高三数学解答题难题突破圆锥曲线中的三点共线问题
- 格式:pdf
- 大小:448.01 KB
- 文档页数:7
圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。
新高考数学复习知识点与题型专题讲解 专题07 圆锥曲线中的向量共线问题一、单选题1.已知抛物线C :y 2=2x 的焦点为F ,点M ,N 分别在抛物线C 上.若2MF FN =,则点M 到y 轴的距离为()A .12B .35C .23D .1 【答案】D 【分析】由22y x =可得1(,0)2F ,设211(,)2y M y ,222(,)2y N y ,由2MF FN =,可得11x =.【详解】由22y x =可得1(,0)2F ,设211(,)2y M y ,222(,)2y N y ,由2MF FN =,可得22121211(,)2(,)2222y y y y --=-,所以22121122y y -=-且122y y -=,所以22113224y y -=,解得212y =,所以21112y x ==,所以点M 到y 轴的距离为1. 故选:D. 【点睛】本题考查了抛物线的几何性质,考查了平面向量共线的坐标表示,属于基础题.2.抛物线()2:20C y px p =>的焦点为F ,准线为l ,点P 在l 上,线段PF 与抛物线C 交于点A ,若4PF AF =,点A 到x 轴的距离为2,则p 的值是()A..4C ..2 【答案】C 【分析】画出图形,通过向量关系,转化为:1||||||3AB AF AP ==,通过求解三角形,结合抛物线的性质转化求解即可. 【详解】解:抛物线2:2(0)C y px p =>的焦点为F ,准线为l , 点P 在l 上,线段PF 与抛物线C 交于点A ,若4PF AF =, 过A 作AB l ⊥于B ,则1||||||3AB AF AP ==,所以tan APB ∠=,设准线与x 轴交于D ,则|||DP FD ==,因为点A 到x 轴的距离为2,14=,解得P = 故选:C .【点睛】本题考查抛物线几何性质、平面向量的线性运算,熟练掌握抛物线的几何性质是解题的关键,考查学生的分析能力和运算能力,属于中档题.3.已知双曲线的标准方程为221412x y -=,过其右焦点F 的直线与双曲线的右支交于A ,B 两点,若13AF FB =,则AB 的垂直平分线与x 轴交点的横坐标是()A .20B .10C .12D .18 【答案】A 【分析】解法一:先根据双曲线的方程得到焦点F 的坐标,设出直线AB 的方程,并将其与双曲线方程联立,再结合13AF FB =及根与系数的关系,求出AB 的中点坐标,进而可得AB 的垂直平分线的方程,最后求其与x 轴交点的横坐标即可;解法二:设出A ,B 两点的坐标,结合13AF FB =,利用向量的坐标表示求出两点坐标之间的关系进行求解. 【详解】解法―:由221412x y -=,得双曲线的右焦点()4,0F ,故由题意可设直线AB 的方程为()40x ty t =+≠.联立方程,得2241412x ty x y =+⎧⎪⎨-=⎪⎩,消去x 得()223124360t y ty -++=.设()11,A x y ,()22,B x y .由13AF FB =及根与系数的关系,得121221221324313631y y t y y t y y t ⎧-=⎪⎪⎪+=-⎨-⎪⎪=⎪-⎩,得12y y t ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩,或12y y t ⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩由对称性不妨设t =,则AB 的中点坐标为(5,,所以AB的垂直平分线的方程为()515y x =-,令0y =,得20x .故选:A.解法二:由221412x y -=,得双曲线的右焦点()4,0F .不妨设点A 在第一象限内,设()()111,0A x y x >,()22,B x y ,因为13AF FB =,所以()1212144313x x y y ⎧-=-⎪⎪⎨⎪-=⎪⎩,得21211633x x y y =-⎧⎨=-⎩.又点A ,B 在双曲线上,所以()()22112211141216331412x y x y ⎧-=⎪⎪⎨--⎪-=⎪⎩,得113x y =⎧⎪⎨=⎪⎩,则227x y =⎧⎪⎨=-⎪⎩所以AB的中点坐标为(5,,直线AB 的斜率k =,所以AB的垂直平分线的方程为)5y x +=-,令0y =,得20x .故选:A. 【点睛】本题主要考查双曲线的几何性质、直线与双曲线的位置关系、向的坐标表示. 试题综合考查直线与双曲线的位置关系,引导考生抓住解析几何问题的本质,透过本质建立数与形之间的联系,体现了直观想象、逻辑推理、数学运算等核心素养.4.已知抛物线2:4C x y =,焦点为F ,圆()222:2400M x x y y a a -+++=>,过F 的直线l 与C 交于A 、B 两点(点A 在第一象限),且4FB AF =,直线l 与圆M 相切,则a =() A .0B.5C.5D .3 【答案】B 【分析】设点()11,A x y 、()22,B x y ,可得1>0x ,且2114x y =,由4FB AF =结合向量的坐标运算以及21122244x y x y ⎧=⎪⎪⎨⎪=⎪⎩可求得点A 的坐标,进而可求得直线l 的方程,由直线l 与圆M 相切,得出圆心到直线的距离等于圆的半径,由此可求得实数a 的值. 【详解】抛物线C 的焦点为()0,1F ,设点()11,A x y 、()22,B x y ,则1>0x ,且2114x y =,由4FB AF =得()()2211,14,1x y x y -=--,()21214141x x y y =-⎧∴⎨-=-⎩,由()21141y y -=-,即222114144x x ⎛⎫-=- ⎪⎝⎭,即4211450x x +-=,可得211x =,11x ∴=, 所以,点A 的坐标为11,4⎛⎫ ⎪⎝⎭, 直线AF 的斜率为1134104AFk -==--,则直线l的方程为314y x =-+,即3440x y +-=, 将圆M 的方程写为标准式得()()222125x y a -++=-,则250a a ⎧->⎨>⎩,可得0a <<由于直线l 与圆M 31424955⨯-⨯-==,解得a =,合乎题意. 故选:B. 【点睛】本题考查利用直线与圆相切求参数,同时也考查了利用抛物线中向量共比例关系求直线方程,考查计算能力,属于中等题.5.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,过F C 于A 、B 两点,若4AF FB =,则C 的离心率为() A .58B .65C .75D .95【答案】B 【分析】设双曲线2222:1x y C a b-=的右准线为l ,过A 、B 分别作AM l ⊥于M ,BN l ⊥于N ,BD AM ⊥于D ,根据直线AB ,得到12AD AB =,再利用双曲线的第二定义得到()1AD AF FB e=-,又AB AF FB =+,结合4AF FB =求解.【详解】设双曲线2222:1x y C a b-=的右准线为l ,过A 、B 分别作AM l ⊥于M ,BN l ⊥于N ,BD AM ⊥于D , 如图所示:因为直线AB , 所以直线AB 的倾斜角为60︒, ∴60BAD ∠=︒,12AD AB =, 由双曲线的第二定义得:()()11122AM BN AD AF FB AB AF FB e -==-==+, 又∴4AF FB =, ∴352FB FB e =, ∴65e =故选:B 【点睛】本题主要考查双曲线的第二定义的应用以及离心率的求法,还考查了数形结合的思想和运算求解的能力,属于中档题.6.已知点()2,0Q -与抛物线()220y px p =>,过抛物线焦点的直线与抛物线交于A ,B 两点,与y 轴交于点P ,若3AB BP =,且直线QA 的斜率为1,则p =()A .2B .4C.2D.【答案】C 【分析】判断A 、B 的位置,结合向量关系,推出A 、B 横坐标与纵坐标的关系,通过直线的斜率关系,转化求解即可. 【详解】解:由题意可知A 在第一象限,B 在第四象限,设()(),,,A A B B A x y B x y ,()0,p P y由3AB BP =,所以()(),3,B A B A B P B x x y y x y y --=--,得4A B x x =,又224,4A A B B y x y x ==,所以2A B y y =-,又A 、F 、B 三点共线,可得2A B BA BB y y y p x x x -=--,即2222B B A B y p y p y y p =+-, 可得2B A y y p =-,∴2212A y p -=-,A y =,A x p =, 由QA 斜率为1可得:12AA y x =+,即12p =+,则2p =.故选:C . 【点睛】在直线和抛物线的位置关系中,结合向量共线考查求抛物线中的参数p ;基础题. 二、解答题7.在平面直角坐标系xOy 中,设椭圆22221x y a b+=(0a b >>)的左、右焦点分别为1F 、2F ,左顶点为A ,上顶点为B ,离心率为e .椭圆上一点C 满足:C 在x 轴上方,且2CF ∴x 轴.(1)如图1,若OC ∴AB ,求e 的值;(2)如图2,连结1CF 并延长交椭圆于另一点D.若12e ≤11CF F D 的取值范围. 【答案】(1)2;(2)7,133⎡⎤⎢⎥⎣⎦.【分析】(1)根据2CF x ⊥轴,设C 0(,)c y ,00y >,再根据点C 在椭圆上求得其坐标,然后再根据OC ∴AB ,由AB OC k k =求解.(2)设11(,)D x y ,11CF F D λ=,由(1)2(,)b C c a,1(,0)F c -,然后用λ表示D 的坐标,代入椭圆方程求解. 【详解】(1)设椭圆22221(0)x y a b a b+=>>的焦距为2c .∴2CF x ⊥轴可设C 0(,)c y ,00y >,因为220221y c a b+=,所以4202b y a=,解得20b y a=,∴C 2(,)b c a∴OC ∴AB ,所以22AB OC b bb a k k ac ac==== ∴b =c∴2c e a ===. (2)设11(,)D x y ,11CF F D λ=,由(1)知:2(,)b C c a ,1(,0)F c -,212,b CF c a=--(),111(,)F D x c y =+,∴11CF F D λ=∴12()c x c λ-=+,21b y aλ-=所以12x c λλ+=-,21b y aλ=-, ∴22(,)b D c aλλλ+--又∴D 在椭圆上 ∴222222()()1b c a a bλλλ+--+=, 化简得:222(43)1e λλλ++=-又∴0λ>,2221-1414333e λλλλλλ-===-++++∴102e λ≤≤>),21344e ≤≤, 则1431434λ≤-≤+, 解得:7133λ≤≤ 所以11CF F D 取值范围是7,133⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:求椭圆的离心率的常用方法:∴直接求出a ,c 来求解e .通过已知条件列出方程组,解出a ,c 的值;∴构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;∴通过取特殊值或特殊位置,求出离心率.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系.8.已知椭圆()2222:10y x C a b a b +=>>经过点(. (1)求曲线C 的方程;(2)设直线:l y x =C 交于,A B 两点,点M 为OA 中点,BM 与曲线C 的另一个交点为N ,设BM mMN =,试求出m 的值.【答案】(1)2213y x +=;(2)53m =. 【分析】(1)由椭圆的离心率及经过的点列方程即可得解;(2)设()()()112200,,,,,A x y B x y N x y ,由韦达定理得12x x 、12y y ,再由平面向量的数乘运算可得()()012012112112m x x x m m m y y y m m ⎧+=-⎪⎪⎨+⎪=-⎪⎩,代入椭圆方程运算即可得解. 【详解】(1)由题意得222231a c a abc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得1a b ⎧=⎪⎨=⎪⎩C 的方程为2213y x +=; (2)设()()()112200,,,,,A x y B x y N x y ,将:=+l y x 2213y x +=得2410x +-=,所以12121,24x x x x +=-=-,所以()12121212324y y x x x x x x ==++=,由点M 为OA 中点得1111,22M x y ⎛⎫ ⎪⎝⎭, 由BM mMN =得121201011111,,2222x x y y m x x y y ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭, 所以()()012012112112m x x x m m m y y y m m ⎧+=-⎪⎪⎨+⎪=-⎪⎩, 因为N 在椭圆上,所以220013y x +=, 所以()()22121211111+=1232m m x x y y mm m m ++⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦, 即()()2222212121212222111+14333m m y y y y x x x x m m m ++⎛⎫⎛⎫⎛⎫++-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又因为2222121212121,1,0333y y y y x x x x +=+=+=, 所以()22211+14m m m+=,化简得23250m m --=,解得53m =(负值舍去). 