family of Campanulaceae (bellflower fam-ily), which contains many famous oriental medicinal plants such as Platycodon grandiflorum (Chinese bellflower or balloon flow-er), Codonopsis pilosula and Adenophora triphylla (nan sha shen). The roots of these plants have been used as herbal drugs to treat bronchitis, cough, spasm, macrophage-mediated immune responses and inflammation, and has also been administered as a tonic (31). C. lanceolata grows in North-eastern china, Korea, and far eastern Siberia. Despite their medicinal importance, little genomic study of this plant has been carried out. In this study, we characterized an Y 2SK 2 type DHN gene from C. lanceolata and analyzed its expression in response to various abiotic stresses.RESULTS AND DISCUSSIONIsolation and characterization of the full length cDNA of the ClDhn geneAs part of a genomic project to identify genes in the medicinal plant C. lanceolata , a cDNA library consisting of about 1,000 cDNAs was previously constructed. A cDNA encoding a dehy-drin (DHN), designated ClDhn was isolated and sequenced. The sequence data of ClDhn has been deposited in GenBank under accession number AB126059. As shown in Fig. 1, ClDhn is 813 bp in length and it has an open reading frame (ORF) of 477 bp nucleotide with an 87-nucleotide upstream sequence and a 248-nucleotide downstream sequence. The ORF of ClDhn starts at nucleotide position 88 and ends at position 565. ClDhn encodes a precursor protein of 159 amino acids resi-dues with no predicted signal peptide at the N-terminal. The calculated molecular mass of the protein is approximately 16.7kDa with a predicated isoelectric point of 6.87. In the deduced amino acid sequence of ClDhn protein, the total number of neg-atively charged residues (Asp +Glu) amounted to 21 while the total number of positively charged residues (Arg +Lys) was 20. In addition, transmembrane helix prediction (TMHMMv2.0) did not identify any transmembrane helices in the deduced protein, implying that the protein did not function in the membrane but might function within the cytosolic or nuclear compartment.Homology analysisA GenBank Blastp search revealed that ClDhn had the highest sequence homology to the carrot (Daucus carota ) DHN (BAD86644) with 51% identity and 61% similarity. ClDhn also shared homology with ginseng (Panax ginseng ) DHN5 (ABF48478, 50% identity and 60% similarity), wild potato (Solanum commersonii ) DHN (CAA75798, 50% identity and 58% similarity), robusta coffee (Coffea canephora ) DHN1α (ABC55670, 47% identity and 55% similarity), grape (Vitis vin-ifera ) DHN (ABN79618, 47% identity and 57% similarity), American beech (Fagus sylvatica ) DHN (CAE54590, 46% iden-tity and 56% similarity), tobacco (Nicotiana tabacum ) DHN (BAD13498, 45% identity and 56% similarity), sunflower (Helianthus annuus ) DHN (CAC80719, 45% identity and 52% similarity), and soybean (Glycine max ) DHN (AAB71225, 44% identity and 52% similarity). The DHNs showing the highest similarities were Y 2SK 2 type DHNs except grape (Vitis vinifera ) DHN (YSK 2 type) (32). Thus ClDhn might belong to Y 2SK 2 type DHNs based on the two Y-segments, one S-segment, and two K-segments present in its amino acid sequence. Phylogenetic analysis of ten of the plant DHNs were carried out using theCodonopsis lanceolata dehydrin gene Rama Krishna Pulla, et al.340BMB reportsFig. 2. A phylogenetic tree based on DHN amino acid sequence, showing the phylogenetic relationship between ClDhn and other plant DHNs . The tree was constructed using the Clustal X method (Neighbor-joining method) and a bar represents 0.1 substitutions peramino acid position.Fig. 3. Alignment of ClDhn with the most closely related DHNs from carrot (Daucus carota , BAD86644), ginseng (Panax ginseng DHN5, ABF48478), com-merson’s wild potato (Solanum commer-sonii , CAA75798), robusta coffee (Coffea canephora , ABC55670), grape (Vitis vin-ifera , ABN79618), American beech (Fagus sylvatica , CAE54590), tobacco (Nicotiana tabacum , BAD13498), sunflower (Helian-thus annuus , CAC80719) and soybean (Glycine max , AAB71225). Gaps are marked with dashes. The conserved ami-no acid residues are shaded and Y-, S-, and K-segments are shown.Clustal X program (Fig. 2). Fig. 3 is a sequence alignment result of ClDhn and other closely related DHNs .The differential expression of ClDhn in different organs of C . lanceolataThe expression patterns of ClDhn in different C . lanceolata or-gans were examined using RT-PCR analysis. Almost similar levels of ClDhn -mRNA expression were observed in leaves and roots, whereas ClDhn was expressed in slightly higher lev-els in the stems. (Data was not shown).Expression of ClDhn in response to various stressesExpression patterns of ClDhn under various conditions were ex-amined using RT-PCR analysis. Fig. 4A showed the accumu-lation of ClDhn -mRNA in response to 100 mM ABA in MS agar. ABA is a hormone secreted when environmental conditions be-come dry. Expression of ClDhn was induced and reached a maximum level after 12 hrs, and then gradually decreased. When plants are submitted to dehydration the endogenous con-tent of ABA increases, with ABA mediating the closure of the stomata. Several studies have identified ABA as a key hormone in the induction pathway of many inducible genes including DHN , in response to drought (33-36). 100 μM of ABA in sprayCodonopsis lanceolata dehydrin geneRama Krishna Pulla, et al.341BMBreportsFig. 4. RT-PCR analyses of the expressions of ClDhn gene in the leaves of C. lanceolata at various time points (h) post-treatment with various stresses: A, 100 mM ABA; B, 100 mM NaCl; C, wounding; D, chilling and E, light treatment. Actin was used as an internal control.induced DHN-levels in Brassica napus and increased its ex-pression up to 48 hrs after treatment with ABA (37). 100 μM of ABA in MS agar induced DHN -levels in rice and cause a max-imum expression level at 1 hr post-treatment (10).Fig. 4B shows the accumulation of ClDhn mRNA in re-sponse to salt stress (100 mM NaCl). ClDhn expression was in-duced at 4 hrs post-treatment and gradually increased until 48 hrs. In Brassica napus , 250 mM NaCl added in the nutrient medium induced DHN-expression and reached a maximum at 48 hrs post-treatment (37). The application of NaCl to soil brought on a progressive decrease of the pre-dawn leaf water potential, a decrease of stomatal-conductance and a growth- reduction. Osmotic potential increase during salt treatmentcould result from Na + or Cl −absorption and from the synthesis of compatible compounds (38).Under wounding stress, ClDhn gene transcription was in-duced at 4 hrs post-treatment and gradually increased until 48 hrs (Fig. 4C). Richard et al . (39) discussed that the cumulative effect of wounding on transcript accumulation could also be associated with greater water-loss through more open surfaces arising from the wounding treatment.Under cold treatment, increase of ClDhn transcripts was ob-served at 4 hrs post-treatment and gradually increased until 48 hrs (Fig. 4D). Induction of DHN by low temperatures has been observed in numerous plants (17, 38). Overexpression of citrus DHN improved the cold tolerance in tobacco (18). Overexpre-ssion of multiple DHN genes in Arabidopsis resulted in accu-mulation of the corresponding DHNs to levels similar or higher than in cold-acclimated wild-type plants (24). Another example showed that overexpression of the acidic DHN WCOR410 could improve freezing tolerance in transgenic strawberry leaves (29). Fig. 4E shows that ClDhn gene expression was induced bylight stress and increased continuously until 48 hrs post-treat-ment. Natali et al . (40) showed that the G-box (CACGTGGC), a motif found in the promoter region of many light regulated genes, was found in the DHN gene promoter of helianthus and that DHN was responsive to light stress (41).In conclusion, we isolated a new dehydrin gene (ClDhn ) from C. lanceolata and characterized its expression in response to