高考数学一轮复习:2013届高三上学期期末数学(理)试题分类汇编6:概率
- 格式:doc
- 大小:451.00 KB
- 文档页数:12
2013年高考数学复习资料:事件与概率历届高考试题汇编(有答案)各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013年高考数学复习资料:事件与概率历届高考试题汇编(有答案)新人教B版1.(2011•长沙调研)甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件[答案] B[解析]∵互斥事件一定是对立事件,∴甲⇒乙,但对立不一定互斥,∴乙⇒/ 甲,故选B.[来源:]2.(文)甲、乙两人随意入住两个房间,则甲乙两人恰住在同一间房的概率为()D.1[答案] B[解析]将两个房间编号为(1,2),则所有可能入住方法有:甲住1号房,乙住2号房,甲住2号房,乙住1号房,甲、乙都住1号房,甲、乙都住2号房,共4种等可能的结果,其中甲、乙恰住在同一房间的情形有2种,∴所求概率P=12.(理)从集合{1,3,6,8}中任取两个数相乘,积是偶数的概率是()[答案] A[解析]所有可能取法有{(1,3),(1,6),(1,8),(3,6),(3,8),(6,8)},只有(1,3)构不成积是偶数,∴P=56,故选A.3.(文)(2011•安徽合肥模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=,P(B)=,P(C)=,则事件“抽到的不是一等品”的概率为()A.B.C.D.[答案] C[解析]事件“抽到的不是一等品”与事件A是对立事件,由于P(A)=,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P=1-P(A)=1-=(理)袋中装有白球3个,黑球4个,从中任取3个①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为()A.①B.②C.③D.④[答案] B[解析]∵“至少一个白球”和“全是黑球”不可能同时发生,且必有一个发生.4.(2010•北京高考)从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是() [答案] D[解析]分别从两个集合中各取一个数,共有15种取法,其中满足b>a的有3种取法,故所求事件的概率P=315=15.5.(2011•安徽“江南十校”联考)第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自A大学2名和B大学4名的大学生志愿者,现从这6名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A大学志愿者的概率是()[答案] C[解析]若这2名大学生来自两所大学,则P1=2×415=815;若这2名大学生均来自A大学,则P2=115.故至少有一名A大学生志愿者的概率是815+115=35.[点评]由对立事件概率公式知,有另解P=1-615=35.6.(2011•大连模拟)一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为()[答案] D[解析]0~9这十个数字键,任意敲击两次共有10×10=100种不同结果,在0~9中是3的倍数的数字有0,3,6,9,敲击两次都是3的倍数共有4×4=16种不同结果,∴P=16100=425.7.(文)(2011•德州期末)现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.[答案]35[解析]共有取法5种,其中理科书为3种,∴P=35.(理)(2010•南京市调研)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.[答案]14[解析]每人用餐有两种情况,故共有23=8种情况.他们在同一食堂用餐有2种情况,故他们在同一食堂用餐的概率为28=14.8.(文)(2010•江苏南通一模)抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x,y,则xy为整数的概率是________.[答案]12[解析]将抛掷甲、乙两枚质地均匀的正四面体所得的数字x,y记作有序实数对(x,y),共包含16个基本事件,其中xy为整数的有:(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求概率为P=816=12.(理)(2011•广东高州模拟)某市派出甲、乙两支球队参加全省足球冠军赛,甲、乙两队夺取冠军的概率分别是37和14,则该市足球队夺得全省足球冠军的概率是________.[答案]1928[解析]设事件A:甲球队夺得全省足球冠军,B:乙球队夺得全省足球冠军,事件C:该市足球队夺得全省足球冠军.依题意P(A)=37,P(B)=14,且C =A+B,事件A、B互斥,所以P(C)=P(A+B)=P(A)+P(B)=37+14=1928.9.(文)(2010•浙江开化)已知中心在原点,焦点在x轴上的双曲线的一条渐近线方程为mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任取一个数,则双曲线的离心率大于3的概率是________.[答案]79[解析]e>3,即ca>3,∴a2+b2a2>9,∴ba>22,即m>22,∴m可取值3,4,5,6,7,8,9,∴p=79.(理)(2011•浙江金华十校模拟)已知甲盒内有外形和质地相同的1个红球和2个黑球,乙盒内有外形和质地相同的2个红球和2个黑球.