【点睛】 解决本题的关键是设出点的坐标,利用韦达定理及向量的数乘对条件合理转化,细心计算即可得解.9.已知椭圆C :()222210x y a b a b+=>>的两个焦点为1F ,2F,焦距为l :1y x =-与椭圆C 相交于A ,B 两点,31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点. (1)求椭圆的标准方程;(2)若直线l :y kx m =+与椭圆C 相交于不同的两点M ,N ,()0,Q m ,若3OM ON OQ λ+=(O 为坐标原点),求m 的取值范围.【答案】(1)2213x y +=;(2)113m <<或113m -<<-. 【分析】(1)31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点, 设()11,A x y ,()22,B x y ,代入椭圆方程利用点差法可求解.(2)由M ,Q ,N 三点共线,133OQ OM ON λ=+,根据三点共线性质可得:1133λ+=,则2λ=,将直线l 的方程和椭圆C 方程联立,利用韦达定理即可求得答案.【详解】(1)∴焦距为c =()11,A x y ,()22,B x y , ∴31,44P ⎛⎫- ⎪⎝⎭为弦AB 的中点,根据中点坐标公式可得:1232x x +=,1212y y +=-, 又∴将()11,A x y ,()22,B x y 代入椭圆C :22221x y a b+= ∴2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩ ∴将两式作差可得:()()()()22121212120b x x x x a y y y y +-++-=, 所以()()22121222121231AB b x x y y b k x x a y y a +-==-==-+, 所以223a b ………∴. ∴222a c b -=………∴由∴∴得:2231a b ⎧=⎨=⎩ 所以椭圆的标准方程为2213x y +=. (2)∴M ,Q ,N 三点共线,133OQ OM ON λ=+ ∴根据三点共线性质可得:1133λ+=,则2λ= 设()11,M x y ,()22,N x y ,则1212033x x +=, ∴122x x =-.将直线l 和椭圆C 联立方程22,33y kx m x y =+⎧⎨+=⎩消掉y . 可得:()222136330k x kmx m +++-=.220310k m ∆>⇒-+>………∴, 根据韦达定理:122613km x x k +=-+,21223313m x x k-=+, 代入122x x =-,可得:22613km x k =+,222233213m x k--=+, ∴()222222363321313k m m k k --⨯=++,即()2229131m k m -⋅=-. ∴2910m -≠,219m ≠, ∴22213091m k m -=≥-………∴,代入∴式得22211091m m m --+>-,即()22211091m m m -+->-, ∴()()2221910m m m --<,∴2119m <<满足∴式, ∴113m <<或113m -<<-. 【点睛】本题考查椭圆的中点弦问题,考查直线与椭圆的综合问题,联立方程,韦达定理的应用,属于中档题.10.如图,已知椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线2AF 交椭圆于另一点B .(1)若190∠=F AB ,求椭圆的离心率;(2)若椭圆的焦距为2,且222AF F B =,求椭圆的方程.【答案】(1)2;(2)22132x y +=. 【分析】(1)根据190∠=F AB 得到b c =,a =,可得c e a ==;(2)设(),B x y ,根据222AF F B =得到32x =,2b y =-,代入22221x y a b+=,解得23a =,可得222312b a c =-=-=,从而可得椭圆方程.【详解】(1)若190F AB ∠=︒,则12F AF 和2AOF △为等腰直角三角形.所以有2OA OF =,即b c =.所以a =,2c e a ==. (2)由题知()0,A b ,()21,0F ,设(),B x y ,由222AF F B =,得()()1,21,b x y -=-,所以32x =,2b y =-. 代入22221x y a b +=,得2229441b a b +=. 即291144a +=,解得23a =.所以222312b ac =-=-=, 所以椭圆方程为22132x y +=. 【点睛】本题考查了求椭圆的离心率,考查了求椭圆方程,考查了平面向量共线的坐标表示,属于中档题.11.已知椭圆C :22221x y a b+=(0a b >>),O 为坐标原点,长轴长为4,离心率12e =. (1)求椭圆C 的方程;(2)设直线l 的方程为:()1y k x =-,点A 为椭圆C 在x 轴正半轴上的顶点,过点A 作AB l ⊥,垂足为M ,点B 在椭圆上(不同于点A )且满足:25MB AM =,求直线l 的斜率k .【答案】(1)22143x y +=;(2)k =. 【分析】(1)由长轴长为4求a ,再由离心率12e =求c ,根据椭圆的性质求b ,从而得到椭圆方程. (2)椭圆C 的右顶点A 为(2,0).直线1:1l x y k=+,直线AB 的方程为2x ky =-+,分别与椭圆方程联立,求出,B M 的纵坐标,利用向量关系,转化求解直线的斜率即可.【详解】(1)由椭圆的离心率12e =,长轴长为4可知2a =,1c =,∴23b =, ∴椭圆C 的方程为22143x y +=. (2)椭圆C 的右顶点A 为()2,0.由题可知0k ≠,直线l :11x y k =+,直线AB 的方程为2x ky =-+, 由112x y k x ky ⎧=+⎪⎨⎪=-+⎩,可知21M k y k =+, 由2234120x ky x y =-+⎧⎨+-=⎩,得()2234120k y ky +-=,则21234B k y k =+, ∴25MB AM =,∴()()250B M M y y y -=-,则22212523411k k k k k k ⎛⎫-=⎪+++⎝⎭ ∴0k ≠,∴243k =,解之,3k =±. 【点睛】本题考查椭圆的简单性质以及椭圆方程的求法,考查直线与椭圆的位置关系的综合应用,同时考查了平面向量的坐标运算,考查计算能力,属于综合题.12.已知椭圆1C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线被椭圆1C 和圆222x y a +=截得的弦长分别为2和(1)求1C 的标准方程;(2)已知动直线l 与抛物线2C :24y x =相切(切点异于原点),且l 与椭圆1C 相交于M ,N 两点,问:椭圆1C 上是否存在点Q ,使得6OM ON OQ +=,若存在求出满足条件的所有Q 点的坐标,若不存在,请说明理由.【答案】(1)22142x y +=;(2)存在,Q 点坐标为⎛ ⎝⎭或⎛ ⎝⎭【分析】(1)(1)设直线方程为x c =-,分别与椭圆方程,圆联立解得交点坐标,再根据弦长分别为2和.求解.(2)设l :()0x my n m =+≠,()11,M x y ,()22,N x y ,()00,Q x y ,与抛物线方程联立,根据l 与2C 相切,则2100m n ∆=⇒+=,与椭圆方程联立,由63OM ON OQ +=结合韦达定理得到Q 坐标代入椭圆方程求解.【详解】(1)设直线方程为x c =-,与椭圆方程()222210x y a b a b +=>>联立解得2b y a=±,所以222b a=, 直线方程为x c =-,与圆222x y a +=联立解得y b =±,所以2b =解得2,a b ==故1C :22142x y +=. (2)由题知l 存在且斜率不为0,设l :()0x my n m =+≠,()11,M x y ,()22,N x y ,()00,Q x y , 联立24x my n y x=+⎧⎨=⎩,得2440y my n --=, 因为l 与2C 相切,故2100m n ∆=⇒+=,联立2224x my n x y =+⎧⎨+=⎩,得()2222240m y mny n +++-=, 所以12222mn y y m +=-+,212242n y y m -=+, 22202424n m n ∆>⇒<+=-+,又20m n =->,所以()1n ∈-. 因为63OM ON OQ +=,所以120120x x x y y y ⎧+=⎪⎪⎨⎪+=⎪⎩,由韦达定理,代入计算得020222x m y m ⎧=⎪⎪+⎨⎪=-⎪+⎩,因为点()00,Q x y 在椭圆上,即220024x y +=,代入得()()22222222412422n m n m m +=++,即2221322n n m n==+-,()1n ∈-, 解得1n =-或23n =(舍), 所以1m =±,此时Q点坐标为⎛ ⎝⎭或⎛ ⎝⎭. 【点睛】本题主要考查直线与椭圆,直线与抛物线,直线与圆的位置关系,还考查了运算求解的能力,属于中档题.13.已知椭圆()2222:10x y C a b a b +=>>的离心率是12,且椭圆C经过点P ⎭,过椭圆C 的左焦点F 的直线l 与椭圆C 交于M ,N 两点. (1)求椭圆C 的标准方程;(2)若2MF FN =,求直线l 的方程.【答案】(1)22143x y +=;(220y ±+=. 【分析】(1)依题意得到方程组222221,2331,4,c a a b c a b ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩,解得即可;(2)设直线l 的方程为1x my =-,()11,M x y ,()22,N x y ,联立直线与椭圆方程,消元列出韦达定理,由2MF FN =,可得122y y -=,从而求出参数的值, 【详解】解:(1)设椭圆C 的半焦距为c .由题意可得222221,2331,4,c a a b c a b ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩解得24a =,23b =.故椭圆C 的标准方程为22143x y +=.(2)由(1)可得()1,0F -当直线l 的斜率为0时,()2,0M -,()20N ,或()20M ,,()2,0N -, 此时2MF FN ≠,不符合题意.当直线l 的斜率不为0时,可设直线l 的方程为1x my =-,()11,M x y ,()22,N x y .联立221143x my x y =-⎧⎪⎨+=⎪⎩,整理得()2234690m y my +--=,则1212229,63434y y y y m m m ==-+++, 因为2MF FN =,所以122y y -=.从而1222634my y y m +=-=+,21221222269,23434m y y y y y y m m +=-==-=-++, 则2226923434m m m ⎛⎫-⨯=- ⎪++⎝⎭,解得m =. 故直线l20y ±+=.【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,属于中档题. 14.已知过点()0,2P 的直线与抛物线2:4C x y =相交于A ,B 两点. (1)若2AP PB =,且点A 在第一象限,求直线AB 的方程;(2)若点A ,B 在直线2y =-上的射影分别为1A ,1B ,线段1A B 的中点为Q ,求证1//BQ PA .【答案】(1)122y x =+;(2)证明见解析; 【分析】(1)由题意,设过点(0,2)P 的直线l 的斜率为k ,则:2l y kx =+.然后由2AP PB =,根据定比分点的知识,可得12223x x +=,12203y y +=.将112y kx =+,222y kx =+代入最终可得到k 的值,则即可求出直线AB 的方程;(2)先联立直线l 与抛物线方程,整理得到一元二次方程,根据韦达定理有124x x k +=,128x x =-.再根据题意写出∴122(2x x BQ x +=-,22)y --,11(PA x =,4)-.再根据平行向量的坐标公式12210x y x y -=进行代入计算即可证明1//BQ PA . 【详解】(1)解:由题意,设过点(0,2)P 的直线l 的斜率为k ,则:2l y kx =+. 设1(A x ,1)y ,2(B x ,2)y .2AP PB =,∴根据定比分点的知识,有12203x x +=,12223y y +=, 1220x x ∴+=.联立224y kx x y =+⎧⎨=⎩,消去y ,整理得2480x kx --=.解得12(x k =+,22(x k =,1222(4(0x x k k ∴+=+-=,整理,得30k =>,解得12k =. ∴直线AB 的方程为122y x =+. (2)证明:根据(1),联立直线l 与抛物线方程,得224y kx x y=+⎧⎨=⎩, 整理,得2480x kx --=. 则124x x k +=,128x x =-.11(A x ,2)-,12(B x ,2)-.12(2x x Q +∴,2)-. ∴122(2x x BQ x +=-,22)y --,11(PA x =,4)-. 