various stresses. ClDhn was induced by various stresses related to wa-ter-deficiency (ABA, salt, wounding and cold) and was induced by light, similar to other DHN genes isolated from other plants.MATERIALS AND METHODSPlant materialsCodonopsis lanceolata were grown in vitro on MS medium supplemented with 3% sucrose and 0.8% agar under the 16 hrs light and 8 hrs dark period. Its growth was maintained by regular subculture every 4 weeks. Abiotic stress studies were carried out on plants that were subcultured for one month. To analyze gene expression in different organs, samples were col-lected from leaves, roots and stem of C. lanceolata plants.Sequence analysesThe full-length ClDhn gene was analyzed using the softwares BioEdit, Clustal X, Mega 3 and other databases listed below; NCBI (http://www.ncbi.nlm.nih), SOPMA (http://npsa-pbil.ibcp /npsaautomat.pl?page=npsopma.html).Stress assaysTo investigate the response of the ClDhn gene to various stress-es, the third leaves with petioles from C. lanceolata were used. For treatment with ABA (100 mM) and NaCl (100 mM), leaf samples were incubated in media containing each compound at 25o C for 48 hrs. For mechanical wounding stress, excised leaves were wounded with a needle puncher (42). Chilling stress was applied by exposing the leaves to a temperature of 4o C (43). To investigate the ClDhn gene-expressions in light, leaves were incubated under an electrical lamp with a light in-tensity of 24 mol m-2 s-1 for 48 hrs. All treatments were carried out on MS media with or without the treatment solution (ABA, NaCl). All treated plant materials were immediately frozen in liquid nitrogen and stored at -70o C until further analysis.Semi-quantitative RT-PCR analysisTotal RNA was extracted from various whole plant tissues (leaves, stem, roots) of C. lancolata using the Rneasy mini kit (Qiagen, Valencia, CA, USA). For RT-PCR (reverse tran-scriptase-PCR), 800 ng of total RNA was used as a template for reverse transcription using oligo (dT) primer (0.2 mM)(INTRON Biotechnology, Inc., South Korea) for 5 mins at 75oC. The reaction mixture was then incubated with AMV Reverse Transcriptase (10 U/μl) (INTRON Biotechology, Inc., SouthKorea) for 60 mins at 42oC. The reaction was inactivated byheating the mixture at 94oC for 5 mins. PCR was then per-Codonopsis lanceolata dehydrin gene Rama Krishna Pulla, et al.342BMB reportsformed using a 1 μl aliquot of the first stand cDNA in a final volume of 25 μl containing 5 pmol of specific primers for cod-ing of ClDhn gene (forward, 5'-AAA GAG AGA GAA AAT GGC AGG TTA C-3'; reverse, 5'-GGA GTA GTT GTT GAA GTT CTC TGC T-3') were used. As a control, the primers spe-cific to the C. lanceolata actin gene were used (forward, 5'-CAA GAA GAG CTA CGA GCT ACC CGA TGG-3'; reverse, 5'-CTC GGT GCT AGG GCA GTG ATC TCT TTG CT-3'). PCR was carried out using 1 μl of taq DNA polymerase (Solgent Co., South Korea) in a thermal cycler programmed as follows:an initial denaturation for 5 mins at 95oC, 30 amplification cy-cles [30 s at 95o C (denaturation), 30 s at 53o C (annealing), and90 s at 72oC (polymerization)], followed by a final elongation for 10 mins at 72o C. Actin was used as an internal control to normalize each sample for variations in the amount of RNA used.AcknowledgementsThis work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2006-000-11178-0).REFERENCES1.Bray, E. A. (2002) Classification of the genes differentially expressed during water-deficit stress in Arabidopsis thali-ana : An analysis using micro array and differential ex-pression data. Ann. Bot. 89, 803-811.2.Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377-403.3.Kim, S. J., Jeong, D. H., An, G. and Kim, S. R. (2005) Characterization of a drought-responsive gene, OsTPS1, identified by the T-DNA gene-trap system in rice. J. Plant Biol. 48, 371-379.4.Allagulova, Ch. R., Gimalor, F. R., Shakirova, F. M. and Vakhitov, V. A. (2003) The plant dehydrins: Structure and putative functions. Biochemistry (Mosc .) 