现从甲、乙两个盒内各取1个球,则取出的2个球中恰有1个红球的概率是________.[答案]12[解析]从甲、乙两个盒内各取1个球,共有3×4=12种不同的取法.其中,从甲盒内取1个红球,从乙盒内取1个黑球,有2种取法;从甲盒内取1个黑球,从乙盒内取1个红球,有4种取法.故取出的2个球中恰有1个红球的概率是P =2+412=12.10.有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用( x,y)表示结果,其中x表示第1颗正四面体玩具向下一面的点数,y表示第2颗正四面体玩具向下一面的点数.试写出:(1)这个试验的基本事件空间;(2)事件“向下一面点数之和大于3”;(3)事件“向下一面点数相等”.[解析](1)这个试验的基本事件空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)};(2)事件“向下一面点数之和大于3”包含以下13个基本事件(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“向下一面点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).11.(2011•山东临沂质检)一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:f1(x)=x3,f2(x)=|x|,f3(x)=sinx,f4(x)=cosx,现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是()[答案] C[解析]f1(x)与f3(x)是奇函数,f2(x)与f4(x)是偶函数.奇函数与偶函数相乘是奇函数,故所得函数为奇函数的概率是P=2×26=23.12.(2011•北京西城一模)下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的概率为()[答案] C[解析]x-甲=88+89+90+91+925=90,x-乙=83+83+87+x+995.由x-甲>x-乙,得x0y>0,即b+2b-2a>0a+1b-2a>0,解得b>2a.∵a,b∈{1,2,3,4,5,6},∴基本事件总数共有36种.满足b>2a的有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6),共6种,∴P=636=16,即直线l1与l2交点在第一象限的概率为16.15.(文)(2010•北京顺义一中月考)已知实数a,b∈{-2,-1,1,2}.(1)求直线y=ax+b不经过第四象限的概率;(2)求直线y=ax+b与圆x2+y2=1有公共点的概率.[解析]由于实数对(a,b)的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2)共16种(1)设“直线y=ax+b不经过第四象限”为事件A若直线y=ax+b不经过第四象限,则必须满足a≥0,b≥0,则事件A包含4个基本事件,∴P(A)=416=14,∴直线y=ax+b不经过第四象限的概率为14.(2)设“直线y=ax+b与圆x2+y2=1有公共点”为事件B,则需满足|b|a2+1≤1,即b2≤a2+1,∴事件B包含12个基本事件,∴P(B)=1216=34,∴直线y=ax+b与圆x2+y2=1有公共点的概率为34.(理)(2011•山东聊城模拟)已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的号码为22,写出所有被抽出职工的号码;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工的体重不轻于73公斤(≥73公斤)的职工中随机抽取2名,求体重为76公斤的职工被抽取到的概率.[解析](1)由题意,第5组抽出的号码为22.因为2+5×(5-1)=22,所以第1组抽出的号码为2,抽出的10名职工的号码分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为x-=110(81+70+73+76+78+79+62+65+67+59)=71所以样本方差为:s2=110(102+12+22+52+72+82+92+62+42+122)=52.(3)解法1:从10名职工中的体重不轻于73公斤的职工中随机抽取2名,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).设A表示“抽到体重为76公斤的职工”,则A包含的基本事件有4个:(73,76),(76,78),(76,79),(76,81),故所求概率为P(A)=410=25.解法2:10名职工中,体重不轻于73公斤的职工有5名,从中任取2名有C25=10种不同取法,其中体重76公斤的职工被抽到的有4种取法,∴所求概率P=410=25.1.(2010•广西柳州市模考)在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选到的概率相等,而且选到男教师的概率为920,那么参加这次联欢会的教师共有()A.360人B.240人C.144人D.120人[答案] D[解析]设与会男教师x人,则女教师为x+12人,由条件知,xx++=920,∴x=54,∴2x+12=120,故选D.2.