12212()(4)(2)2x x x x y +----- 2112211212124(2)22222x x x y x x x y x x x y -=++=-++=+ 222212122244x xx x x x x =+=+222(8)04x x =+-=. 1//BQ PA ∴.【点睛】本题主要考查直线与抛物线的综合问题,考查了定比分点的应用,平行向量坐标公式的应用,考查了逻辑思维能力和数学运算能力.属于中档题.15.已知222:4)(0E x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与E 有两个交点A ,B ,线段AB 的中点为M .(1)若2m =,点K 在椭圆E 上,1F 、2F 分别为椭圆的两个焦点,求12KF KF 的范围;(2)若l 过点(,)2mm ,射线OM 与椭圆E 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时直线l 斜率;若不能,说明理由.【答案】(1)[]2,1-;(2)k =. 【分析】(1)求得焦点坐标,设(,)K x y ,运用向量数量积的坐标表示,结合椭圆的范围,可得所求范围;(2)设A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y ,运用中点坐标公式和点差法,直线的斜率公式,结合平行四边形的性质,即可得到所求斜率. 【详解】解:(1)2m =时,椭圆22:14x E y +=,两个焦点1(F ),2F 0),设(,)K x y ,可得2214x y +=,即2244x y =-,1(F K x =,)y,2(F K x =-)y ,2221212331KF KF F K F K x y y ==-+=-+,因为11y -,所以12KF KF 的范围是[]2,1-;(2)设A ,B 的坐标分别为1(x ,1)y ,2(x ,2)y ,可得12(2x x M +,12)2y y +, 则222112222244x y m x y m⎧+=⎨+=⎩,两式相减可得12121212()()4()()0x x x x y y y y +-++-=, 12121212()()140()()y y y y x x x x +-+=+-,即140OM l k k +=,故14OM l k k =-,又设(P P x ,)P y ,直线:()(0,0)2ml y k x m m k =-+≠≠,即直线l 的方程为2m y kx km =-+, 从而1:4OM y x k =-,代入椭圆方程可得,2222414P m k x k =+,由()2m y k x m =-+与14y x k=-,联立得224214M k m kmx k -=+,若四边形OAPB 为平行四边形,那么M 也是OP 的中点, 所以2MP x x =,即2222224244()1414k m km m k k k-=++,整理可得2121630k k -+=,解得k =,经检验满足题意,所以当46k ±=时,四边形OAPB 为平行四边形. 【点睛】本题考查椭圆的方程和性质,考查直线和椭圆的位置关系,注意运用点差法,考查向量数量积的坐标表示,考查方程思想和运算能力,属于中档题.16.设抛物线E :()220y px p =>焦点为F ,准线为l ,A 为E 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 点.(∴)若60BFD ∠=︒,BFD △的面积为3,求p 的值及圆F 的方程; (∴)若点A 在第一象限,且A 、B 、F 三点在同一直线1l 上,直线1l 与抛物线E 的另一个交点记为C ,且CF FA λ=,求实数λ的值.【答案】(∴)2p =,圆F 为:()221613x y -+=;(∴)13λ=.【分析】(∴)依题意可得BFD △为正三角形,且BF =根据BFD △的面积,即可求出p ,从而得到圆F 的方程;(∴)依题意可得直线AB 的倾斜角为3π或23π,由对称性可知,设直线l :2p x =+,()11,A x y ,()22,C x y ,联立直线与抛物线方程消元列出韦达定理,由CF FA λ=,即可得到()2143λλ-=,解得即可;【详解】解:(∴)焦点到准线l 的距离为p ,又∴BF FD =,60BFD ∠=︒,∴BFD △为正三角形.∴BF =2p B ⎛- ⎝,∴21sin 602BFD S BF =︒=△2p ∴=, ∴圆F 为:()221613x y -+=. (∴)若A 、F 、B 共线,则AF BF DF ==,2BDA π∴∠=∴12AD AF AB ==,6DBA π∴∠= ∴直线AB 的倾斜角为3π或23π, 由对称性可知,设直线l :2px =+,()11,A x y ,()22,C x y ,CF FA λ=,联立()121222221211202py y yxy y py y p yy pxλλ⎧⎧+==-⋅=+⎪⎪⇒-=⇒⎨⎨⎪⎪⋅=-=-⋅=⎩⎩,∴()2143λλ-=,231030λλ∴-+=,3λ∴=或13λ=,又AF BF p=>,12px>,01λ∴<<,所以13λ=.【点睛】本题考查直线与抛物线的综合应用,向量共线求出参数的值,属于中档题.17.已知抛物线()2:20C y px p=>,过抛物线C的焦点F且垂直于x轴的直线交抛物线C于,P Q两点,4PQ=.(1)求抛物线C的方程,并求其焦点F的坐标和准线l的方程;(2)过抛物线C的焦点F的直线与抛物线C交于不同的两点,A B,直线OA与准线l交于点M.连接MF,过点F作MF的垂线与准线l交于点N.求证:,,O B N三点共线.【答案】(1)抛物线C的方程为24y x=,焦点F坐标为()1,0,准线l方程为1x=-(2)证明见解析【分析】(1)根据抛物线通径的性质,得出2p=,即可求出抛物线的标准方程,即可得出焦点坐标和准线方程;(2)根据题意,设直线:1AB x ty =+,与抛物线方程联立,求出则124y y t +=,124y y =-,通过直线相交分别求出141,M y ⎛⎫-- ⎪⎝⎭和()11,N y -,从而求出1ON k y =-和24OB k y =,通过化简求出0OB ON k k -=,即可证出,,O B N 三点共线.【详解】解:(1)24PQ p ==,则2p =,故抛物线C 的方程为:24y x =,其焦点F 坐标为()1,0,准线l 方程为:1x =-(2)设直线:1AB x ty =+,联立214x ty y x=+⎧⎨=⎩, 得2440y ty --=,则216160t =+>△,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-.法1:直线11:y OA y x x =, 由2114y x =得14y x y =,故点141,M y ⎛⎫-- ⎪⎝⎭, 直线MF 的斜率1140211MFy k y --==--, 则直线FN 的斜率12FN y k =-,直线()1:12y FN y x =--,则点()11,N y - 直线ON 的斜率1ON k y =-.直线OB 的斜率22OB y k x =,由2224y x =得24OB k y =, 则()12122244440OB ON y y k k y y y y +--=--===, 所以,,O B N 三点共线.法2:直线11:y OA y x x =, 由2114y x =得14y x y =,故点141,M y ⎛⎫-- ⎪⎝⎭, 由124y y =-,得()21,M y -.直线MF 的斜率220112MF y y k -==---, 直线()22:1FN y x y =-,得点241,N y ⎛⎫-- ⎪⎝⎭, 由124y y =-,得()11,N y -.直线ON 的斜率1ON k y =-.直线OB 的斜率22OB y k x =,由2224y x =得24OB k y =, 由124y y =-,得1OB k y =-,则有OB ON k k =.所以,,O B N 三点共线.法3:(1)∴4PQ =,∴2PF =,∴22OF =,∴1OF =,2p =,∴抛物线C 的标准方程为:24y x =,则焦点坐标为:()1,0F ,准线方程为::1l x =-.(2)设直线:1AB x ty =+,联立得:2440y ty --=, 212121616044t y y ty y ⎧∆=+>⎪+=⎨⎪=-⎩, 设()11,A x y ,()22,B x y ,∴直线11:y AO y x x =, 当1x =-时,11y y x =-,∴111,y M x ⎛⎫-- ⎪⎝⎭, ∴112MF y k x =,∴1121FN MF x k k y =-=-, ∴直线()112:1x FN y x y =--, 当1x =-时,114x y y =,∴1141,x N y ⎛⎫- ⎪⎝⎭, ∴114NO x k y =-,22BO y k x =,∴21214BO NO y x k k x y -=+ ()()1212121221214114y y y y y y x x x y x y ++++++== ()()12122142144y y y y x y ++++++=()22442116240x y -+++++==, ∴BO NO k k =,∴,,B O N 共线.【点睛】本题考查抛物线的标准方程和简单几何性质,以及直线与抛物线的位置关系,通过联立方程组,韦达定理,利用直线斜率的关系证明三点共线,考查转化思想和计算能力.18.已知抛物线E 上的焦点为(0,1)F .(1)求抛物线E 的标准方程;(2)过F 作斜率为k 的直线l 交曲线E 于A 、B 两点,若3BF FA =,求直线l 的方程.【答案】(1)24x y =;(2)13y x =±+. 【分析】(1)根据焦点坐标求得p ,结合抛物线的开口方向求得抛物线E 的标准方程.(2)联立直线l 的方程和抛物线方程,写出根与系数关系,结合3BF FA =求得k 的值,进而求得直线l 的方程.【详解】(1)依题意,抛物线的焦点为()0,1F ,开口向上,2,24p p ==,所以曲线E 的方程为:24x y =; (2)设过F 的斜率为k 的直线方程为:1y kx =+,联立214y kx x y=+⎧⎨=⎩,消去y 并化简得2440x kx --=. 令11(,)A x y 、22(,)B x y , 所以124x x k +=,124x x -=,由题可知:3BF FA =,即:2211(,1)3(,1)x y x y --=-,即得213x x -=,由124x x k +=,124x x -=,213x x -=得:213k =,3k =±,所求直线l 的方程为:1y x =+. 【点睛】本小题主要考查抛物线方程的求法,考查直线和抛物线的位置关系,属于中档题.19.已知椭圆22:24C x y +=(1)求椭圆C 的标准方程和离心率;(2)是否存在过点()0,3P 的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)22142x y +=,2e =;(2)存在,7x =0或7x ﹣=0 【分析】(1)将椭圆方程化为标准方程,可得a ,b ,c ,由离心率公式可得所求值;(2)假设存在过点P (0,3)的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =,可设直线l 的方程为x =m (y ﹣3),联立椭圆方程,消去x 可得y 的二次方程,运用韦达定理和判别式大于0,再由向量共线的坐标表示,化简整理解方程,即可判断是否存在这样的直线.【详解】(1)由22142x y +=,得2,a b ==c ==c e a ==; ∴2∴假设存在过点P (0,3)的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =,可设直线l 的方程为x =m (y ﹣3),联立椭圆方程x 2+2y 2=4,可得(2+m 2)y 2﹣6m 2y +9m 2﹣4=0,∴=36m 4﹣4(2+m 2)(9m 2﹣4)>0,即m 2<47, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=2262m m +,y 1y 2=22942m m-+,∴ 由2PB PA =,可得(x 2,y 2﹣3)=2(x 1,y 1﹣3),即y 2﹣3=2(y 1﹣3),即y 2=2y 1﹣3,∴将∴代入∴可得3y 1﹣3=2262m m +,y 1(2y 1﹣3)=22942m m -+,消去y 1,可得22232m m ++•22322m m -+=22942m m -+,解得m 2=2747<,所以m =,故存在这样的直线l ,且方程为7x =0或7x y ﹣=0.【点睛】本题考查椭圆的方程和性质,考查直线方程和椭圆方程联立,运用韦达定理,同时考查向量共线的坐标表示,考查化简运算能力和推理能力,属于中档题.20.设12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过2F 的直线l 与椭圆C 相交于,A B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(1)求椭圆C 的焦距;(2)如果222AF F B =,求椭圆C 的方程.【答案】(1)4;(2)22195x y +=. 【分析】(1)由题意可设直线l的方程为)y x c =-,再利用点到直线的距离公式即可求解.(2)由(1)可得)2y x =-,联立方程)222221y x x y ab ⎧=-⎪⎨+=⎪⎩消x ,求出两交点的纵坐标,再由222AF F B =得出两交点纵坐标的关系即可求解.