2013年中考数学试题按章节考点分类:第29章锐角三角函数
- 格式:doc
- 大小:4.21 MB
- 文档页数:48
锐角三角函数知识点:(1)三边的关系:a ²+b ²=c ²(2)两锐角之间的关系:∠A+∠B=90度(3)边角之间的关系:正弦sinA = ∠A 的对边斜边=a:c 余弦cosA = ∠A 的邻边斜边=b:c 正切tanA = ∠A 的对边∠A 的邻边=a:b特殊值的三角函数:(4)sin ²A+cos ²A=1 tanA=sinA:cosA(5)计算:3tan30-tan45+2sin60(6)计算:50cos 40sin 0cos 45tan 30cos 330sin 145tan 41222-+-+9.直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = 。
10、已知tan α=125,α是锐角,则sin α= 。
11、如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )12、已知a为锐角,sina=cos500则a等于()A.200B.300C.400D.50013、若tan(a+10°)=3,则锐角a的度数是( )A、20°B、30°C、35°D、50°14.已知Rt△ABC的斜边AB的长为10cm , sinA、sinB是方程m(x2-2x)+5(x2+x)+12=0的两根。
(1)求m的值;(2)求Rt△ABC的内切圆的面积。
15.(6分)如图,△ABC是等腰三角形,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为E,连结CE,求sin∠ACE的值.16. 如图,已知MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500m为半径的圆形区域为居民区。
30. 锐角三角函数➢ 知识过关1. 锐角三角函数的定义在Rt△ABC 中,A 、B 、C 的对边分别为a 、b 、c 且∠C=90°,sinA=_____,cosA=_____,tanA=____3. 三角函数之间的关系(1) 同角三角函数之间的关系:=+αα22cos sin _______;αααcos sin tan =(2) 互余两角的三角函数的关系:sin(90°-α)=________;cos(90°-α)=_______ (3) 锐角三角函数的增减性:当α为锐角时,1cos 0,1sin 0<<<<αα且sinα、tanα的值都随α的增大而_______;cosα的值随α的增大而_______➢ 考点分类考点1求锐角三角函数值例1 (1)如图所示,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切值为( ) A.2 B.252 C. 25 D.21(2) 如图所示,Rt△ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则cosA=_____考点2特殊角度的三角函数值 例2(1)在锐角△ABC 中,若0)3(tan |41c |22=-+-B A os ,则∠C 的正切值是________. (2)计算:00230cos 2|23|)14.3()21(----+-π考点3三角函数之间的关系 例3下列式子错误的是( )A.050sin 40cos = B.175tan 15tan 0=⋅ C.125cos 25sin 022=+ D.030sin 260sin =➢ 真题演练1.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则sin ∠BOD =( )A .12B .2C .2√55D .√552.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P .则tan ∠APD 的值是( )A .2B .1C .0.5D .2.53.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .√5B .√55C .12D .2√534.如图,在网格中,点A ,B ,C 都在格点上,则∠CAB 的正弦值是( )A .√55B .12C .2√55D .25.如图,在中Rt △ABC ,∠C =90°,AB =13,AC =5,下列结论中,正确的是( )A .tanB =125B .tan A =512C .sin A =1213D .cos B =5136.如图是某商场自动扶梯的示意图,自动扶梯AB 的坡角(∠BAC )为30.5°,乘客从扶梯底端升到顶端上升的高度BC 为5米,则自动扶梯AB 的长为( )A .5tan30.5°米B .5sin30.5°米C .5sin30.5°米 D .5cos30.5°米7.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,那么sin ∠BAC 的值为 .8.已知在△ABC 中,AB =13,BC =17,tan B =512,那么AC = ․9.计算:(1)(13)﹣1+sin45°﹣(π+1)0+√3tan60°(2)sin 230°+cos 230°−12tan 245°10.如图,在△ABC 中,AD ⊥BC ,垂足为点D ,BF 平分∠ABC 交AD 于点E ,BC =5,AD =4,sin ∠C =2√55. (1)求sin ∠BAD 的值; (2)求线段EF 的长.➢ 课后作业1.如图,在△ABC 中,AD ,BE 是△ABC 的角平分线,如果AB =AC =10,BC =12,那么tan ∠ABE 的值是( )A .12B .√63C .√64D .22.图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =m ,∠AOB =α,则OC 2的值为( )A .m 2sin 2α+m 2B .m 2cos 2α+m 2C .m 2sin 2α+m 2D .m 2cos 2α+m 23.如图,在离铁塔100米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.4米,则铁塔的高BC 为( )A .(1.4+100tan α)米B .(1.4+100tanα)米 C .(1.4+100sinα)米 D .(1.4+100sin α)米4.兴义市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高1m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进20m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为( )A .(10√3+1)mB .(20√3+1)mC .(5√3+1)mD .(15√3+1)m5.如图,AD 是△ABC 的中线,AD =5,tan ∠BAD =34,S △ADC =15,则AC 的长为( )A .√5B .2√10C .2√5D .√106.如图,A 、D 、B 在同一条直线上,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC 的长度为( )A .ℎcosαB .ℎsinαC .ℎtanαD .h •cos α7.如果把一个锐角△ABC 的三边的长都扩大为原来的2倍,那么锐角A 的正弦值( ) A .扩大为原来的2倍 B .缩小为原来的12C .没有变化D .不能确定8.如图,AD 是△ABC 的高,若BD =2CD =6,tan C =2,则sin B =( )A .12B .√22C .13D .√239.如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若cos∠BAC=13,则AD的长度是.10.已知:如图,△ABC中,AC=10,sinC=45,sinB=13,则AB=.11.在Rt△ABC中,∠C=90°,BC=4,sin A=23,则AC=.12.已知在△ABC中,∠C为直角.(Ⅰ)若AB=13,tan A=512,求△ABC的面积.(Ⅱ)若BC=2√3,AD是角平分线,BD=2CD,求AB,AC的长度.13..如图,CD是△ABC的中线,∠B是锐角,sin B=√22,tan A=12,AC=√5.(1)求AB的长.(2)求tan∠CDB的值.➢冲击A+如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:∠BAG=∠ABG;②若AD=5,求AF的长.。
专题41锐角三角函数一、选择题1. (2012天津市3分)2cos60 的值等于【】(A)1 (B(C(D)2 【答案】A。
【考点】特殊角的三角函数值。
【分析】根据cos60°=12进行计算即可得解:2cos60°=2×12=1。
故选A。