若一元二次方程x2+mx+n=0中m,n的取值分别等于将一枚骰子连掷两次先后出现的点数,则方程有实根的概率为()D. 1736[答案] A[解析]∵方程有实根,∴m2-4n≥0,∴(m,n)的允许取值情形有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共19种,∴p=1936.3.把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件[答案] B[解析]“甲分得红牌”与“乙分得红牌”不可能同时发生,但可以同时不发生,当“丙分得红牌”时,上述两事件都没发生,故选B.4.(2011•温州八校期末)已知α,β,γ是不重合平面,a,b是不重合的直线,下列说法正确的是()A.“若a∥b,a⊥α,则b⊥α”是随机事件B.“若a∥b,a⊂α,则b∥α”是必然事件C.“若α⊥γ,β⊥γ,则α⊥β”是必然事件D.“若a⊥α,a∩b=P,则b⊥α”是不可能事件[答案] D[解析]a∥ba⊥α⇒b⊥α,故A错;a∥ba⊂α⇒b∥α或b⊂α,故B错;当α⊥γ,β⊥γ时,α与β可能平行,也可能相交(包括垂直),故C错;如果两条直线垂直于同一个平面,则此二直线必平行,故D为真命题.5.(2011•奉贤区检测(一))在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中任选3本,则所选的书中既有科技书又有文艺书的概率为()[答案] D[解析]因为文艺书只有2本,所以选取的3本书中必有科技书,这样问题就等价于求选取的3本书中有文艺书的概率.设4本不同的科技书为a,b,c,d,2本不同的文艺书为e,f,则从这6本书中任选3本的可能情况有:(a,b,c),(a,b,d),(a,b,e),(a,b,f),(a,c,d),(a,c,e),(a,c,f),(a,d,e),(a,d,f),(a,e,f),(b,c,d),(b,c,e),(b,c,f),(b,d,e),(b,d,f),(b,e,f),(c,d,e),(c,d,f),(c,e,f),(d,e,f),共20种,记“选取的3本书中有文艺书”为事件A,则事件A-包含的可能情况有:(a,b,c),(a,b,d),(a,c,d),(b,c,d),共4种,故P(A)=1-P(A-)=1-420=45.6.(2010•济南市模拟)已知a、b、c 为集合A={1,2,3,4,5,6}中三个不同的数,如下框图给出的一个算法运行后输出一个整数a,则输出的数a=5的概率是()[答案] C[解析]由程序框图知,输入a、b、c三数,输出其中的最大数,由于输出的数为5,故问题为从集合A中任取三个数,求最大数为5的概率,∴P=C24C36=620=310.7.(2011•石家庄模拟)老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为________.[答案]158.(2011•惠州调研)已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488 730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.[答案] B[解析]由随机数可得:在20组随机数中满足条件的只有5组,故该运动员三次投篮恰有两次命中的概率为各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
2013年全国各省(市)高考数学试题分类汇编(概率统计)1.(2013XX 卷.理16题)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品. (1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分.解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.2.(本小题满分12分)(XX 卷.文)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名。
为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:))50,60,60,70,⎡⎡⎣⎣)70,80,⎡⎣))80,90,90,100⎡⎡⎣⎣分别加以统计,得到如图所示的频率分布直方图.(I )从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(II )规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?(注:此公式也可以写成22()()()()()n ad bc k a b c d a c b d -=++++)解:(I )由已知可得,样本中有25周岁以上组工人100×=60名,25周岁以下组工人100×=40名,所以样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),25周岁以下组工人有40×0.05=2(人), 故从中随机抽取2名工人所有可能的结果共=10种,其中至少1名“25周岁以下组”工人的结果共+=7种,故所求的概率为:;(II )由频率分布直方图可知:在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得22()P x k ≥ 0.100 0.050 0.010 0.001k2.7063.841 6.635 10.8282112212211212()n n n n n x n n n n ****-=附:1 7 92 0 1 53 0 第17题图×2列联表如下:生产能手非生产能手 合计 25周岁以上组 15 45 60 25周岁以下组 15 25 40 合计 3070100所以可得==≈1.79,因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.3.