【详解】(1)由题意可得:直线l的方程为)y x c =-,()1,0F c -到直线l的距离为=2c =,∴椭圆C 的焦距24c =.(2)由(1)可得)2y x =-,设()11,A x y ,()22,B x y ,10y <,20y>, 联立)222221y x x y ab ⎧=-⎪⎨+=⎪⎩,整理可得()22224330a b y y b ++-=,解得()2122223a y a b +=+,()2222223a y a b-=+, 因为222AF F B =,所以122y y -=,即()()2222222222233a a a b a b+-=⋅++,解得3a =, 又2c =,故b ==故椭圆C 的方程为22195x y +=. 【点睛】本题考查了椭圆的简单几何性质、直线与椭圆的位置关系,此题要求有较高的计算求解能力,属于中档题.21.设椭圆:C 22221(0)x y a b a b+=>>左焦点为F ,过点F 的直线l 与椭圆C 交于,A B 两点,直线l 的倾斜角为45︒,且3AF FB =(1)求椭圆C 的离心率;(2)若||AB =,求椭圆C 的方程. 【答案】(1(2)2212x y +=. 【分析】(1)设直线方程为y x c =+,联立22221y x c x y ab =+⎧⎪⎨+=⎪⎩,解得12,y y ,根据3AF FB =,由123y y -=求解.(2)根据2121||3AB y y y y =-=-=,结合(1)的数据代入求解. 【详解】(1)设()()1122,,,A x y B x y ,由题意得120,0y y ><,直线方程为:y x c =+,联立22221y x c x y a b =+⎧⎪⎨+=⎪⎩得()2222420a b y b cy b +--=,解得)()22122222,c b c b y y a b a b+==++, 因为3AF FB =,所以123y y -=,即)()2222223c b c b a b a b +--=++,所以2c e a ==. (2)因为22121224||ab AB y y y a b =-=-==+, 所以222322ab a b =+,又2c e a ==,则2b a =,解得1a b ==, 所以椭圆C 的方程是2212x y +=.【点睛】本题主要考查椭圆的离心率的求法和椭圆方程的求法以及平面向量的应用,还考查了运算求解的能力,属于中档题.22.如图,已知椭圆:2214x y +=,点A ,B 是它的两个顶点,过原点且斜率为k 的直线l 与线段AB 相交于点D ,且与椭圆相交于E 、F 两点.(∴)若6ED DF =,求k 的值;(∴)求四边形AEBF 面积的最大值.【答案】(∴)23k =或38k =;(∴). 【分析】(∴)由椭圆的方程可得A ,B 的坐标,设直线AB ,EF 的方程分别为22x y +=,y kx =,0(D x ,0)kx ,1(E x ,1)kx ,2(F x ,2)kx ,且1x ,2x 满足方程22(14)4k x +=,进而求得2x 的表达式,进而根据6ED DF =,求得0x 的表达式,由D 在AB 上知0022x kx +=,进而求得0x 的另一个表达式,两个表达式相等求得k .(∴)由题设可知BO 和||AO 的值,设11y kx =,22y kx =,进而可表示出四边形AEBF 的面积,进而根据基本不等式的性质求得最大值.【详解】(∴)椭圆:2214x y +=,(2,0)A ,(0,1)B , 直线AB ,EF 的方程分别为22x y +=,(0)y kx k =>. 如图,设0(D x ,0)kx ,1(E x ,1)kx ,2(F x ,2)kx ,其中12x x <, 且1x ,2x 满足方程22(14)4k x +=, 故21x x =-=.∴由6ED DF =,知01206()x x x x -=-,得021215(6)77x x x x =+==, 由D 在AB 上知0022x kx +=,得0212x k=+,212k=+, 化简得2242560k k -+=, 解得23k =或38k =. (∴)由题设,1BO =,||2AO =.由(∴)知,1(E x ,1)kx ,2(F x ,2)kx ,不妨设11y kx =,22y kx =,由∴得20x >,根据E 与F 关于原点对称可知210y y =->, 故四边形AEBF 的面积为OBE OBF OAE OAF S S S S S ∆∆∆∆=+++12211111·()?··()2222OB x OB x OA y OA y =-+++- 21212211()()222OB x x OA y y x y =-+-=+2222(x ==+=当222x y =时,上式取等号.所以S 的最大值为. 【点评】本题主要考查了直线与椭圆的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大. 23.已知点F 是抛物线()220x py p =>的焦点,过F 的弦被焦点分成两段的长分别是2和6.(1)求此抛物线的方程;(2)P 是抛物线外一点,过P 点作抛物线的两条切线PA ,PB (A ,B 是切点),两切线分别交x 轴于C ,D ,直线AB 交抛物线对称轴于点Q ,求证四边形PCQD 是平行四边形.【答案】(1)26x y =;(2)证明见解析. 【分析】(1)设过F 的弦所在直线方程为:2py kx =+,其与抛物线交于()()1122,,,M x y N x y ,证明112MF NF p+=,则可求解. (2)设211,6x A x ⎛⎫ ⎪⎝⎭,222,6x B x ⎛⎫ ⎪⎝⎭,根据切线分别表示出直线PA 、PB 的方程,则C 、D 的坐标能表示出,联立直线PA 、PB 的方程,则P 的坐标可表示出,表示出直线AB 的方程,则Q 的坐标可表示出,最后说明CP QD =即可.【详解】解:(1)0,2p F ⎛⎫ ⎪⎝⎭, 设过F 的弦所在直线方程为:2py kx =+,其与抛物线交于()()1122,,,M x y N x y , 联立222x py p y kx ⎧=⎪⎨=+⎪⎩,即2220x kpx p --=,212122,x x pk x x p +=⋅=-,所以()212122y y k x x p pk p +=++=+,2221212244x x p y y p == 不妨设122,622p pMF y NF y =+==+=, ()12122121212121111222222224p py y y y p p p p p p p MF NF p y y y y y y y y ++++++=+===⎛⎫⎛⎫+++++++ ⎪⎪⎝⎭⎝⎭, 11112,326p MF NF p+=+==, ∴此抛物线的方程为:26x y =;(2)设211,6x A x ⎛⎫ ⎪⎝⎭,222,6x B x ⎛⎫ ⎪⎝⎭,3xy '=, ∴直线PA 的方程为:()1113x y y x x -=-, 即:21136x x y x =-;令10,2x y x ==,所以1,02x C ⎛⎫ ⎪⎝⎭,同理,直线PB 的方程为:22236x x y x =-;令20,2x y x ==,所以2,02x D ⎛⎫ ⎪⎝⎭,直线AB 的方程为:()()222112121666x x x y x x x x ⎛⎫⎛⎫--=-- ⎪ ⎪⎝⎭⎝⎭,即:121266x x x xy x +=-; 令120,6x x x y ==-,所以120,6x x Q ⎛⎫- ⎪⎝⎭,2112223636x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,所以1212,26x x x x P +⎛⎫ ⎪⎝⎭, 212,26x x x CP ⎛⎫= ⎪⎝⎭,212,26x x x QD ⎛⎫= ⎪⎝⎭,所以CP QD =,∴四边形PCQD 是平行四边形. 【点睛】以直线和抛物线的位置关系为载体,考查求抛物线的标准方程,同时考查用向量法证明四边形是平行四边形,难题.24.设抛物线()220y px p =>的焦点为F ,过F 的直线与抛物线交于点()11,A x y 和()22,B x y ,且恒124y y =-.(1)求p 的值;(2)直线1l 过B 与x 轴平行,直线2l 过F 与AB 垂直,若1l 与2l 交于点N ,且直线AN 与x 轴交于点()4,0M ,求直线AB 的斜率.【答案】(1)2p =;(2)±. 【分析】(1)直线与抛物线方程联立,利用韦达定理得12y y , 建立关于p 的方程,从而得到答案;(2)分别求出,,A M N 三点坐标用m 表示,由三点共线得到关于m 的方程,求得答案. 【详解】(1)由条件得,02p F ⎛⎫⎪⎝⎭. 易知AB 不垂直于y 轴,可设AB :2p x ty =+. 由22,,2y px p x ty ⎧=⎪⎨=+⎪⎩得2220y pty p --=, 所以2124y y p =-=-,所以2p =.(2)由(1)知抛物线方程为24y x =,()1,0F .设()2,2A m m ,由题易知0m ≠且1m ≠±.因为124y y =-,所以212,B mm ⎛⎫-⎪⎝⎭, 所以AB 的斜率为22222211m m m m m m--=--,直线2l 的斜率为212m m -. 直线1l :2y m =-,直线2l :()2112my x m -=-,所以2232,1m N m m ⎛⎫+- ⎪-⎝⎭.由A ,M ,N 三点共线得2222222341m m m m m m m +=+---,解得m =.所以直线AB的斜率为±.【点睛】本题主要考查直线方程、直线与抛物线的位置关系.属于中档题.25.已知圆()22:620C x y -+=,直线:l y kx =与圆C 交于不同的两点 A B ,. (1)求实数k 的取值范围;(2)若2OB OA =,求直线l 的方程.【答案】(∴)k <<(∴)y x =± 【详解】试题分析:(∴)由直线与圆有两个不同交点得,圆心到直线距离小于半径,或利用直线方程与圆方程联立方程组有两个不同的解列判别式恒大于零,列出关于k 的限制条件,解出k 的取值范围;(∴)由2=OB OA得A 为OB 的中点,设()11 A x y ,,则()112? 2?B x y ,,代入圆方程得()2211620x y -+=,()221126420x y -+=,解方程组可得112? 2x y ==,或112? 2x y ==-,,因此可出求直线l 的方程 试题解析:(∴)将直线l 的方程y kx =代入圆C 的方程()22620x y -+=后,整理得()22112160k xx +-+=,依题意,直线l 与圆C 交于不同的两点.又∴210k +≠,∴只需()()221241160k ∆=--+⋅>,解得k 的取值范围为22k -<<. (∴)由已知A 为OB 的中点,设()11 A x y ,,()22 B x y ,,则 ()2211620x y -+=,∴()221126420x y -+=,∴解∴∴可得112?2x y ==,或112? 2x y ==-,,∴直线l 的方程为y x =± 考点:直线与圆位置关系三、填空题26.已知抛物线C :24y x =的焦点为F ,直线l:10x -=与C 交于P 、Q (P 在x 轴上方)两点,若PF FQ λ=,则实数λ的值为_______【答案】5+【分析】先求出(5P +、(5Q --、(1,0)F,再求出(4PF =----和(4FQ =-,最后建立方程求λ即可.【详解】解:由题意联立方程组2410y x x ⎧=⎪⎨-=⎪⎩,解得5x y ⎧=+⎪⎨=⎪⎩5x y ⎧=-⎪⎨=⎪⎩ 因为P 在x轴上方,所以(5P ++、(5Q -,因为抛物线C 的方程为24y x =,所以(1,0)F ,所以(4PF =---,(4FQ =-因为PF FQ λ=,所以(4(4λ---=-,解得:5λ==+故答案为:5+【点睛】本题考查直线与抛物线的位置关系、抛物线的几何性质、利用共线向量求参数,是中档题27.已知点()1,2P 在抛物线E :()220y px p =>上,过点()1,0M 的直线l 交抛物线E 于A ,B 两点,若3AM MB =,则直线l 的倾斜角的正弦值为______.【分析】求出2p =,设过点()1,0M 的直线方程为1x my =+,将直线与抛物线联立,利用韦达定理可得124y y m +=,124y y =-,根据向量可得123y y -=,从而求出直线的倾斜角,即求.【详解】因为点在抛物线E :()220y px p =>上,所以421p =⨯,得2p =,所以24y x =,设过点()1,0M 的直线方程为:1x my =+,所以214x my y x=+⎧⎨=⎩,所以2440y my --=,设()11,A x y ,()22,B x y , 所以124y y m +=,124y y =-,又因为3AM MB =,所以123y y -=,所以m =,因为直线的斜率tan k θ==由()0,θπ∈,所以3πθ=或23π,所以sin 2θ=.故答案为:2【点睛】本题考查了直线与抛物线的位置关系,考查了基本运算求解能力,属于中档题.28.设1F ,2F 分别是椭圆()222:101y E x b b+=<<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点.若113AF F B =,2AF x ⊥轴,则椭圆E 的方程为________.【答案】22312y x +=【分析】根据2AF x ⊥轴,可求得A 点坐标,又113AF F B =,得113AF F B =,则可求得B 点坐标,代入椭圆方程,即可求得223b =,即可得答案. 【详解】设()()12,0,,0F c F c -, 因为2AF x ⊥轴,所以A x c =,代入椭圆方程得()2,A c b ,设(),B x y ,因为113AF F B =,得113AF F B=,。