2. (2012浙江杭州3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则【】A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°【答案】C。
【考点】平行线的性质,点到直线的距离,锐角三角形函数定义。
【分析】由已知,根据锐角三角形函数定义对各选项作出判断:A、由于在Rt△ABO中∠AOB是直角,所以B到AO的距离是指BO的长。
∵AB∥OC,∴∠BAO=∠AOC=36°。
在Rt△BOA中,∵∠AOB =90°,AB=1,∴BO=ABsin36°=sin36°。
故本选项错误。
B、由A可知,选项错误。
C、如图,过A作AD⊥OC于D,则AD的长是点A到OC的距离。
在Rt△BOA中,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°。
∴AO=AB• sin54°= sin54°。
在Rt△ADO中,AD=AO•sin36°=AB•sin54°•sin36°=sin54°•sin36°。
故本选项正确。
D、由C可知,选项错误。
3. (2012浙江宁波3分)如图,在Rt△ABC 中,∠C=90°,AB=6,cosB=23,则BC 的长为【 】A .4B .2C .13 D .13【答案】A 。
【考点】锐角三角函数的定义。
2013年中考数学锐角三角函数试题汇编23、(13年北京5分20)如图,AB是⊙O的直径,PA,PC分别与⊙O 相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E。
(1)求证:∠EPD=∠EDO(2)若PC=6,tan∠PDA=,求OE的长。
考点:圆中的证明与计算(三角形相似、三角函数、切线的性质)24、(13年北京8分25)对于平面直角坐标系O中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。
已知点D(,),E(0,-2),F(,0)(1)当⊙O的半径为1时,①在点D,E,F中,⊙O的关联点是__________;②过点F作直线交轴正半轴于点G,使∠GFO=30°,若直线上的点P(,)是⊙O的关联点,求的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径的取值范围。
解析:【解析】(1)①;②由题意可知,若点要刚好是圆的关联点;需要点到圆的两条切线和之间所夹的角度为;由图可知,则,连接,则;∴若点为圆的关联点;则需点到圆心的距离满足;由上述证明可知,考虑临界位置的点,如图2;点到原点的距离;过作轴的垂线,垂足为;;∴;∴;∴;∴;易得点与点重合,过作轴于点;易得;∴;从而若点为圆的关联点,则点必在线段上;∴;(2)若线段上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段的中点;考虑临界情况,如图3;即恰好点为圆的关联时,则;∴此时;故若线段上的所有点都是某个圆的关联点,这个圆的半径的取值范围为.【点评】“新定义”问题最关键的是要能够把“新定义”转化为自己熟悉的知识,通过第(2)问开头部分的解析,可以看出本题的“关联点”本质就是到圆心的距离小于或等于倍半径的点.了解了这一点,在结合平面直角坐标系和圆的知识去解答就事半功倍了.考点:代几综合(“新定义”、特殊直角三角形的性质、圆、特殊角三角形函数、数形结合)25、(2013年广东湛江)阅读下面的材料,先完成阅读填空,再将要求答题:,则;①,则;②,则.③……观察上述等式,猜想:对任意锐角,都有1.④(1)如图,在锐角三角形中,利用三角函数的定义及勾股定理对证明你的猜想;(2)已知:为锐角且,求.(1)证明:过点作于,在△中,,由勾股定理得,,(2)解:为锐角,,26、(2013•郴州)如图,△ABC中,AB=BC,AC=8,tanA=k,P为AC 边上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.(1)证明:△PCE是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.考点:等腰三角形的判定与性质;二次函数的最值;解直角三角形.3718684分析:(1)根据等边对等角可得∠A=∠C,然后根据两直线平行,同位角相等求出∠CPE=∠A,从而得到∠CPE=∠C,即可得证;(2)根据等腰三角形三线合一的性质求出CM=CP,然后求出EM,同理求出FN、BH的长,再根据结果整理可得EM+FN=BH;(3)分别求出EM、FN、BH,然后根据S△PCE,S△APF,S△ABC,再根据S=S△ABC﹣S△PCE﹣S△APF,整理即可得到S与x的关系式,然后利用二次函数的最值问题解答.解答:(1)证明:∵AB=BC,∴∠A=∠C,∵PE∥AB,∴∠CPE=∠A,∴∠CPE=∠C,∴△PCE是等腰三角形;(2)解:∵△PCE是等腰三角形,EM⊥CP,∴CM=CP=,tanC=tanA=k,∴EM=CM•tanC=•k=,同理:FN=AN•tanA=•k=4k﹣,由于BH=AH•tanA=×8•k=4k,而EM+FN=+4k﹣=4k,∴EM+FN=BH;(3)解:当k=4时,EM=2x,FN=16﹣2x,BH=16,所以,S△PCE=x•2x=x2,S△APF=(8﹣x)•(16﹣2x)=(8﹣x)2,S△ABC=×8×16=64,S=S△ABC﹣S△PCE﹣S△APF,=64﹣x2﹣(8﹣x)2,=﹣2x2+16x,配方得,S=﹣2(x﹣4)2+32,所以,当x=4时,S有最大值32.点评:本题考查了等腰三角形的判定与性质,平行线的性质,锐角三角函数,二次函数的最值问题,表示出各三角形的高线是解题的关键,也是本题的难点.27、(2013•呼和浩特)如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.考点:相似三角形的判定与性质;勾股定理;圆周角定理;解直角三角形.3718684分析:(1)由AD是△ABC的角平分线,∠B=∠CAE,易证得∠ADE=∠DAE,即可得ED=EA,又由ED是直径,根据直径所对的圆周角是直角,可得EF⊥AD,由三线合一的知识,即可判定点F是AD的中点;(2)首先连接DM,设EF=4k,df=3k,然后由勾股定理求得ED的长,继而求得DM与ME的长,由余弦的定义,即可求得答案;(3)易证得△AEC∽△BEA,然后由相似三角形的对应边成比例,可得方程:(5k)2=k•(10+5k),解此方程即可求得答案.解答:(1)证明:∵AD是△ABC的角平分线,∴∠1=∠2,∵∠ADE=∠1+∠B,∠DAE=∠2+∠3,且∠B=∠3,∴∠ADE=∠DAE,∴ED=EA,∵ED为⊙O直径,∴∠DFE=90°,∴EF⊥AD,∴点F是AD的中点;(2)解:连接DM,设EF=4k,df=3k,则ED==5k,∵AD•EF=AE•DM,∴DM===k,∴ME==k,∴cos∠AED==;(3)解:∵∠B=∠3,∠AEC为公共角,∴△AEC∽△BEA,∴AE:BE=CE:AE,∴AE2=CE•BE,∴(5k)2=k•(10+5k),∵k>0,∴k=2,∴CD=k=5.点评:此题考查了相似三角形的判定与性质、圆周角定理、等腰三角形的判定与性质、勾股定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.28、(2013•滨州压轴题)根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°.①求直线l3的函数表达式;②把直线l3绕原点O按逆时针方向旋转90°得到的直线l4,求直线l4的函数表达式.(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过原点且与直线y=﹣垂直的直线l5的函数表达式.考点:一次函数综合题.分析:(1)根据题意可直接得出l2的函数表达式;(2)①先设直线l3的函数表达式为y=k1x(k1≠0),根据过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,求出k1=tan30°,从而求出直线l3的函数表达式;②根据l3与l4的夹角是为90°,求出l4与x轴的夹角是为60°,再设l4的解析式为y=k2x(k2≠0),根据直线l4过二、四象限,求出k2=﹣tan60°,从而求出直线l4的函数表达式;(3)通过观察(1)(2)中的两个函数表达式可得出它们的函数表达式中自变量的系数互为负倒数关系,再根据这一关系即可求出与直线y=﹣垂直的直线l5的函数表达式.解答:解:(1)根据题意得:y=﹣x;(2)①设直线l3的函数表达式为y=k1x(k1≠0),∵过原点的直线l3向上的方向与x轴的正方向所成的角为30°,直线过一、三象限,∴k1=tan30°=,∴直线l3的函数表达式为y=x;②∵l3与l4的夹角是为90°,∴l4与x轴的夹角是为60°,设l4的解析式为y=k2x(k2≠0),∵直线l4过二、四象限,∴k2=﹣tan60°=﹣,∴直线l4的函数表达式为y=﹣x;(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,∴过原点且与直线y=﹣垂直的直线l5的函数表达式为y=5x.