(2013广东卷.理17题).(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工 人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有 名优秀工人的概率. 【解析】 (Ⅰ) 样本均值为1719202125301322266+++++==;(Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人.(Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则() P A=1148212C CC1633=.4.(本小题满分13分)(2013广东文)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【解析】(1)苹果的重量在[)95,90的频率为20=0.450;(2)重量在[)85,80的有54=15+15⋅个;(3)设这4个苹果中[)85,80分段的为1,[)100,95分段的为2、3、4,从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)100,95中各有1个的事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以31(A)62P==.5.(2013全国新课标二卷.理18题)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。
2013年全国各地高考数学试题及解答分类汇编大全 (15概率、统计、统计案例、推理与证明)一、选择题:1.(2013安徽理)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( ) (A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班级男生成绩的平均数小于该班女生成绩的平均数 【答案】C【解析】 对A 选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A 选项错。
对B 选项,系统抽样要求先对个体进行编号再抽样,所以B 选项错。
对C 选项,男生方差为40,女生方差为30。
所以C 选项正确。
对D 选项,男生平均成绩为90,女生平均成绩为91。
所以D 选项错。
所以选C2.(2013安徽文)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 (A )23 (B) 25 (C) 35 (D )910【答案】D【解析】总的可能性有10种,甲被录用乙没被录用的可能性3种,乙被录用甲没被录用的可能性3种,甲乙都被录用的可能性3种,所以最后的概率333110p ++== 【考点定位】考查古典概型的概念,以及对一些常见问题的分析,简单题.3.(2013福建文) 已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b y ˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b'<'<ˆ,ˆ 【答案】C【解析】本题考查的是线性回归方程.画出散点图,可大致的画出两条直线(如下图),由两条直线的相对位置关系可判断a a b b'>'<ˆ,ˆ.故选C4.(2013福建理) 某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .120 【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++= 故分数在60以上的人数为600*0.8=480人.5.(2013广东理) 设整数4n ≥,集合{}1,2,3,,X n = .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( ) A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈ 【解析】B ;特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.6.(2013湖北文) 四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+;③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①② B .②③ C .③④ D . ①④ 答案 D 解析 ①中,回归方程中x 的系数为正,不是负相关;④方程中的x 的系数为负,不是正相关,∴①④一定不正确.7. (2013湖南文) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。