【题型综述】三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典例指引】类型一 向量法证三点共线例1 (2012北京理19)(本小题共14分)已知曲线C :22(5)(2)8m x m y -+-=(m R ∈) (Ⅰ)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(Ⅱ)设m =4,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线4y kx =+与曲线交于不同的两点M ,N ,直线1y =与直线BM 交于点G ,求证:A ,G ,N 三点共线.MB 方程为:62M Mkx y x x +=-,则316M M x G kx ⎛⎫ ⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭,,()2N N AN x x k =+,,欲证A G N ,,三点共线,只需证AG ,AN 共线 即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。
类型二 斜率法证三点共线例2.(2017•上海模拟)已知抛物线y 2=4x 的焦点为F,过焦点F 的直线l 交抛物线于A 、B 两点,设AB 的中点为M,A 、B 、M 在准线上的射影依次为C 、D 、N . (1)求直线FN 与直线AB 的夹角θ的大小; (2)求证:点B 、O 、C 三点共线.∵k OB==,y1y2=﹣4,∴k OB=k OC,∴点B、O、C三点共线.类型三直线方程法证三点共线例3(2017•贵阳二模)已知椭圆C:=1(a>0)的焦点在x轴上,且椭圆C的焦距为2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.==,即直线QN过点(1,0),又∵椭圆C的右焦点坐标为F(1,0),∴三点N,F,Q在同一条直线上.类型四多种方法证三点共线例4.(2017•保定一模)设椭圆x2+2y2=8与y轴相交于A,B两点(A在B的上方),直线y=kx+4与该椭圆相交于不同的两点M,N,直线y=1与BM交于G.(1)求椭圆的离心率;(2)求证:A,G,N三点共线.【扩展链接】1.给出()BQ BP AQ AP +=+λ,等于已知Q P ,与AB 的中点三点共线; 2. 给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,OC OA OB αβαβαβ+==+且使,等于已知C B A ,,三点共线;3.【同步训练】1.已知椭圆E :+=1(a >)的离心率e=,右焦点F (c,0),过点A (,0)的直线交椭圆E 于P,Q 两点. (1)求椭圆E 的方程;(2)若点P 关于x 轴的对称点为M,求证:M,F,Q 三点共线; (3)当△FPQ 面积最大时,求直线PQ 的方程.【思路点拨】(1)由椭圆的离心率公式,计算可得a 与c 的值,由椭圆的几何性质可得b 的值,将a 、b 的值代入椭圆的方程计算可得答案;(2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的分析求出、的坐标,由向量平行的坐标表示方法,分析可得证明;(3)设直线PQ的方程为x=my+3,联立直线与椭圆的方程,分析有(m2+3)y2+6my+3=0,设P (x1,y1),Q(x2,y2),结合根与系数的关系分析用y1.y2表示出△FPQ的面积,分析可得答案.(3)设直线PQ的方程为x=my+3.由方程组,得(m2+3)y2+6my+3=0,2.已知椭圆C:+y2=1的左顶点为A,右焦点为F,O为原点,M,N是y轴上的两个动点,且MF⊥NF,直线AM和AN分别与椭圆C交于E,D两点.(Ⅰ)求△MFN的面积的最小值;(Ⅱ)证明;E,O,D三点共线.【思路点拨】(I)F(1,0),设M(0,t1),N(0,t2).不妨设t1>t2.由MF⊥NF,可得=0,化为:t1t2=﹣1.S△MFN=,利用基本不等式的性质即可得出.(II)A(﹣,0).设M(0,t),由(1)可得:N(0,﹣),(t≠±1).直线AM,AN的方程分别为:y=x+t,y=x﹣.分别与椭圆方程联立,利用一元二次方程的根与系数的关系可得k OE,k OD.只要证明k OE=k OD.即可得出E,O,D三点共线.【详细解析】(I)F(1,0),设M(0,t1),N(0,t2).不妨设t1>t2.∵MF⊥NF,∴=1+t1t2=0,化为:t1t2=﹣1.∴S△MFN==≥=1.当且仅当t1=﹣t2=1时取等号.3.已知焦距为2的椭圆W:+=1(a>b>0)的左、右焦点分别为A1,A2,上、下顶点分别为B1,B2,点M(x0,y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1,MA2,MB1,MB2的斜率之积为.(1)求椭圆W的标准方程;(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.【思路点拨】(1)由c=1,a2﹣b2=1,求得四条直线的斜率,由斜率乘积为,代入求得a和b的关系,即可求得a和b的值,求得椭圆W的标准方程;(2)设A,D的坐标,代入椭圆方程,作差法,求得直线AD的斜率,由k AD•k AB=﹣1,代入求得=,由k BD﹣k BC=0,即可求证k BD=k BC,即可求证B,C,D三点共线.(2)证明:不妨设点A(x1,y1),D(x2,y2),B的坐标(﹣x1,﹣y1),C(x1,0),∵A,D在椭圆上,,=0,即(x1﹣x2)(x1+x2)+2(y1﹣y2)(y1+y2)=0,∴=﹣,由AD⊥AB,∴k AD•k AB=﹣1,•=﹣1,•(﹣,)=﹣1,∴=,∴k BD﹣k BC=﹣=﹣=0,k BD=k BC,∴B,C,D三点共线.4.给定椭圆C:+=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆的“伴随圆”.已知A(2,1)是椭圆G:x2+4y2=m(m>0)上的点.(Ⅰ)若过点P(0,)的直线l与椭圆G有且只有一个公共点,求直线l被椭圆G的“伴随圆”G1所截得的弦长;(Ⅱ)若椭圆G上的M,N两点满足4k1k2=﹣1(k1,k2是直线AM,AN的斜率),求证:M,N,O三点共线.【思路点拨】(Ⅰ)将A代入椭圆方程,可得m,进而得到椭圆方程和伴椭圆方程,讨论直线l的斜率不存在和存在,设出l的方程,代入椭圆方程运用判别式为0,求得k,再由直线和圆相交的弦长公式,计算即可得到所求弦长;(Ⅱ)设直线AM,AN的方程分别为y﹣1=k1(x﹣2),y﹣1=k2(x﹣2),设点M(x1,y1),N(x2,y2),联立椭圆方程求得交点M,M的坐标,运用直线的斜率公式,计算直线OM,ON的斜⇐率相等,即可得证.5.已知椭圆,四点中恰有三点在椭圆C上(1)求椭圆的方程.(2)经过原点作直线(不与坐标轴重合)交椭圆于, 两点,轴于点,点在椭圆C上,且求证: ,三点共线.【思路点拨】根据椭圆上的点坐标求出椭圆方程;设出, ,则,,再向量坐标化,得到,得到,最终得到;6.已知抛物线:()的焦点为,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点关于轴的对称点为.(1)求抛物线的方程;(2)证明:点在直线上.【思路点拨】(1)由交点坐标可得,求得可得抛物线方程;(2)设直线的方程为(),代入抛物线方程消去x整理得,再设,,进而得,可得直线的方程为,又,,故BD 方程化为,令,得,即结论成立。
第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)-2第09讲高考难点突破一:圆锥曲线的综合问题(定点问题)(精讲)题型三:抛物线中的定点问题角度1:抛物线中的直线过定点问题典型例题例题1.(2022·辽宁·建平县实验中学模拟预测)1.已知点()1,M p p -在抛物线()2:20C y px p =>上.(1)求抛物线C 的方程;(2)过点M 作斜率分别为12,k k 的两条直线12,l l ,若12,l l 与抛物线C 的另一个交点分别为,A B ,且有122k k +=,探究:直线AB 是否恒过定点?若是,求出该定点;若否,说明理由.例题2.(2022·陕西西安·三模(理))2.已知抛物线()2:20C y px p =>上的点()()4,0G t t >到其准线的距离为5.不过原点的动直线交抛物线C 于A ,B 两点,M 是线段AB 的中点,点M 在准线l 上的射影为N .(1)求抛物线C 的方程;(2)当1NA NB ⋅=时,求证:直线AB 过定点.例题3.(2022·全国·高三专题练习)3.已知线段AB 是抛物线24y x =的弦,且过抛物线焦点F .(1)过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,求证:A O E 、、三点共线(O 为坐标原点);(2)设M 是抛物线准线上一点,过M 作抛物线的切线,切点为11A B 、.求证:(i )两切线互相垂直;(ii )直线11A B 过定点,请求出该定点坐标.同类题型归类练(2022·湖南·长沙一中高三开学考试)4.已知抛物线C :22y px =(0p >),直线1x =+交抛物线C 于A ,B 两点,且三角形OAB 的面积为O 为坐标原点).(1)求实数p 的值;(2)过点D (2,0)作直线L 交抛物线C 于P ,Q 两点,点P 关于x 轴的对称点为P '.证明:直线P 'Q 经过定点,并求出定点坐标.(2022·湖北武汉·高二期末)5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.(2022·江西景德镇·高二期末(文))6.已知抛物线C :()220y px p =>的焦点为F ,过焦点F 且垂直于x 轴的直线交C 于H ,I 两点,O 为坐标原点,OHI 的周长为8.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点?若过定点.求出其坐标;若不过定点,请说明理由.(2022·江西·上饶市第一中学模拟预测(文))7.已知抛物线()220y px p =>的焦点为F ,过焦点FA 、B 两点(点A 在第一象限),交抛物线准线于G ,且满足83BG =.(1)求抛物线的标准方程;(2)已知C ,D 为抛物线上的动点,且OC OD ⊥,求证直线CD 过定点P ,并求出P 点坐标;(3)在(2)的条件下,求PC PD ⋅的最大值.角度2:抛物线存在定点满足某条件问题典型例题例题1.(2022·内蒙古赤峰·高二期末(文))8.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N 两点,当l 与x 轴垂直时,4MN =.(1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.例题2.(2022·河南·开封市东信学校模拟预测(文))9.已知直线:10l x ky --=与抛物线2:2(0)N y px p =>交于A ,B 两点,当直线l x ⊥轴时,||4AB =.(1)求抛物线N 的标准方程;(2)在x 轴上求一定点C ,使得点(2,0)M p 到直线AC 和BC 的距离相等.例题3.(2022·贵州铜仁·高二期末(理))10.已知F 为抛物线2:2(0)C y px p =>的焦点,过F 的动直线交抛物线C 于,A B 两点.当直线与x 轴垂直时,||4AB =.(1)求抛物线C 的方程;(2)设直线AB 的斜率为1且与抛物线的准线l 相交于点M ,抛物线C 上存在点P 使得直线,,PA PM PB 的斜率成等差数列,求点P 的坐标.同类题型归类练(2022·湖北·鄂南高中模拟预测)11.已知曲线2:2(0)C y px p =>的焦点为F ,曲线C 上有一点()0,Q x p 满足2QF =.(1)求抛物线C 的方程;(2)过原点作两条相互垂直的直线交曲线C 于异于原点的两点,A B ,直线AB 与x 轴相交于N ,试探究x 轴上存在一点是否存在异于N 的定点M 满足AM AN BMBN=恒成立.若存在,请求出M 点坐标;若不存在,请说明理由.(2022·全国·高三专题练习(理))12.已知抛物线2:2(0)E x py p =>的焦点为F ,过F 的直线交抛物线E 于1122(,),(,)A x y B x y 两点,11AF y =+.(1)求抛物线E 的标准方程;(2)在x 轴的正半轴上是否存在点P ,连接PA ,PB 分别交抛物线E 于另外两点C ,D ,使得4AB CD =?并说明理由.(2022·江苏省苏州实验中学高二阶段练习)13.已知抛物线2:8C y x =,点()(),00M a a >,直线l 过点M 且与抛物线C 相交于,A B 两点.(1)当a 为变量时,P 为抛物线C 上的一个动点,当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,请指出此时M 点运动的轨迹;(2)当a 为定值时,在x 轴上是否存在异于点M 的点N ,对任意的直线l ,都满足直线,AN BN 关于x 轴对称?若存在,指出点N 的位置并证明,若不存在请说明理由.(2022·重庆市育才中学高三阶段练习)14.已知抛物线2:4E x y =的焦点为F ,过F 的直线交抛物线E 于A 、B 两点.(1)当直线AB 的斜率为1时,求弦AB 的长度AB ;(2)在x 轴的正半轴上是否存在一点P ,连接PA ,PB 分别交抛物线E 于另外两点C 、D ,使得//AB CD 且4AB CD =?若存在,请求出点P 的坐标,若不存在,请说明理由.