点评:此题考查了一次函数的综合,用到的知识点是锐角三角函数、一次函数的解析式的求法,关键是根据锐角三角函数求出k的值,做综合性的题要与几何图形相结合,更直观一些.29、(2013菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)OC=CP,AB=6,求CD的长.考点:切线的判定与性质;解直角三角形.分析:(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2,CD=4.解答:(1)证明:连接AO,AC(如图).∵BC是⊙O的直径,∴∠BAC=∠CAD=90°.∵E是CD的中点,∴CE=DE=AE.∴∠ECA=∠EAC.∵OA=OC,∴∠OAC=∠OCA.∵CD是⊙O的切线,∴CD⊥OC.∴∠ECA+∠OCA=90°.∴∠EAC+∠OAC=90°.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线;(2)解:由(1)知OA⊥AP.在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,∴sinP==,∴∠P=30°.∴∠AOP=60°.∵OC=OA,∴∠ACO=60°.在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,∴AC==2,又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°﹣∠ACO=30°,∴CD===4.点评:本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.。
锐角三角函数1、(2013•某某)tan60°的值等于()A.1 B.C.D.2 考点:特殊角的三角函数值.分析:根据记忆的特殊角的三角函数值即可得出答案.解答:解:tan60°=.故选C.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.2、(2013•某某)如图,在△ABC 中,∠C=90°,AB=5,BC=3,则sinA 的值是()A.B.C.D .考点:锐角三角函数的定义分析:利用正弦函数的定义即可直接求解.解答:解:sinA==.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3、(2013•某某)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O 的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注评:意掌握辅助线的作法,注意数形结合思想的应用.4、(2013•某某)3tan30°的值等于()A.B.3C .D.考点:特殊角的三角函数值.分析:直接把tan30°=代入进行计算即可.解答:解:原式=3×=.故选A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.5、(2013•某某)式子的值是()A.B.0C.D.2考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入后,化简即可得出答案.解答:解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选B.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.6、(2013•某某)如图,在半径为1的⊙O中,∠AOB=45°,则sinC 的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义.3718684分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AO D 中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线评:的作法,注意数形结合思想的应用.7、(2013•某某)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r >0)变化的函数图象大致是()A.B.C.D.考点:动点问题的函数图象;多边形内角与外角;切线的性质;切线长定理;扇形面积的计算;锐角三角函数的定义.专题:计算题.分析:连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC和扇形OBC的面积,即可求出答案.解答:解:连接OB、OC、OA ,∵圆O切AM于B,切AN于C,∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°,∵AO平分∠M AN,∴∠BAO=∠CAO=α,AB=AC=,∴阴影部分的面积是:S四边形BACO﹣S扇形OBC=2×××r﹣=(﹣)r2,∵r>0,∴S与r之间是二次函数关系.故选C.点评:本题主要考查对切线的性质,切线长定理,三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.8、(2013•某某)如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD:CD=3:2,则tanB=()A.B.C.D.考点:相似三角形的判定与性质;锐角三角函数的定义.3718684分析:首先证明△ABD∽△ACD,然后根据BD:CD=3:2,设BD=3x,CD=2x,利用对应边成比例表示出AD的值,继而可得出tanB的值.解答:解:在Rt△ABC中,∵AD⊥BC于点D,∴∠ADB=∠CDA,∵∠B+∠BAD=90°,∠BAD+DAC=90°, ∴∠B=∠DAC,∴△ABD∽△ACD, ∴=,∵BD:CD=3:2,设BD=3x ,CD=2x ,∴AD==x , 则tanB===. 故选D .点评: 本题考查了相似三角形的判定与性质及锐角三角函数的定义,难度一般,解答本题的关键是根据垂直证明三角形的相似,根据对应变成比例求边长.9、(2013年某某市)如图3,已知321////l l l ,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个项点分别在这三条平行直线上,则 sin 的值是( )A.31 B.176 C.55 D.1010 答案:D解析:分别过点A ,B 作设平行线间距离为d =1,CE =BF =1,AE =CF =2,AC =BC =5,AB =10,则10、(2013某某)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.11、(2013•某某)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是 2 .考点:菱形的性质;解直角三角形.分析:求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,解答:解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x﹣3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:DE==8,在Rt△BDE中,tan∠DBE===2,故答案为:2.点评:本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.12、(2013某某)△ABC 中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.分析:首先利用余弦函数的定义求得AC的长,然后利用勾股定理即可求得BC的长.解答:解:∵cosA=,∴AC=AB•cosA=8×=6,∴BC===2.故答案是:2.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13、(2013某某)比较大小: 31cos 835(填“>”,“=”,“<”).考点:科学计算器的使用:数的开方及三角函数值。
2013年浙教版九年级中考数学辅导(解直角三角形)一、锐角三角函数的定义: sin α=斜边的邻边斜边的对边ααα=cos , tan α=的对边的邻边的邻边的对边ααααα=cot , 2、同角三角函数间的关系:(1)平方关系:sin 2α+cos 2α=1⇒sin 2α=1-cos 2α, cos 2α=1-sin 2α(2)倒数关系:tan α·cot α=1⇒tan α=αcot 1, cot α=αtan 1(3)商数关系:tan α=αααααsin cos cot ,cos sin =3、特殊角的三角函数值:4、①锐角α的sin α(或tan α)随角度α的增大而增大。