北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:概率一、选择题1 .(2013届北京大兴区一模理科)若实数,a b 满足221a b +≤,则关于x 的方程220x x a b -++=有实数根的概率是 ( )A .14 B .34C .3π24π+ D .π24π- 2 .(2013届东城区一模理科)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 ( )A .316B .14C .34D .1163 .(北京市西城区2013届高三上学期期末考试数学理科试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是 ( )A .221B .463C .121 D .2634 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 ( )A .13B .12C .23D .565 .(北京市昌平区2013届高三上学期期末考试数学理试题 )设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是 ( )A .413B .513C .825D .925二、填空题6 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知随机变量X 的分布列如下,则EX 的值等于7 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .三、解答题8 .(2013届北京大兴区一模理科)期末考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩,如下表:(1)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定。
2013高考:概率统计基础【2013高考题组】(一)计数原理问题1、(2013北京,理12)将序号为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一个人两张参观券连号,那么不同的分法种数是 。
2、(2013全国大纲,文14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种。
(用数字作答)3、(2013全国大纲,理14)6个人排成一排,其中甲、乙两人不相邻的不同排法共有 种。
(用数字作答)4、(2013山东,理10)用0,1,…,9十个数字,可以组成没有重复数字的三位数的个数为( )A 、243B 、252C 、261D 、2795、(2013浙江,理14)将A 、B 、C 、D 、E 、F 六个字母排成一排,且A 、B 均在C 的同侧,则不同的排法共有 种。
(用数字作答)6、(2013福建,理5)满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A 、14B 、13C 、12D 、10答案:1、962、603、4804、B5、4806、B(二)概率问题1、(2013全国课标I ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值等于2的概率为( )A 、12B 、13C 、14D 、162、(2013全国课标II ,文13)从1,2,3,4,5中任意取出两个不同的数字,其和为5的概率是 。
3、(2013全国课标II ,理14)从n 个正整数1,2,…,n 中任意取出两个不同的数字,若取出的两数之和等于5的概率是114,则n = 。
4、(2013山东,理14)在区间[3,3]-上随机取一个数x ,使得不等式121x x +--≥成立的概率是。
5、(2013江苏,7)现有某类病毒记作m n X Y ,其中正整数m ,n (7m ≤,9n ≤)可以任意选取,则m ,n 都取到奇数的概率为 。
广东省13大市2013届高三上期末考数学理试题分类汇编 概率 一、选择、填空题 1、(潮州市2013届高三上学期期末)某校有名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是,则高二的学生人数为______. 高一高二高三女生男生答案:1200 解析:依表知,,于是, 故高二的学生人数为. 2、(东莞市2013届高三上学期期末).甲、乙两位选手进行乒乓球比赛,采取3局2胜制(即3局内谁先赢2局就算胜出,比赛结束,每局比赛没有平局,每局甲获胜的概率为,则比赛打完3局且甲取胜的概率为 A. B. C. D. 答案:B 3、(佛山市2013届高三上学期期末)某学生在参加政、史、地三门课程的学业水平考试中,取得等级的概率分别为、、,且三门课程的成绩是否取得等级相互独立.记为该生取得等级的课程数,其分布列如表所示,则数学期望的值为______________. 答案: 3、(广州市2013届高三上学期期末)在区间和分别取一个数,记为, 则方程表示焦点在轴上且离心率小于的椭圆的概率为 A. B. C. D. 答案:B 4、(江门市2013届高三上学期期末)某种饮料每箱装6听,如果其中有2听不合格。
质检人员从中随机抽出2听,检出不合格产品的概率 A....有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为()A.B.C.D. (1)如果甲、乙来自小区,丙、丁来自小区,求这人中恰有人是低碳族的概率; (2)小区经过大力宣传,每周非低碳族中有的人加入到低碳族的行列.如 果周后随机地从小区中任选个人,记表示个人中低碳族人数,求. 解:(1)设事件表示“这人中恰有人是低碳族”. …… 1分 . …… 4分 答:甲、乙、丙、丁这人中恰有人是低碳族的概率为; …… 5分 (2)设小区有人,两周后非低碳族的概率. 故低碳族的概率.………… 9分 随机地从小区中任选个人,这个人是否为低碳族相互独立,且每个 人是低碳族的概率都是,故这个人中低碳族人数服从二项分布,即 ,故. ………… 12分 2、(东莞市2013届高三上学期期末)某进修学校为全市教师提供心理学和计算机两个项目的培训,以促进教师的专业发展,每位教师可以选择参一项培训、参加两项培训或不参加培.