(2022·全国·高考真题(文))15.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.参考答案:1.(1)24y x=(2)直线AB 恒过定点()1,0-【分析】(1)将M 点坐标代入抛物线方程即可构造方程求得结果;(2)设()11,A x y ,()22,B x y ,利用斜率公式表示出122k k +=,得到124y y =;设:AB x my t =+,与抛物线方程联立可得韦达定理的形式,由此可得1t =-,可得:1AB x my =-,由此可得定点坐标.(1)()1,M p p - 在抛物线上,()221p p p ∴=-,解得:2p =,∴抛物线C 的方程为:24y x =.(2)由(1)得:()1,2M ;设()11,A x y ,()22,B x y ,则11121112241214y y k y x y --===-+-;同理可得:2242k y =+;122k k += ,1244222y y ∴+=++,整理可得:124y y =;当直线AB 斜率为0时,其与抛物线C 只有一个公共点,不合题意;当直线AB 斜率不为0时,设:AB x my t =+,由24y x x my t ⎧=⎨=+⎩得:2440y my t --=,则124y y t =-,44t ∴-=,解得:1t =-;:1AB x my ∴=-,则直线AB 过定点()1,0-;综上所述:直线AB 恒过定点()1,0-.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.2.(1)24y x =(2)证明见解析【分析】(1)由抛物线的定义可求解;(2)设直线AB ,并与抛物线联立,运用韦达定理、向量的数量积可求解.【详解】(1)由抛物线C 的方程可得其准线方程2p x =-,依抛物线的性质得452p+=,解得2p =.∴抛物线C 的方程为24y x =.(2)当直线AB 的斜率为0时,显然不符合题意;当直线AB 的斜率不为0时,设直线:(0)AB x my n n =+≠,211,4y A y ⎛⎫⎪⎝⎭、222,4y B y ⎛⎫ ⎪⎝⎭、()00,M x y ,由24y x x my n ⎧=⎨=+⎩化简得2440y my n --=,()2160m n ∆=+>,124y y m +=,124y y n =-,12022y y y m +==,所以()1,2N m -,所以2111,24y NA y m ⎛⎫=+- ⎪⎝⎭ ,2221,24y NB y m ⎛⎫=+- ⎪⎝⎭ ,所以()()222121112244y y NA NB y m y m ⎛⎫⎛⎫⋅=+++-- ⎪⎪⎝⎭⎝⎭()()222121221212122124164y y y y y y y y m y y m +-=+++-++()22222216814842114m n n n m m n n n +=++--+=-+=-若1NA NB ⋅= ,即()211n -=,解得2n =或0n =(舍去),所以直线AB 过定点()2,0.3.(1)证明见解析(2)证明见解析.【分析】(1)由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,故设直线AB 的方程为:1x my =+,()()1122,,,A x y B x y ,进而得()21,E y -,再结合韦达定理证明OA OE k k =即可;(2)(i)设()01,M y -,过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,切线11,MA MB 的切线斜率分别为12,k k ,进而结合韦达定理即可得121k k =-,进而证明;(ii )结合(i )得221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,进而得1102A B k y =,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理即可得()021y x y =-,进而得定点坐标.(1)解:由题知抛物线24y x =的焦点()1,0F ,准线为=1x -,所以,设直线AB 的方程为:1x my =+,所以,联立方程214x my y x=+⎧⎨=⎩得2440y my --=,设()()1122,,,A x y B x y ,则12124,4y y m y y +==-,因为过点B 作直线与抛物线对称轴平行,交抛物线的准线于点E ,所以()21,E y -因为2114y x =,故2114y x =所以112211214444OA y y y y y x y k =====--,221OE k y y ==--,所以,OA OE k k =,即A O E 、、三点共线.(2)解:(i )设()01,M y -,所以,设过()01,M y -作抛物线的切线,斜率为()0k k ≠,则方程为()01y y k x -=+,所以,()0214y y k x y x⎧-=+⎨=⎩得204440ky y y k -++=,所以,()0164440k y k ∆=-+=,即2010k ky +-=,设切线11,MA MB 的切线斜率分别为12,k k ,则12,k k 为方程2010k ky +-=的实数根,所以121k k =-,120k k y +=-,所以,两切线互相垂直.(ii)由(i )知204440ky y y k -++=,2010k ky +-=,所以,22204440k y ky ky k -++=,即()2224420k y ky ky -+=-=,所以221121211212,,A k k B k k ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、,所以,1121121222210221122A B k k k k k k y k k k =+==--,所以,直线11A B 的方程为2202221y x k y k ⎛⎫-=- ⎪⎝⎭,整理得()2022222020200200202222222221y k k y x x x y k y k y y k y y k y --=+-=+=+=-,即()021y x y =-所以,直线11A B 过定点()1,0.4.(1)2p =;(2)证明见解析,定点()2,0-.【分析】(1)设()()1122,,,A x y B x y ,联立直线和抛物线方程得到韦达定理,求出12y y -即得解;(2)设()()3344,,,P x y Q x y ,不妨令43y y >,设直线L 的方程为2x ty =+,联立直线和抛物线的方程得到韦达定理,求出直线P Q '的方程即得解.(1)解:由题得直线1x =+过点()1,0,.设()()1122,,,A x y B x y ,联立21,2,x y px ⎧=+⎪⎨=⎪⎩得220y p --=,所以1212,2y y y y p +==-,所以122y y -=所以三角形OAB的面积12112S y y =⨯⨯-==又0p >,解得2p =(30p =-<舍去).所以2p =.(2)证明:由(1)抛物线C 的方程为24y x =,设()()3344,,,P x y Q x y ,不妨令43y y >,则()33,P x y '-,设直线L 的方程为2x ty =+,联立22,4,x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则34344,8y y t y y +==-,则直线P Q '的方程为()()433343y y y y x x x x +--=--,即()()43434343x x y x y y y x y x -+=+-,则()()()()4343434322ty ty y ty y y y x y ty -++=+-+,即()()()4343433422t y y y y y x ty y y y -=+--+,即()()43433422y y y x ty y y y =+--+,所以()42824y tx t t =-⨯--⨯,即()2y t x =+,令20,0,x y +=⎧⎨=⎩解得2,0,x y =-⎧⎨=⎩所以直线P Q '恒过定点()2,0-5.(1)24y x=(2)证明见解析,定点110,33⎛⎫- ⎪⎝⎭;【分析】(1)设圆心(),C x y ,圆的半径为R ,依题意得到方程,整理即可;(2)设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,即可得到直线EF 的方程,同理可得直线DE与直线DF 的方程,再根据直线DE 过点()3,2B --,直线DF 过点()2,1C ,即可消去0y ,从而求出EF 过定点坐标;(1)解:设圆心(),C x y ,圆的半径为R ,则()()22222220R x x y =+=-+-,整理得24y x =.所以动圆圆心的轨迹方程为24y x =.(2)证明:抛物线的方程为24y x =,设200,4y D y ⎛⎫ ⎪⎝⎭,121,4y E y ⎛⎫ ⎪⎝⎭,222,4y F y ⎛⎫⎪⎝⎭,则直线EF 的方程为()1211221244y y y y x x y y --=--,得2111211121212124444x y y y x x x y y y y y y y y y y +-=-+=+++++,又2114y x =,所以直线EF 的方程为1212124y y xy y y y y =+++.同理可得直线DE 的方程为1010104y y xy y y y y =+++,直线DF 的方程为0022024y y xy y y y y =+++因为直线DE 过点()3,2B --,所以()1101222y y y -=+;因为直线DF 过点()2,1C ,所以()22081y y y -=-.消去0y ,得()121210433y y y y =++.代入EF 的方程,得12411033y x y y ⎛⎫=++ ⎪+⎝⎭,所以直线EF 恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)28y x=(2)直线PQ 过定点()6,0【分析】(1)将2px =代入抛物线22y px =中,得出HI 的长度,再由勾股定理得出OH ,结合条件建立关于p 的方程,得出答案.(2)由题意设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线AB 的方程与抛物线的方程,由韦达定理得出P 点坐标,同理得出Q 点坐标,从而得出直线PQ 方程,得出答案.(1)由题意,02p F ⎛⎫⎪⎝⎭,在22y px =中代入2p x=,得222p y p =⋅,解得y p =±,所以2HI p =.由勾股定理得|OH OI p ===,则OHI 的周长为2822p p p ++=,解得4p =,故抛物线C 的方程为28y x =.(2)由题意可知()2,0F ,直线AB 的斜率存在,且不为0.设直线AB 的方程为2x my =+,()11,A x y ,()22,B x y .联立22,8,x my y x =+⎧⎨=⎩消去x ,得28160y my --=,264640m ∆=+>,则128y y m +=,从而()21212484x x m y y m +=++=+.因为P 是弦AB 的中点,所以()242,4P m m +,同理可得2442,Q mm ⎛⎫+- ⎪⎝⎭.当21m ≠,即1m ≠±时,直线PQ 的斜率2224441422PQm m m k m m m ⎛⎫-- ⎪⎝⎭==-⎛⎫+-+ ⎪⎝⎭,则直线PQ 的方程为()224421my m x m m -=---,即()()216m y m x -=-.故直线PQ 过定点()6,0;当21m =,即1m ≠±时,直线PQ 的方程为6x =,也过点()6,0.综上所述,直线PQ 过定点()6,0.7.(1)24y x=(2)证明见解析;P 点坐标为(4,0)(3)16-【分析】(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M ,由直线的斜率得出倾斜角,利用三角函数及抛物线的定义求出||MF 即可得解;(2)设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,联立方程组,由根与系数的关系求出12y y ,再由OC OD ⊥建立斜率的方程即可得解;(3)由向量的数量积坐标运算化简,利用二次函数求最值.(1)过点B 作准线的垂线,垂足为H ,设准线与x 轴相交于点M,如图,由题知,直线l 的倾斜角为π3.∴在R t BGH 中,π3GBH ∠=,又∵83BG =,∴43BH =,∴43BF =.∴4GF BG BF =+=,∴在R t GFM 中,又3MFG π∠=,∴2MF =,∴2p =,∴抛物线的标准方程为24y x =.(2)由(1)可知,抛物线方程为24y x =,设直线CD 的方程为:x my t =+,211,4y C y ⎛⎫ ⎪⎝⎭,222,4y D y ⎛⎫⎪⎝⎭,直线与抛物线联立:24x my ty x=+⎧⎨=⎩,得:2440y my t --=,则124y y m +=,124y y t =-,∵14OC k y =,24OD k y =且OC OD ⊥,∴12161614OC OD k k y y t ⋅===--则4t =,∴直线CD 过定点(4,0),即P 点坐标为(4,0),(3)由(2)可知P 点坐标为(4,0),∴()2222212121216161616y y PC PD y y y y m ⋅=-+++=-- ,∴PC PD ⋅的最大值为16-.8.