(增函数) ②锐角α的cos α(或cot α)随角度α的增大而减小。
(减函数) 二、解直角三角形1、解直角三角形的定义:在直角三角形中,除一个直角外,一共还有5个元素:3条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
2、直角三角形中,边、角及边与角间的关系: (1)三边间的关系:a 2+b 2=c 2 (勾股定理)(2)两锐角的关系:∠A+∠B=900 (直角三角形两锐角互余)(3)边角之间的关系:①sinA=cosB=c a , cosA=sinB=cb(知斜用正、余弦)②tanA=cotB=c a , cotA=tanB=ab(无斜用正、余切)3、解直角三角形的类型:(从给定的已知条件可把解直角三角形分为两大类四小类) (1)已知一边一角①斜边和一锐角(如c 、A )解法:∠B=900-∠A , a=csinA, b=ccosA ②一直角边和一锐角(如a 、A ) 解法:∠B=900-∠A , b=acotA, c=22sin b a c Aa+=或 (2)已知两边①两直角边(如a 、b )解法:22b a c +=,由tanA=b a求出∠A ,则∠B=900-∠A ②斜边和一直角边(如c 、a )解法:b=ca A a c =-sin ,22由求出∠A ,则∠B=900-∠A一、选择题1、(漳州)已知锐角A 满足关系式2sin 2A-7sinA+3=0,则sinA 的值为( ) A .0.5 B .3 C .0.5或3 D .42、(山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) (A )150m(B )350m (C )100 m (D )3100m3、(威海市)在△ABC 中,∠C =90°,tanA =31,则sinB =( )(A )1010 (B )32 (C )43 (D )101034、如图,在Rt △ABC中,∠C=900,∠A=300,E为AB上一点且AE:EB=4:1 ,EF⊥AC于F,连结FB,则tan ∠CFB 的值等于( )A 333、 B、 C、5、(齐齐哈尔市)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( ) A .23 B .32C .34D .436、(2011浙江杭州义蓬一中一模)如图,小明发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .14米 B .28米 C .314+米 D .3214+米7、Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C.sin sin a b A B + D.cos sin a bA B+8、(南通市)如图,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( ) A .6(3+1)m B .6(3-1)m C.12(3+1)m D .12(3-1)m10、(浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( )(A )68米 (B )70米 (C )121米 (D )123米11、(2011•绵阳)10.周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶 的仰角α 为45︒,小丽站在B 处(A 、B 与塔的轴心共线)测得她看塔 顶的仰角β 为30︒.她们又测出A 、B 两点的距离为30米.假设她们的 眼睛离头顶都为10 cm ,则可计算出塔高约为(结果精确到0.01)( ). A .36.21米 B .37.71米 C .40.98米 D .42.48米(第4题图)(第5题图)(第6题图)(第20题图)CA GFE D 15° 30°23米 (第3题图)(第1题图)D C B A(第2题图)二、填空题1、如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点.C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)2、如图:为了测量河对岸旗杆AB 的高度,在点C 处测得顶端A 的仰角为30°,沿CB 方向前进20m 达到D 处,在D 点测得旗杆顶端A 的仰角为45°,则旗杆AB 的高度为__________m.(精确到0.1m)3、如图,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30 , 旗杆底部B 点的俯角为45 .若旗杆底部B 点到建筑物的水平距离9BE =米, 旗杆台阶高1米,则旗杆顶点A 离地面的高度为_________米(结果保留根号)4、如图,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△C B A ''',使点B '与C 重合,连结B A ',则C B A ''∠tan 的值为 .5、如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .三、解答题1. (诸暨市)由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD.2.课外实践活动中,数学老师带领学生测量学校旗杆的高度. 如图8,在A 处用测角仪(离地高度1.5米)测得旗杆顶端的仰角为15°,朝旗杆方向前进23米到B 处,再次测得旗杆顶端的仰角为30°,求旗杆EG的高度.A(第5题) AC (B ′) B A ′ 4题′3、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB1.732≈,结果保留整数).5、(遵义市)如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F=45,求AF 的长度(结果精确到1米,参考数据:414.12≈,732.13≈).6、 (广安市)如图, 海上有一灯塔P, 在它周围3海里处有暗礁. 一艘客轮以9海里/时的速度由西向东航行, 行至A 点处测得P 在它的北偏东600的方向, 继续行驶20分钟后, 到达B 处又测得灯塔P 在它的北偏东450方向. 问客轮不改变方向继续前进有无触礁的危险?7、(2011•宜宾)如图,飞机沿水平方向(A 、B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN .飞机能够测量的数据有俯角和飞行的距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个距离MN 的方案,要求: (1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN 的步骤.AD45°60°MNB A。
2012年中考试题汇编 锐角三角函数及解直角三角形.1、 锐角三角函数以及特殊角(2011江苏省无锡市,2,3′)sin45°的值是( )A. 12B.C. D.12 、(2012福州,9,4分,)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B.C.D. 1)米 3、( 2012年浙江省宁波市,8,3)如图,Rt △ABC,∠C=900,AB=6,cosB=23 ,则BC 的长为(A )4(B)2 5 (C)18 1313 (D)121313(第2题) (第3题 ) (第5题) 5、(2012连云港,3,3分)小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°的角的正切值是B.+1C. 2.5 6、(2012山东德州中考,7,3,)为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ) (A )1组 (B )2组 (C )3组 (D )4组 7、(2012江苏泰州市,18,3分)如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是( ) . 8、(2012四川内江,11,3分)如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12 B. C.D.8题图 ABC(第8题) (第7题 ) 9、(2011山东省潍坊市,题号9,分值3)9、轮船从B 处以每小时海里的速度沿男偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在观测灯塔A 北偏东60°方向上,则C 处与灯塔A 的距离是( )海里 A . 325 B . 225 C .50 D .25(第10题 )10、(2012湖北襄阳,10,3分)在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图5,已知李明距假山的水平距离BD 为12m ,他的眼睛距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为 A .1.6)m B .1.6)m C .1.6)m D .11、(2012安徽,19,10分)如图,在△ABC 中,∠A=30°,∠B=45°,AC=32,求AB 的长,12、(2012重庆,20,6分)已知:如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形。