68, 945-951.5.Close, T. J. (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97, 795-803.6.Close, T. J. (1997) Dehydrins: a commonalty in the re-sponse of plants to dehydration and low temperature. Physiol. Plant. 100, 291-296.7.Dure, L., Crouch, M., Harada, J., Ho, T-HD., Mundy, J. and Quatrano, R. (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant. Mol. Biol. 12, 475-486.8.Hara, M., Terashima, S., Fukaya, T. and Kuboi, T. (2003) Enhancement of cold tolerance and inhibition of lipid per-oxidation by citrus dehydrin in transgenic tobacco. Planta. 217, 290-298.9.Ismail, A. M., Hall, A. E. and Close, T. J. (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Aca. Sci. U.S.A. 96, 13566-13570.10.Lee, S. C., Lee, M. Y., Kim, S. J., Jun, S. H., An, G. andKim, S. R. (2005) Characterization of an abiotic stress-in-ducible dehydrin gene OsDhn1 in rice (Oryza sativa L .). Mol. Cells. 19, 212-218.11.Svensson J, Ismail, A. M., Palva, E. T. and Close, T. J. (2002) Dehydrins. In: Storey KB, Storey JM (eds) Sensing, signaling and cell adaptation. Elsevier Science B. V., Amsterdam, 99, pp. 155-171.12.Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. (1995) Immunolocalization of freezing- tolerance-associated proteins in the cytoplasm and nucleo-plasm of wheat crown tissues. Plant J. 8, 583-593.13.Godoy, J. A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M. and Pintor-Toro, J. A. (1994) Expression tis-sue distribution and subcellular localization of dehydrin TAS14 in salt stressed tomato plants. Plant Mol. Biol. 26, 1921-1934.14.Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V. and Voinikov, V. K. (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in re-sponse to cold, freezing, drought and ABA treatment. BMC Plant Biol. [electronic resource] 2, 5.15.Heyen, B. J., Alsheikh, M. K., Smith, E. A., Torvik, C. F., Seals, D. F. and Randall, S. K. (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130, 675-687. 16.Mueller, J. K., Heckathorn, S. A. and Fernando, D. (2003) Identification of a chloroplast dehydrin in leaves of ma-ture plants. Int. J. Plant Sci. 164, 535-542.17.Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamoun, N. and Sarhan, F. (1998) Accumulation of an acidic dehydrin in the vicinity of plasma membrane dur-ing cold acclimation of wheat. Plant Cell. 10, 623-638.18.Koag, M. C., Fenton, R. D., Wilkens, S. and Close, T. J. (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131, 309-316. 19.Rinne, P. L. H., Kaikuranta, P. L. M., van der Plas, L. H. W. and van der Schoot, C. (1999) Dehydrins in cold-accli-mated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta. 209, 377-388.20.Alsheikh, M. K., Heyen, B. J. and Randall, S. K. (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278, 40882-40889. 21.Fan, Z. and Wang, X. (2006) Isolation and Characterization of a Novel Dehydrin Gene from Capsella bursa-pastoris. J. Molecular Biology 40, 52-60.22.Cheng, Z., Targolli, J., Huang, X. and Wu, R. (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol. Breed. 10, 71-82.23.Ismail, A. M., Hall, A. E. and Close, T. J. (1999) Purification and partial characterization of a dehydrin involved in chill-ing tolerance during seedling emergence of cowpea. Plant Physiol. 120, 237-244.24.Puhakainen, T., Hess, M. W., Mäkelä, P., Svensson, J., Heino, P. and Palva, E. T. (2004) Over expression of mul-tiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54, 743-753.25.Chauvin, L. P., Oude, M. and Sarhan, F. (1993) A leaf-spe-cific gene stimulated by light during wheat acclimation to low temperature. Plant Mol. Biol. 23, 255-265.Codonopsis lanceolata dehydrin geneRama Krishna Pulla, et al.343 BMB reports 26.Crosatti, C., Polverino, D. L. P., Bassi, R. and Cattivelli, L.(1999) The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119, 671-680.27.Ohno, R., Takumi, S. and Nakamura, C. (2003) Kinetics oftranscript and protein accumulation of a low-molecular weight wheat LEA D-11 dehydrin in response to low temperature. J. Plant Physiol. 