(1)22y x =(2)存在,()2,0-【分析】(1)易知||4MN ==,求出p 即可;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,由OPM OPN ∠=∠可得0MP NP k k +=,利用斜率公式,根与系数的关系求解即可【详解】(1)当l 与x轴垂直时,由题意易得||MN =,从而4=,解得p =1,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设: 2l x m y =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=12121020102022MP NP y y y y k k x x x x my x my x +=+=+--+-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入上式,得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-,因此存在点P ,且满足题意,P 点坐标为()2,0-.9.(1)24y x =(2)(1,0),(1,0),(4,0)-【分析】(1)直线l x ⊥轴时,将1x =代入抛物线方程求得,A B 纵坐标,得出AB ,从而可得p 值,得抛物线方程;(2)设()()(),,,,,0A A B B C A x y B x y C x ,直线方程与抛物线方程联立,消元后应用韦达定理得A B y y +,A B y y ,题意即为0AC BC k k +=,代入韦达定理的结论可求得C x ,同时注意,,A B C 共线或C 与M 重合的情形,从而得出结论.(1)当直线l x ⊥轴时,方程为1x =,代入抛物线方程得22y p =,y =,∴||4AB ==,解得2p =.∴抛物线N 的标准方程为24y x =;(2)设()()(),,,,,0A A B B C A x y B x y C x .联立210,4,x ky y x --=⎧⎨=⎩得2440y ky --=.∴4,4A B A B y y k y y +=⋅=-.①由题意可知()()()()0A B C B A C A BAC BC A C B C A C B C y x x y x x y y k k x x x x x x x x -+-+=+==----,∴()()0A B C B A C y x x y x x -+-=,即()B A A B C A B x y x y x y y +=+.∴()()()11B A A B C A B ky y ky y x y y +++=+,即()()2A B A B C A B ky y y y x y y ++=+.∴844C k k kx -+=.∵0k ≠,可知1C x =-.∴点C 的坐标由抛物线的图象可知,还有点(1,0),(4,0)满足题意,故这样的点有3个,坐标分别为(1,0),(1,0),(4,0)-.10.(1)24y x =(2)(1,2)P ±【分析】(1)求出抛物线的焦点坐标,根据题意,令2px =,求出纵坐标的值,再根据AB 4=进行求解即可;(2)设直线AB 的方程,与抛物线方程联立,求出直线PA ,PM ,PB 的斜率表达式,结合等差数列和一元二次方程根与系数关系,得到一个等式,根据等式成立进行求解即可.(1)因为(,0)2pF ,在抛物线方程22y px =中,令2p x =,可得y p =±,所以当直线与x 轴垂直时24AB p ==,解得2p =,抛物线的方程为24y x =.(2)(2)因为抛物线24y x =的准线方程为=1x -,由题意可知直线AB 的方程为1x y =+,所以(1,2)M --.联立241y x x y ⎧=⎨=+⎩消去x ,得2440y y --=,设11(,)A x y ,22(,)B x y ,则124y y +=,124y y =-,若存在定点00(,)P x y 满足条件,则2PM PA PB k k k =+,即0010200102221y y y y y x x x x x +--⋅=++--,因为点,,P A B 均在抛物线上,所以222012012,444y y y x x x ===.代入化简可得00122200120122(2)24()y y y yy y y y y y y +++=++++,将124y y +=,124y y =-代入整理可得002200022444y y y y y ++=++-,即202(4)0y -=,所以2040y -=,解得02y =±,将02y =±代入抛物线方程,可得01x =,于是点(1,2)P ±即为满足题意的定点.11.(1)24y x =(2)存在,()4,0M -【分析】(1)由焦半径公式代入求解p ,从而得抛物线方程;(2)设直线方程,联立方程组,将韦达定理代入所给条件求解.(1)Q 在曲线C 上,则202p px =,则02px =,而022pQF x p ==+=,故抛物线C 的方程为24y x =.(2)易知直线AB 的斜率不为0,故设()()()1122:,,,,,,0AB l x ty n A x y B x y M m =+联立:224404x ty ny ty n y x=+⎧⇒--=⎨=⎩,故12124,4y y t y y n +==-.222121244y y x x n =⋅=,因为OA OB ⊥,则2121240OA OB x x y y n n ⋅=+=-=则4n =或0n =(舍),故()4,0N .因为,M N 都在x 轴上,要使得AM AN BMBN=,则x 轴为AMB ∠的角平分线,若1m x =,则AM 垂直于x 轴,x 轴平分AMB ∠,则BM 垂直于x 轴,则直线AB 的方程为4x =,此时4m n ==,而,M N 相异,故1m x ≠,同理2m x ≠故AM 与BM 的斜率互为相反数,即12122112120y y x y x y m x m x m y y ++=⇒=--+()()1221121212442324444ty y ty y ty y t m y y y y t+++-⇒==+=+=-++为定值.故当()4,0M -时,有AM AN BMBN=恒成立.【点睛】解答直线与抛物线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.12.(1)24x y =(2)见解析【分析】(1)根据点A 到点F 的距离等于点A 到直线1y =-,结合抛物线的定义得出抛物线E 的标准方程;(2)设()()330,,,0C x y P x ,由4PA PC = 结合抛物线方程得出12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,并与抛物线方程24x y =联立结合韦达定理得出点P 坐标.(1)因为点F 是抛物线2:2(0)E x py p =>的焦点,且11AF y =+所以点A 到点F 的距离等于点A 到直线1y =-所以由抛物线的定义可知1,22pp ==所以抛物线E 的标准方程为24x y =(2)设()()330,,,0C x y P x 由4AB CD = 得://AB CD ,且4AB CD =,得4PA PC= 即()()101303,4,x x y x x y -=-,所以101333,44x x yx y +==代入抛物线方程24x y =,得221011344x x x y +⎛⎫==⎪⎝⎭整理得221010230x x x x --=,同理可得222020230x x x x --=故12,x x 是方程2200230x x x x --=的两根,20160x ∆=>由韦达定理可得21201202,3x x x x x x +==-①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+与抛物线方程24x y =联立可得2440x kx --=由韦达定理可得12124,4x x k x x +==-②由①②可得033x k ==故在x 轴的正半轴上存在一点,03P ⎛⎫⎪ ⎪⎝⎭满足条件.13.(1)M 点的运动轨迹是x 轴的(]0,4部分的线段;(2)存在点(),0N a -,证明见解析.【分析】(1)设2,8y P y ⎛⎫ ⎪⎝⎭,可表示出2MP ,根据线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处可确定对称轴位置,由此可得轨迹;(2)当l 斜率不存在时知x 轴上任意异于点M 的点N 均满足题意;当l 斜率存在时,假设l 方程,与抛物线方程联立后可得韦达定理的形式,代入0AN BN k k +=中整理可得定点;综合两种情况可得结论.(1)设2,8y P y ⎛⎫ ⎪⎝⎭,则224222218644y y a MP a y y a ⎛⎫⎛⎫=-+=+-+ ⎪ ⎪⎝⎭⎝⎭, 当线段MP 的长度取最小值时,P 点恰好在抛物线C 的顶点处,即当0y =时,线段MP 的长度取最小值a ;140132a-∴-≤,解得:4a ≤,04a ∴<≤;M ∴点的运动轨迹是x 轴的(]0,4部分的线段.(2)①当直线l 斜率不存在时,对于x 轴上任意异于点M 的点N ,都满足直线,AN BN 关于x 轴对称;②当直线l 斜率存在时,设:l x ty a =+,()11,A x y ,()22,B x y ,由28x ty a y x=+⎧⎨=⎩得:2880y ty a --=,则,设(),0N n ,直线,AN BN 关于x 轴对称,0AN BN k k ∴+=,()()()()2212121221121212221212121212880y y y y n y y x y n y y x y y y x n x n x x n x x n x x n x x n -++-++∴+===---+--+-,即()()()12121288808y y y y n y y at nt n a t +-+=--=-+=,∴当n a =-时,0AN BN k k +=恒成立,即(),0N a -;综上所述:存在点(),0N a -,对任意的直线l ,都满足直线,AN BN 关于x 轴对称.【点睛】思路点睛:本题考查直线与抛物线综合应用中的定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程或得到恒成立的式子;④求解定点得到结果.14.(1)8(2)存在,,03P ⎛⎫ ⎪ ⎪⎝⎭【分析】(1)由题意得到直线AB 的方程10x y -+=,与抛物线2:4E x y =联立,再利用抛物线的定义求解;(2)由//AB CD 且4AB CD =,得到4PA PC =,表示点C 的坐标,代入抛物线方程,整理得到221010230x x x x --=,同理得到222020230x x x x --=,12,x x 是方程2200230x x x x --=的两根,设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立,由韦达定理求解.(1)解:设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x ,由题意知,点F 的坐标为()0,1,直线AB 的方程为10x y -+=.与抛物线2:4E x y =联立可得2610y y -+=.由韦达定理有126y y +=,故1228AB y y =++=.(2)设()11,A x y ,()22,B x y ,()33,C x y ,()0,0P x .由//AB CD 且4AB CD =,得4PA PC = ,即()()101303,4,x x y x x y -=-.所以10334x x x +=,134y y =.代入抛物线2:4E x y =,得221011344x x x y +⎛⎫== ⎪⎝⎭,整理可得221010230x x x x --=,同理可得222020230x x x x --=,故12,x x 是方程2200230x x x x --=的两根,20120x ∆=>,由韦达定理有1202x x x +=,21203x x x =-,①由题意,直线AB 的斜率一定存在,故设直线AB 的方程为1y kx =+,与抛物线2:4E x y =联立可得2440x kx --=,由韦达定理有124x x k +=,124x x =-,②由①②可得0x =,3k =,故x轴的正半轴上存在一点3P ⎛⎫ ⎪ ⎪⎝⎭满足条件.15.(1)22143y x +=(2)(0,2)-【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【详解】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y +=,可得(1,M ,N ,代入AB 方程223y x =-,可得(3,T -,由MT TH = 得到(5,H -.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,()()12221228234444234k y y k k k y y k ⎧-++=⎪+⎪⎨+-⎪=⎪+⎩,且1221224(*)34k x y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
圆锥曲线中的三点共线、四点共圆问题
1、(2012北京卷)已知曲线C:
(m ∈R), (1)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;
(2)设m=4,曲线c 与y 轴的交点为A ,B (点A 位于点B 的上方),直线y=kx+4与曲线c 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A ,G ,N 三点共线.