第29讲 锐角三角函数与解直角三角形1.锐角三角函数的概念考试内容考试要求在Rt △ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.c正弦 余弦 正切 sin A = ∠A 的对边斜边=ac cos A = ∠A 的邻边斜边=bc tan A = ∠A 的对边∠A 的邻边=ab它们统称为∠A 的锐角三角函数2.特殊角三角函数值考试内容考试要求三角函数 30° 45° 60° asin α 12 22 32 cos α 32 22 12 tan α3313函数的增减性:(0°<α<90°)(1)sin α,tan α的值都随α增大而增大; (2)cos α的值随α增大而减小.考试内容考试要求解直角三角形的定义在直角三角形中,除直角外,共有5个元素,即3条边和2个锐角.由这些元素中的一些已知元素,求出所有未知元素的过程叫做解直角三角形.c解直角三角形的常用关系在Rt △ABC 中,∠C =90°,则: (1)三边关系:a 2+b 2=c 2;(2)两锐角关系:∠A +∠B =90°; (3)边与角关系:sin A =cos B =ac ,cos A =sin B=b c ,tan A =a b; (4)sin 2A +cos 2A =1. 解直角三角形的题目类型(1)已知斜边和一个锐角;(2)已知一直角边和一个锐角;(3)已知斜边和一直角边(如已知c 和a);(4)已知两条直角边a 、b.拓展三角形面积公式:S △=12ah =12ab sin C.4.解直角三角形的应用常用知识考试内容考试要求仰角和俯角在视线与水平线所成的角中,视线在水平线上方的叫仰角,视线在水平线下方的叫俯角. a坡度和坡角坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比),记作i =h ∶l.坡面与水平面的夹角叫做坡角,记作α.i =tan α,坡度越大,α角越大,坡面越陡.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的角叫做方向角.考试内容考试要求基本 思想转化思想:(1)在直角三角形中,求锐角三角函数值的问题,一般转化为求两条边的问题,这样就把新知识(求锐角三角函数值)转化为旧知识(求直角三角形的边长),因此不可避免地用到勾股定理.若原题没有图形,可以画出示意图,直观地观察各边的位置及类型(直角边还是斜边),再运用定义求解.(2)在解斜三角形时,通常把斜三角形转化为直角三角形,常见的方法是作高,通过作高把斜三角形转化为直角三角形,再利用解直角三角形的有关知识解决问题.注意在画图过程中考虑一定要周到,不可遗漏某一种情况.c1.(2017·湖州)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3,则cos B 的值是( )A .35B .45C .34D .43 2.(2017·温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是( )A.5米B.6米C米D.12米3.(2016·宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为____________________m(结果保留根号).4.(2017·丽水)如图是某小区的一个健身器材,m,AB=m,∠BOD=70°,m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈)【问题】如图,在△ABC中,AC=23,BC=2.(1)若∠C=Rt∠,求sin A;(2)若∠A=30°,求AB;(3)通过(1)(2)解答,请你总结解一般三角形的思路,以及解直角三角形的方法.【归纳】通过开放式问题,归纳、疏理三角函数的定义,以及解直角三角形的方法.类型一 锐角三角函数的概念例1(2015·丽水)如图,点A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A .BD BCB .BC AB C .AD AC D .CD AC【解后感悟】本题是锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.1.(1)(2015·山西)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255C .55D .12(2) (2015·扬州)如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A .①②B .②③C .①②③D .①③ 2.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sin A =32;②cos B =12;③tan A =33;④tan B =3,其中正确的结论是 (只需填上正确结论的序号).类型二 特殊角的三角函数值例2 式子2cos 30°-tan 45°-(1-tan 60°)2的值是( )A .23-2B .0C .2 3D .2 【解后感悟】利用特殊角的三角函数值进行数的运算,往往与绝对值、乘方、开方、二次根式相结合.准确地记住一些特殊角的三角函数值是解决此类题目的关键,所以必须熟记.3.(1)(2015·滨江)下列运算:sin 30°=32,8=22,π0=π,2-2=-4,其中运算结果正确的个数为( )A .4B .3C .2D .1 (2)计算6tan 45°-2cos 60°的结果是( )A .4 3B .4C .5 3D .5 (3)在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是( )A .30°B .45°C .60°D .90°类型三 解直角三角形的几何应用例3 (2015·湖北)如图,AD 是△ABC 的中线,tan B =13,cos C =22,AC = 2.求:(1)BC 的长; (2)sin ∠ADC 的值.【解后感悟】本题运用的是解直角三角形的知识,正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用,注意数形结合和转化思想的应用.4.(1)(2015·荆门)如图,在△ABC 中,∠BAC =Rt ∠,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连结BD ,则tan ∠DBC 的值为( )A .13B .2-1C .2- 3D .14 (2)如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则( )A .S 1=12S 2B .S 1=72S 2C .S 1=S 2D .S 1=85S 25.如图,在△ABC 中,∠A =30°,∠B =45°,AC =23,则AB 的长为 .类型四 解直角三角形中一个常见的模型例4 (2016·绍兴)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A 处,测得河的北岸边点B 在其北偏东45°方向,然后向西走60m 到达C 点,测得点B 在点C 的北偏东60°方向,如图2.(1)求∠CBA 的度数;(2)求出这段河的宽(结果精确到1m ,备用数据2≈1.41,3≈).【解后感悟】本题考查的是解直角三角形的应用--方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键;通过基本图形与实际问题的结合,揭示图形的基本数量关系,利用方程思想求解.注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.如图1是基本图形,若C ,D ,B 在同一直线上,且∠ABC =Rt ∠,∠ACB =α,∠ADB =β,CD =a ,AB =x ,则有x =BD·tan β,x =CB·tan α,∴x tan α-x tan β=a ,∴x =a 1tan α-1tan β.变式为如图2,结论是x =a 1tan α+1tan β.6.(2016·河南)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°,升旗时,,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈)类型五解直角三角形的测量问题例5(2016·黄石)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF =30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.