160, 193-200.28.Panta, G. R., Rieger, M. W. and Rowland, L. J. (2001)Effect of cold and drought stress on blue berry dehydrin accumulation. J. Hort. Sci. Biotech. 76, 549-556.29.Houde, M., Dallaire, S., N’Dong, D. and Sarhan, F. (2004)Over expression of the acidic dehydrin WCOR410 im-proves freezing tolerance in transgenic strawberry leaves. Plant Biotech. J. 2, 381-388.30.Yin, Z., Pawlowicz, I., Bartoszewski, G., Malinowski, R.,Malepszy, S. and Rorat, T. (2004) Transcritional expression of a Solanum sogarandinum pGT Dhn10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedling. Cell Mol. Biol. Lett. 9, 891-902.31.Lee, K. T., Choi, J., Jung, W. T., Nam, J. H., Jung, H. J. andPark, H. J. (2002) Structure of a New Echinocystic Acid Bisdesmoside Isolated from Codonopsis lanceolata Roots and the Cytotoxic Activity of Prosapogenins. J. Agric. Food Chem. 50, 4190-4193.32.Xiao, H. and Nassuth, A. (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin1 genes in V. riparia and V . vinifera. Plant Cell Rep. 25, 968-977.33.Bray, E. A. (1997) Plant responses to water deficit. TrendsPlant Sci. 2, 48-54.34.Chandler, P. M. and Robertson, M. (1994) Gene expressionregulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 113-141.35.Rabbani, M. A., Maruyama, K., Abe, H., Kyan, M. A.,Katsura, K., Yoshiwara, K., Shinozaki, K. and Yamaguchi- Shinozaki, K. (2003) Monitoring expression profiles of ricegenes under cold drought and high salinity and abscisic acid application using cDNA micro array and RNA gel-blot analyses. Plant Physio. 133, 1755-1767.36.Shinozaki, K. and Yamaguchi-Shinozaki, K. (1996) Mole-cular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161-167.37.Deng, Z. X., Pang, Y. Z., Kong, W. W., Chen, Z. H., Wang, X. L., Liu, X. J., Pi, Y., Sun, X. F. and Tang, K. X. ( 2005) A novel ABA dependent dehydrin ERD10 gene from Brassica napus. DNA seq. 16, 28-35.38.Caruso, A., Morabito, D., Delmotte, F., Kahlem, G. and Carpin, S. (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol. Biochem. 40, 1033-1042.39.Richard, S., Morency, M. J., Drevet, C., Jouanin, L. and S´eguin, A. (2000) Isolation and characterization of a de-hydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol. Biol. 43, 1-10.40.Natali., Giordani, T., Lercari, B., Maestrini, P., Cozza, R., Pangaro, T., Vernieri, P., Martinelli, F. and Cavallini. (2007) A. Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus an-nuus L .). J. Plant Physiol. 164, 263-273.41.Menkens, A. E., Schindler, U. and Cashmore, A, R. (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci. 20, 506-510.42.Huh, G. H., Lee, S. J., Bae, Y. S., Liu, J. R. and Kwak, S. S. (1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension cul-tured cells of sweet potato and their differential expression in response to stress. Mol. Gen. Genet. 255, 382-391.43.Wu, W., Pang, Y., Shen, G., Lu, J., Lin, J., Wang, J., Sun, X. and Tang, K. (2006) Molecular Cloning, Characterization and Expression of a Novel Trehalose-6-phosphate Synthase Homologue from Ginkgo biloba. J. Biochem. Mol. Biol. 39, 158-166.。
帕鲁词条中英对照帕鲁(Paru)词条中英对照帕鲁(Paru)是一个位于南美洲巴西亚马逊州的一个城市,同时也是该州的一个自治市。
帕鲁拥有高达35,000平方公里的热带雨林,被誉为“地球之肺”的一部分。
作为亚马逊雨林的一部分,帕鲁被认为是世界上最重要的生态系统之一。
Paru is a city located in the state of Amazonas, Brazil, and is also an autonomous municipality in that state. Paru boasts a vast tropical rainforest spanning over 35,000 square kilometers, known as a part of the "lungs of the earth". As a part of the Amazon rainforest, Paru is considered one of the most crucial ecosystems on the planet.帕鲁市以其丰富的生物多样性而闻名,这里栖息着成百上千种物种,包括热带雨林中独特的植物和动物。
这些物种的存在对维持全球生态平衡至关重要,因此保护帕鲁的生态环境至关重要。
The city of Paru is renowned for its rich biodiversity, hosting hundreds of species, including unique flora and fauna found in the tropical rainforest. The presence of these species is crucial for maintaining the global ecological balance, making the preservation of Paru's ecosystem paramount.除了自然风光和生态系统,帕鲁也有着丰富的文化遗产和传统。