22(5)(2)8m x m y -+-=
2、(2017年上海卷)、已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N.(1)求直线FN与直线AB的夹角θ的大小;
(2)求证:点B、O、C三点共线.
3、(2011年全国大纲卷)已知O为坐标原点,F为椭圆C:
2
21
2
y
x+=
在y轴正
半轴上的焦点,过F且斜率为-2的直线l与C交于A、B两点,点P满足
.
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。
4、(2014年全国大纲卷)已知抛物线C:22(0)
y px p
=>的焦点为F,直线4
y=
与y轴的交点为P,与C的交点为Q,且
5
||||
4
QF PQ
=.
(1)求C的方程;
(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线'l与C相较于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.。
• 24 •理科考试研究•数学版2020年7月1日生13:那么m+ «会不会等于1?(通过观察系数 的关系获得)师:要知这个结论是否正确,只对上面几个进行 观察获得结论是不可靠的,因为特殊是不能代表一般 的,我们只能对这个结论进行证明,现在请同学们动 动手、动动脑筋?(学生证明)生14(板演):由于m+ = 1,则有r a= 1 -爪.所以 OA^mOB+ (I -m)OC.^OA-OC= m(〇B-OC).即H= •又抆,技有公共点C,所以三点共线.师:生14做得非常好,他用我们尝试过的向量共 线的方法给出了证明.对向量表示方法的研究,我们 不仅获得了不共线的三个向量是可以互相表示的,同时我们又通过合情推理的方法猜想、论证并建立了三 点共线的向量表示模型,最后请一位同学对这种模型 进行概述.生15:三个起点相同的不共线向量,若苡前+ fi OC,且m+n.= 1则有4,B,C三点共线.师:至此,我们学习了利用平面向量共线定理及 向量加法的几何意义证明、判断几点共线的方法,同时我们又用合情推理(归纳推理和类比推理)尝试建立了“起点相同,终点共线”的两个向量模型,为我们 今后证明几点共线提供了可借鉴的模型.3题后反思对于本道例题,丰富的内涵不仅为我们提供并巩 固了利用向量共线定理以及应用向量加法运算的几 何意义判断、证明几点共线的方法,在本道例题的讲 解过程中,我们不仅关注了学生对所学知识的学习巩 固情况,更关注学生数学抽象、数学建模、数学推理等 核心素养的养成情况.章建跃博士说过:“数学具有抽 象性和一般性的特点,这使得数学更注重研究问题的 一般方法.”所以,我们在教学过程中不断地引导学生 观察条件的结构特征,通过合情推理(归纳推理和类 比推理)一般化结论,猜想建立“起点相同,终点共线”的两个向量模型,这对学生数学抽象、数学建模、数学 推理等核心素养的养成起到了很好的示范作用.因此 利用合情推理的方法进行数学模型的启发与猜想以 至于建立数学模型都是一种有效的、值得推广的方法.参考文献:[1]章绍辉.数学建模[M].北京:科学出版社,2010.(收稿日期:2020 - 02 - 05)例析圆雉於竦中向量共线问题的鮮决方法林国红(佛山市乐从中学广东佛山528315)摘要:圆锥曲线与平面向量的结合,是近年数学高考命题的一个方向,其中圆锥曲线中有关向量共线的问题频频 亮相.本文对此类问题的常见题型进行归纳,并总结出相应的解决方法.关键词:圆锥曲线;向量;共线1从一道高考题谈起例1(2019年全国I卷理科第19题)已知抛物线C:/ =3*的焦点为斜率为|■的直线/与C的交点为/1,B,与;c轴的交点为P.(1) 若MFI + =4,求/ 的方程;(2) 若碎=3商,求丨/1BI.解析(1)直线/的方程为y=3 p b,可得(a:。
高中数学解三线共点问题的技巧在高中数学中,解三线共点问题是一个常见的考点。
这类问题通常涉及到直线、平面和坐标系等概念,需要我们通过一些技巧和方法来解决。
本文将介绍一些解三线共点问题的技巧,并通过具体的题目来说明。
一、直线的方程与交点求解解三线共点问题首先需要我们学会求解直线的方程和交点。
对于直线的方程,我们可以使用点斜式、两点式或截距式等不同的表示方法。
其中,点斜式常用于已知一点和斜率的情况下,两点式适用于已知两个点的情况下,而截距式则适用于已知直线与坐标轴的交点的情况下。
例如,给定直线L1过点A(2, 3)且斜率为2,我们可以使用点斜式来表示直线L1的方程为y - 3 = 2(x - 2)。
同样地,如果我们已知直线L2经过点B(4, 5)和C(6, 7),我们可以使用两点式来表示直线L2的方程为(y - 5)/(x - 4) = (7 - 5)/(6 - 4)。
当我们有两条直线的方程时,我们可以通过求解它们的交点来判断是否共点。
假设我们有直线L1和L2,它们的方程分别为y = 2x + 1和y = -x + 3。
我们可以通过解方程组来求解它们的交点。
将两个方程联立,得到2x + 1 = -x + 3,解得x = 1。
将x = 1代入任意一个方程中,得到y = 2(1) + 1 = 3。
因此,直线L1和L2的交点为(1, 3)。
二、平面的方程与交点求解除了直线的方程与交点求解,解三线共点问题还需要我们掌握平面的方程与交点求解的方法。
对于平面的方程,我们可以使用点法式、法向量式或截距式等不同的表示方法。
例如,给定平面α过点A(1, 2, 3)且法向量为n(2, -1, 3),我们可以使用点法式来表示平面α的方程为2(x - 1) - (y - 2) + 3(z - 3) = 0。
同样地,如果我们已知平面β经过点B(4, 5, 6)、C(7, 8, 9)和D(10, 11, 12),我们可以使用法向量式来表示平面β的方程为n·(r - B) = 0,其中n为法向量,r为平面上的任意一点。
2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。
其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。
2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。
方便老师备课选题。
3、题型纯粹按照个人经验进行分类,没有固定的标准。
4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。
每道题目后面标注有类型和难度,方便老师备课选题。
1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。
圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
运用向量破解圆锥曲线中的夹角与共线问题
1.利用向量解决两直线的平行或点共线问题
证明两直线平行有两种方法:一是利用a与b共线的充要条件,即当且仅当存在实数λ,使a=λb成立;二是利用向量的坐标形式,即利用两个向量a=(x₁,y₁),b=(x₂,y₂)共线的充要条件x₁y₂-x₂y₁=0解答,其中,a,b为两直线的方向向量.证明三点共线可转化为两个向量共线来证明.
本题也可以利用两直线的斜率相等来证明A₁B₁∥A₂B₂,但计算量较大,这就是利用向量法解题的优势.
2.利用向量解决与角度有关的问题
利用向量的数量积可以判断这两个向量的夹角是锐角、直角还是钝角,进而可以判断三角形的形状和点与圆的位置关系.
本题也可以通过利用根与系数的关系确定圆心,然后计算圆心到点G的距离并和半径比较得解,由于要用到两点间的距离公式,出现根号,解题过程将十分复杂;但利用向量,通过判断数量积的正负来确定点和圆的位置关系,就不会出现根式,计算量大大减少.本题综合性较强,全面地考查了学生分析问题、解决问题的能力.。
高三数学解答题难题突破圆锥曲线中的三点共线问题
【题型综述】
三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存
在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点
间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量
共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该
直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,
若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.
【典例指引】
类型一向量法证三点共线
例1 (2012北京理19)(本小题共14分)已知曲线C:22
m x m y(m R)
(5)(2)8
(Ⅰ)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
y kx与曲(Ⅱ)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线4
y与直线BM交于点G,求证:A,G,N三点共线. 线交于不同的两点M,N,直线1
MB 方程为:6
2M
M
kx y
x
x ,则316
M M
x G
kx ,,
316
M M x AG
x k
,,
2N N AN
x x k
,,
欲证A G N ,,三点共线,只需证AG ,AN 共线
即
3(2)
6M N N M x x k
x x k
成立,化简得:
(3)6()
M N
M
N k
k x x x x 将①②代入易知等式成立,则A G N ,,三点共线得证。
类型二
斜率法证三点共线
例2.(2017?上海模拟)已知抛物线y 2
=4x 的焦点为F ,过焦点F 的直线l 交抛物线于A 、B 两
点,设AB 的中点为M ,A 、B 、M 在准线上的射影依次为C 、D 、N .
(1)求直线FN 与直线AB 的夹角θ的大小;(2)求证:点
B 、O 、
C 三点共线.
∵k OB==,y1y2=﹣4,
∴k OB=k OC,∴点B、O、C三点共线.
类型三直线方程法证三点共线
例3(2017?贵阳二模)已知椭圆C:=1(a>0)的焦点在x轴上,且椭圆C的焦距为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.
==,
即直线QN过点(1,0),
又∵椭圆C的右焦点坐标为F(1,0),
∴三点N,F,Q在同一条直线上.
类型四多种方法证三点共线
例4.(2017?保定一模)设椭圆x2+2y2=8与y轴相交于A,B两点(A在B的上方),直线y=kx+4与该椭圆相交于不同的两点M,N,直线y=1与BM交于G.
(1)求椭圆的离心率;
(2)求证:A,G,N三点共线.
【扩展链接】
1.给出
BQ BP AQ AP ,等于已知Q P,与AB 的中点三点共线; 2. 给出以下情形之一:①
AC AB //;②存在实数
,AB
AC 使;③若存在实数
,,1,OC OA
OB 且
使,等于已知C B A ,,三点共线;
3.
【同步训练】
1.已知椭圆E :
+
=1(a >
)的离心率e=
,右焦点F (c ,0),过点A (
,0)
的直线交椭圆E 于P ,Q 两点.
(1)求椭圆E 的方程;
(2)若点P 关于x 轴的对称点为M ,求证:M ,F ,Q 三点共线;(3)当△FPQ 面积最大时,求直线
PQ 的方程.
【思路点拨】(1)由椭圆的离心率公式,计算可得a 与c 的值,由椭圆的几何性质可得
b 的
值,将a 、b 的值代入椭圆的方程计算可得答案;
(2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的分析求出、的坐标,由向量平行的坐标表示方法,分析可得证明;
(3)设直线PQ的方程为x=my+3,联立直线与椭圆的方程,分析有(m2+3)y2+6my+3=0,设P (x1,y1),Q(x2,y2),结合根与系数的关系分析用y1.y2表示出△FPQ的面积,分析可得答案.
(3)设直线PQ的方程为x=my+3.
由方程组,得(m2+3)y2+6my+3=0,。