(2≈1.414,CF结果精确到米)【解后感悟】本题考查了解直角三角形的应用--斜坡问题:解题涉及到的量是坡度与坡角,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=h∶l的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=tanα.7.(1)(2016·重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i =1∶,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈)()A米B.米C.米D.米(2)(2017·绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.①求∠BCD的度数;②m,参考数据:tan20°≈,tan18°≈)类型六解直角三角形的实际应用例6如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:(单位:cm)伞架DE DF AE AF AB AC长度36 36 36 36 86 86(1)求AM 的长;(2)当∠BAC =104°时,求AD 的长(精确到1cm ). 备用数据:sin 52°≈0.788,cos 52°≈,tan 52°≈1.2799.【解后感悟】本题是解直角三角形的应用,解答本题的关键是构造直角三角形,解直角三角形;注意把实际问题转化为数学问题.8.(2015·衢州)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间...处有一条60cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是( )A .144cmB .180cmC .240cmD .360cm9.(2017·台州)如图是一辆小汽车与墙平行停放的平面示意图,,,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈;cos 40°≈0.77;tan 40°≈)10.(2016·台州)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC =30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈)【课本改变题】教材母题--浙教版八下,第82页某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈).【方法与对策】解应用题的基本思路是构建数学模型.解题的关键是把实际问题转化为数学问题,只要涉及三角形的实际问题,把它抽象到解直角三角形中进行解答,之后再还原成实际问题.这种题型是中考常用的考查方式.【把一般三角形当作直角三角形来解】如图,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得△A′B′C′,使B′与C重合,连结A′B,则tan∠A′BC′的值为________.参考答案第29讲 锐角三角函数与解直角三角形【考题体验】 1.A 2. A 3.(103+1)4.作AE ⊥CD 于E ,BF ⊥AE 于F ,则四边形EFBC 是矩形,∵OD ⊥CD ,∠BOD =70°,∴AE ∥OD ,∴∠A =∠BOD =70°,在Rt △AFB 中,∵AB =,∴AF =×cos70°≈×=,∴AE =AF +BC ≈+=≈m ,答:端点A 到地面CD 的距离是m.【知识引擎】【解析】(1)∵AB 2=AC 2+BC 2,∴AB =4,∵sinA =BC AB ,∴sinA =12; (2)作CD ⊥AB ,交AB 于点D.∵∠A =30°,∴CD =ACsin30°=3,AD =ACcos30°=3,∵CD ⊥BD ,∴BD =1,∴AB =AD +BD =4. (3)解一般三角形的思路:一般三角形转化为直角三角形;解直角三角形的方法:利用方程思想,借助勾股定理、三角函数等关系求解.【例题精析】例1 ∵AC ⊥BC ,CD ⊥AB ,∴∠α+∠BCD =∠ACD +∠BCD ,∴∠α=∠ACD ,∴cos α=cos ∠ACD =BD BC =BC AB =DCAC,只有选项C 错误,符合题意,故选:C .例2 原式=2×32-1-(3-1)=3-1-3B . 例3(1) 过点A 作AE ⊥BC 于点E ,∵cos C =22,∴∠C =45°,在Rt △ACE 中,CE =AC·cos C =1,∴AE =CE =1,在Rt △ABE 中,tan B =13,即AE BE =13,∴BE =3AE =3,∴BC=BE +CE =4; (2)∵AD 是△ABC 的中线,∴CD =12BC =2,∴DE =CD -CE =1,∵AE⊥BC ,DE =AE ,∴∠ADC =45°,∴sin ∠ADC =22. 例4(1)由题意得,∠BAD =45°,∠BCA =30°,∴∠CBA =∠BAD -∠BCA =15°; (2)作BD ⊥CA 交CA 的延长线于D ,设BD =x m ,∵∠BCA =30°,∴CD =BDtan 30°=3x ,∵∠BAD =45°,∴AD =BD =x ,则3x -x =60,解得x =603-1=30(3+1)≈82,答:这段河的宽约为82m .例5 (1)作BH ⊥AF 于H ,如图,在Rt △ABH 中,∵sin ∠BAH =BHAB ,∴BH =800·sin 30°=400m ,∴EF =BH =400m ;答:AB 段山坡的高度EF 为400米. (2)在Rt △CBE 中,∵sin ∠CBE =CEBC,∴CE =200·sin 45°=1002≈(m ),∴CF =CE +EF =141.4+400≈541(m ).答:山峰的高度CF 约为541米.例6(1)由题意,得AM =AE +DE =36+36=72(cm ).故AM 的长为72cm ; (2)∵AP 平分∠BAC ,∠BAC =104°,∴∠EAD =12∠BAC =52°.过点E 作EG ⊥AD 于G ,∵AE =DE=36,∴AG =DG ,AD △AEG 中,∵∠AGE =90°,∴AG =AE·cos ∠EAG =36·cos 52°≈36×=22.1652(cm ),∴AD =2AG =2×≈44(cm ).故AD 的长约为44cm .【变式拓展】1.(1)D (2)D 2.②③④ 3.(1)D (2)D (3)D 4.(1)A (2)C 5.3+36. 在Rt △BCD 中,BD =9米,∠BCD =45°,则BD =CD =9米.在Rt △ACD 中,CD =9米,∠ACD =37°,则AD =CD·tan 37°≈9×=6.75(米).所以,AB ,整个过程中旗子上升高度是:15.75-2.25=13.5(米),因为耗时45s ,所以上升速度v =13.545=0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.7.(1)A (2)①过点C 作CE ⊥BD ,则有∠DCE =18°,∠BCE =20°,∴∠BCD =∠DCE +∠BCE =18°+20°=38°;②由题意得:CE =AB =30m ,在Rt △CBE 中,BE =CE·tan 20°≈m ,在Rt △CDE 中,DE =CE·tan 18°≈m ,∴m ,m .8.B⊥OB ,垂足为点C ,在Rt △ACO 中,∵∠AOC =40°,AO ,∴AC =sin ∠AOC ·AO ≈×,∵,∴车门不会碰到墙.,理由:如图2所示:过点B 作BD ⊥AC 于点D ,∵BC =30cm ,∠ACB =53°,∴sin 53°=BD BC =BD 30≈0.8,解得:BD =24cm ,cos 53°=DCBC ≈0.6,解得:DC =18cm ,∴AD =22-18=4(cm ),∴AB =AD 2+BD 2=42+242=592cm <900cm ,∴他的这种坐姿不符合保护视力的要求.【热点题型】【分析与解】先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD =60°,AB =0.3米.∵在菱形ABCD 中,AB =AD ,∴△BAD 是等边三角形,∴BD ,∴×20=6(米);校门打开时,取其中一个菱形A 1B 1C 1D 1.根据题意,得∠B 1A 1D 1=10°,A 1B 1=0.3米.∵在菱形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∠B 1A 1O 1=5°,∴在Rt △A 1B 1O 1中,B 1O 1=sin ∠B 1A 1O 1·A 1B 1=sin 5°×≈(米),∴B 1D 1=2B 1O 1,∴×20=1.0464米;∴≈5(米).故校门打开了5米.【错误警示】13 过A′作A′D ⊥BC′于点D ,则B′D =A′D.设AB =a ,则A′C =a ,BC =2a ,所以A′D =A′C·sin 45°=a·22=22a.所以B′D =22a.故BD =BC +B ′D =322a.所以在Rt △A ′BD 中,tan ∠A ′BC ′=A ′D BD =22a 322a =13.。
1锐角三角函数2、 (2013?温州如图 ,在△ABC 中,∠C=90°, AB=5, BC=3, 则 sinA 的值是 (3、 (2013?雅安如图 , AB 是⊙ O 的直径 , C 、 D 是⊙ O 上的点 ,∠CDB=30°,过点C 作⊙ O 的切线交 AB 的延长线于 E ,则 sin∠E的值为 (5、(2013?孝感式子的值是 (26、 (2013?荆门如图 ,在半径为 1 的⊙ O 中,∠ AOB=45°,则 sinC 的值为 (7、 (2013?白银如图 ,⊙ O 的圆心在定角∠α (0° <α <180的角°平分线上运动,且⊙O 与∠α的两边相切 ,图中阴影部分的面积 S 关于⊙ O 的半径 r (r >0 变化的函数图象大致是 (38、 (2013?鄂州如图 ,Rt△ABC 中,∠A=90°,AD ⊥BC 于点 D ,若 BD :CD=3:2, 则 tanB= (459、 (2013 年深圳市如图 3,已知 321////l l l , 相邻两条平行直线间的距离相等 , 若等腰直角△ ABC 的三个项点分别在这三条平行直线上 ,则 sin 的值是 (A.31 B.176 C.5 D.10 答案 :D解析 :分别过点 A,B作设平行线间距离为 d =1, CE =BF =1, AE =CF =2, AC =BC AB 则10、 (2013 杭州在 Rt△ABC 中 , ∠ C=90°, AB=2BC, 现给出下列结论 :①sinA=;②cosB=; ③tanA=;④tanB=,其中正确的结论是 (只需填上正确结论的序号考点 :特殊角的三角函数值 ;含 30 度角的直角三角形 .专题 :探究型 .分析 :先根据题意画出图形 , 再由直角三角形的性质求出各角的度数 , 由特殊角的三角函数值即可得出结论 .解答 :解:如图所示 :∵在 Rt△ ABC 中,∠ C=90°, AB=2BC,∴s inA==,故①错误 ;∴∠ A=30°,∴∠ B=60°,∴c osB=cos60°=,故②正确 ;∵∠ A=30°,∴t anA=tan30 °=,故③正确 ;∵∠ B=60°,∴t anB=tan60 °=,故④正确 .故答案为 :③③④ .点评 :本题考查的是特殊角的三角函数值, 熟记各特殊角度的三角函数值是解答此题的关键 . 11、 (2013?攀枝花如图 ,在菱形 ABCD 中,DE⊥ AB 于点 E , cosA=, BE=4,则 tan∠ DBE 的值是 2 .6712、 (2013 鞍山△ABC 中,∠C=90°, AB=8, cosA=, 则 BC 的长 .考点 :锐角三角函数的定义 ;勾股定理 .分析 :首先利用余弦函数的定义求得AC 的长 ,然后利用勾股定理即可求得BC 的长 . 解答 :解:∵ cosA=,∴AC=AB?cosA=8×=6,∴BC===2.故答案是 :2.点评 :本题考查锐角三角函数的定义及运用:在直角三角形中 ,锐角的正弦为对边比斜边 , 余弦为邻边比斜边 ,正切为对边比邻边 .13、 (2013 陕西比较大小 :31cos 8> ” , “ = ”考,点“: 科<”学计.算器的使用 :数的开方及三角函数值。
锐角三角函数及其应用一、选择题1.(2013鄂州,7,3分)如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( )B===.二、填空题 2.(2013湖北武汉,11,3分)计算 45cos = .答案:22解析:直接由特殊角的余弦值,得到。
3.(2013牡丹江,16,3分)如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 3 米.×(米).OE ⊥AC 交AB 于E,若BC=4,△AOE 的面积为5,则sin ∠BOE 的值为 .考点:线段垂直平分线的性质;勾股定理;矩形的性质。
解直角三角形 分析:本题利用三角形的面积计算此题考查了矩形的性质、垂直平分线的性质以及勾股定理及解直角三角形.注意数形结合思想的应用,此题综合性较强,难度较大,答案:由△AOE 的面积为5,找此三角形的高,作OH ⊥AE 于E,得OH ∥BC,AH=BH,由三角形的中位线∵BC=4 ∴OH=2,从而AE=5,连接CE, 由AO=OC, OE ⊥AC 得EO 是AC 的垂直平分线,∴AE=CE ,在直角三角形EBC 中,BC=4,AE=5,勾股定理得EB=3,AB=8,在直角三角形ABC 中,勾股定理得AC=12AC=作EM ⊥BO 于M,在直角三角形EBM 中,EM=BEsi n ∠ABD=3×5=5,BM= BEcos ∠ABD=3×55,从而OM=5,在直角三角形E0M中,勾股定理得sin∠BOE=3 05 EME==5.(2013年哈尔滨市,19,3分)在△ABC中,AB=BC=1,∠ABC=450,以AB为一边作等腰直角三角形ABD,使∠ABD=900,连接CD,则线段CD的长为.考点:解直角三角形,钝角三角形的高.分析:双解问题,画等腰直角三角形ABD,使∠ABD=900,分两种情况,点D与C在AB同侧,D与C在AB异侧,考虑要全面;答案:当点D与C在AB同侧,BD=AB=作C E⊥BD于E,CD=BD=2,ED=2,由勾股定理CD=当点D与C在AB异侧,BD=AB=,∠BDC=1350,作DE⊥BC于E,BE=ED=2,EC=3,由勾股定理6.(2013湖北十堰,15,3分)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.=375(米).三、解答题7.(2013湖南郴州,22,6分)我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).D==GD=5=25+5(km8.(2013湖南娄底,20,7分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)CD=x 由题意得,x=+19. (2013湖北黄石,17,7011tan 30(2013)()3π--+解析:原式3213=+--+ ··············································································· (5分) 4=······································································································· (2分) 10.(2013湖北咸宁,20,8分)如图,△ABC 内接于⊙O ,OC 和AB 相交于点E ,点D 在OC 的延长线上,且∠B=∠D=∠BAC=30°.(1)试判断直线AD 与⊙O 的位置关系,并说明理由; (2)AB=6,求⊙O 的半径.AB=6,ACE==sin 6011.(2013湖北襄阳,19,6分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)ACD=,求出,求出ACD==AD=3BCD=AB=AD+BD=3+912.(2013绥化,21,5分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.AB=4BD=AD=4BC=BD+DC=4合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B 处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,).+x=×=55(米)×AD=AE+ED=55DN=DF+NF=55++x=x+55DN=55+14. (2013湖北黄石,22,8分)高考英语听力测试期间,需要杜绝考点周围的噪音。
(最新最全)2013年全国各地中考数学解析汇编(按章节考点整理)第二十九章锐角三角函数及解直角三角形29.1 锐角三角函数以及特殊角(2013江苏省无锡市,2,3′)sin45°的值是( ) A.12B. 2C. D.1【解析】sin45°【答案】B【点评】本题主要考查常见锐角三角函数值。
需要学生记忆,这是对基础知识的考查,属于容易题。
(2013四川内江,11,3分)如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为A .12BCD【解析】欲求sinA ,需先寻找∠A 所在的直角三角形,而图形中∠A 所在的△ABC 并不是直角三角形,所以需要作高.观察格点图形发现连接CD (如下图所示),恰好可证得CD ⊥AB ,于是有sinA =CDAC.【答案】B【点评】在斜三角形中求三角函数值时往往需要作高构造直角三角形,将这类问题以格点图形为背景展现时,要注意利用格点之间连线的特殊位置灵活构造.解决这类问题,一要注意构造出直角三角形,二要熟练掌握三角函数的定义.29.2 三角函数的有关计算(2013福州,9,4分,)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )图4图4A .200米B.C.D. 1)米解析:由题意,∠A=30°,∠B=45°,则tan ,tan CD CDA B AD DB==,又CD=100,因此AB=AD+DB=00100100100tan tan tan 30tan 45CD CD A B +=+=。
答案:D点评:本题考查了俯角概念、30°、45°的正切三角函数值,考察了用三角函数模型解决实际问题的能力,难度中等。
( 2013如图,R t △ABC,∠C=900,AB=6,cosB=23 ,则BC 的长为(A )4 (B)2 5 (C)18 1313 (D) 121313【解析】由三角函数余弦的定义cosB=BC AB =23,又∵AB=6∴BC=4,故选A【答案】A【点评】本题考查三角函数的定义,比较容易.(2013福州,15,4分,)如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)解析:由已知条件,可知△BDC 、△ADB 是等腰三角形,且DA=DB=BC ,可证△BDC ∽△ABC ,则有BC DC AC BC =,设BC=x ,则DC=1-x ,因此21,101x xx x x -=+-=即,解方程得,1211,22x x ==(不合题意,舍去),即AD=12;8题图A BC又cosA=1242ABAD===点评:本题考查了等腰三角形的判定、性质,三角形相似的判定和性质,一元二次方程的解法,二次根式的化简,构造直角三角形求非特殊角的三角函数值等,涉及知识点较为广泛,具有较强的综合性,难度较大。
(2013连云港,3,3分)小明在学习―锐角三角函数‖中发现,将如图所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°的角的正切值是B.+1C. 2.5 【解析】注意折叠后两点对称,也就是说△ABE 和△AEF 都是等腰三角形。
得到67.5°的角为∠FAB 。
【答案】设AB=x,则BE=x,在直角三角形ABE 中,用勾股定理求出x,于是BF=+1)x.在直角三角形ABF 中,tan ∠FAB=BF AB =+1=tan67.5°.选B 。
【点评】根据折叠得到A 、E 关于折痕对称,从而根据轴对称的性质得到等腰三角形。
求出两线段的长。
(2013山东德州中考,7,3,)为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ) (A )1组 (B )2组 (C )3组 (D )4组【解析】对于①,可由公式AB=BC ×tan ∠ACB求出A 、B 两点间的距离;对于②,可设AB 的长为x ,则BC=x tan ACB ∠,BD=xtan ADB ∠,BD-BC=CD ,可解出AB .对于③,易知△DEF ∽△DBA ,则DE BDEF AB=,可求出AB 的长;对于④无法求得,故有①、②、③三个,故选C . 【答案】C . 【点评】此题考查解直角三角形和三角形相似的性质与判定.在直角三角形中至少要有已知一边和一角才能求出其他未知元素;判定两三角形相似的方法有:AA ,SAS ,SSS ,两直角三角形相似的判定还有HL .(2013贵州铜仁,22,10分)如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctan α, 即ctan α=BCAC=的对边角的邻边角αα,根据上述角的余切定义,解下列问题:(1)ctan30◦= ;(2)如图,已知tanA=43,其中∠A 为锐角,试求ctanA 的值. 【分析】(1)可先设最小边长为一个特殊数(这样做是为了计算方便),然后在计算出其它边长,根据余切定义进而求出ctan30◦。
(2)由tanA=43,为了计算方便,可以设BC=3 AC=4根据余切定义就可以求出ctanA 的值. 【解析】(1)设BC=1, ∵α=30◦ ∴AB=2∴由勾股定理得:AC=3 ctan30◦=BCAC=3 F(2) ∵tanA=43∴设BC=3 AC=4 ∴ctanA=BC AC =34【点评】本题考查了锐角三角函数的定义和直角三角形的性质,锐角三角函数往往和直角三角形联系在一起考查。
命题时常常和现实中的一些实际问题结合在一起。
需要注意的是,在运用三角函数概念及其关系式时,计算易错,名称易混淆;特殊角的三角函数值易混淆,也容易把一个角与其余角的三角函数值混淆。
(2013浙江丽水4分,16题)如图,在直角梯形ABCD 中,∠A=90°,∠B=120°,AD=3,AB=6.在底边AB 上取点E ,在射线DC 上取点F ,使得∠DEF=120°.(1)当点E 是AB 的中点时,线段DF 的长度是________; (2)若射线EF 经过点C ,则AE 的长是________.【解析】:AE=21AB=3.在Rt △ADE 中,tan ∠ADE=33=AD AE =3.所以∠ADE=60°,所以DE=32213cos ==∠ADEAD ,∠AED=∠EDF=∠BEF=30°,所以ED=EF.过点E 作EG ⊥DC 于G ,则DF=2DG=2×DE ·cos30°=2×23×23=6;(2)过C 作CH ⊥直线AB 于E ,那么CH=AD=3,由勾股定理D 得BH=1。
所以CD=7。
易知△BCE ~△EDC ,所以BE :CE=CE :CD ,所以CE 2=CD ×DC ,设BE=x ,则CE 2=7x 。
在Rt △CEH 中,由勾股定理得CE 2=EH 2+CH 2,得(x+1)2+3=7x ,解之,得x =1或4。
当x=1时,AE=5;当x=4时,AE=2。
故AE 的长为5或2。
【答案】:(1)6;(2)2或5 【点评】:本题考查梯形、解直角三角形、勾股定理、相似三角形等知识,应注意知识点的融会贯通.本题具有一定的难度.(2013江苏泰州市,18,3分)如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .【解析】 要求tan ∠APD 的值,只要将∠APD 放在直角三角形中,故过B 作CD 的垂线,然后利用勾股定理计算出线段的长度,最后利用正切的定义计算出结果即可. 【答案】作BM ⊥CD ,DN ⊥AB 垂足分别为M 、N ,则BM=DM=2,易得:设PM=x ,则PD=2-x ,由△DNP ∽△BMP ,得:PN DNPM BM =,即PN x =∴PN=5x ,由DN 2+PN 2=PD 2,得:110+15x 2-x)2,解得:x 1=,x 2(舍去),∴tan ∠APD=4BM PM ==2.【点评】选择合适的格点直角三角形是计算线段长、锐角三角函数值的基础,还要注意网格中线段的长度都可以在直角三角形中去解决.(2013福州,9,4分,)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( ) A .200米B.C.D. 1)米解析:由题意,∠A=30°,∠B=45°,则tan ,tan CD CDA B AD DB==,又CD=100,因此AB=AD+DB=00100100100tan tan tan 30tan 45CD CD A B +=+=。
答案:D点评:本题考查了俯角概念、30°、45°的正切三角函数值,考察了用三角函数模型解决实际问题的能力,难度中等。
(2013福州,15,4分,)如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)解析:由已知条件,可知△BDC 、△ADB 是等腰三角形,且DA=DB=BC ,可证△BDC ∽△ABC ,则有BC DC AC BC =,设BC=x ,则DC=1-x ,因此21,101x xx x x -=+-=即,解方程得,1211,22x x ==(不合题意,舍去),即AD=12;又cosA=124ABAD===答案:11,24点评:本题考查了等腰三角形的判定、性质,三角形相似的判定和性质,一元二次方程的解法,二次根式的化简,构造直角三角形求非特殊角的三角函数值等,涉及知识点较为广泛,具有较强的综合性,难度较大。
(2011山东省潍坊市,题号9,分值3)9、轮船从B 处以每小时海里的速度沿男偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在观测灯塔A 北偏东60°方向上,则C 处与灯塔A 的距离是( )海里 A . 325 B . 225 C .50 D .25考点:方位角和等腰三角形的判定解答:根据路程=速度时间得 BC=50×0.5=25海里; 根据方位角知识得,∠BCD=30°,=75°-30°; CB=∠BCD+∠ACD=30°+60°=90°;∠A=∠CBD=45°所以CA=CB 所以CB=25海里,本题正确答案是D点评:本题考查了方位角和等腰三角形的判定的有关知识。