现知垒市教师中,选择心理学培训的教师有60%,选择计算机培训的教师有75%,每位教师对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (1)任选1名教师,求该教师选择只参加一项培训的概率; (2)任选3名教师,记为3人中选择不参加培训的人数,求的分布列和期望. 解:任选1名教师,记“该教师选择心理学培训”为事件,“该教师选择计算机培训”为事件, 由题设知,事件与相互独立,且,. …………1分.…………4分. …………5分服从二项分布, …………6分,, …………8分的分布列是 01230.7290. 2430.0270.001…………10分的期望是. …………12分的期望是.) 3、(广州市2013届高三上学期期末)某市四所中学报名参加某高校今年自主招生的学生人数如下表所示: 中学 人数 为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四 所中学的学生当中随机抽取50名参加问卷调查. (1)问四所中学各抽取多少名学生? (2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学 的概率; (3)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学 生,用表示抽得中学的学生人数,求的分布列. (1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名, 抽取的样本容量与总体个数的比值为. ∴应从四所中学抽取的学生人数分别为. …………… 4分 (2)解:设“从参加问卷调查的名学生中随机抽取两名学生,这两名学生来自同一所 中学”为事件, 从参加问卷调查的名学生中随机抽取两名学生的取法共有C种,… 5分 这两名学生来自同一所中学的取法共有CCCC. …… 6分 ∴. 答:从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学 的概率为. …………… 7分 (3) 解:由(1)知,在参加问卷调查的名学生中,来自两所中学的学生人数分别 为. 依题意得,的可能取值为, …………… 8分 , ,. ?11分 分 ∴的分布列为: ?12题意知分 4、(惠州市2013届高三上学期期末)某校从高年级学生中随机抽取名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于分的整数)分成六段:,,…,后得到如下图的频率分布直方图. (1)求图中实数的值; (2)若该校高一年级共有学生人,试估计该校高一年级期中考试数学成绩不低于分的人数; (3)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于的概率 (1)解:由于图中所有小矩形的面积之和等于1, 所以.…………………………1分 解得.………………………………………………………………………2分 (2)解:根据频率分布直方图,成绩不低于60分的频率为.……3分 由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为人.………………………………………5分 (3)解:成绩在分数段内的人数为人,……………… 6分 成绩在分数段内的人数为人, …………………………7分 若从这6名学生中随机抽取2人,则总的取法有 ……………… 9分 如果两名学生的数学成绩都在分数段内或都在分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在分数段内,另一个成绩在分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.………………… 10分 则所取两名学生的数学成绩之差的绝对值不大于10分的取法数为 ……11分 所以所求概率为.………………………………………………………13分 5、(江门市2013届高三上学期期末)如图5所示,有两个独立的转盘(A)、(B),其中三个扇形区域的圆心角分别为、、。
2013年秋高三(上)期末测试卷数学(理工农医类)参考答案一、选择题:本大题共10小题,每小题5分,共50分.1~5 CABAD 6~10 CADAB(10)提示:如图所示,因为圆2O 内含于圆1O ,所以2O 在以1O 为圆心半径为2的圆内运动,又点N 在两条垂直的直径上运动,即2O 在到两条直径的距离为1的带状区域内运动,综上,2O 的运动区域为图中所示的多边形 区域,其中每个小弓形的面积为332234214321-=⋅⋅-⋅⋅ππ,所以此 多边形区域的面积为4343822322)332(42-+=-⋅⋅+-ππ. 二、填空题:本大题共5小题,每小题5分,共25分.(11)i 63- (12)2 (13)400 (14)22 (15)2 (16)m ≤34- (13)提示:先安排航模与棋艺,有25A 种方法,再安排另外两门课程,有25A 种方法,所以,安排四门课程的方法为4002525=⋅A A 种.三、解答题:本大题共6小题,共75分.(17)(本小题满分13分)解:(Ⅰ)816324=+⇒=a a S ,即822=+d a )3)((22225122d a d a a a a a +-=⇒=即d a 322= 2,32==∴d a 12-=∴n a n ;………………7分 (Ⅱ))121121(21)12)(12(1+--=+-=n n n n b n 12)1211(21+=+-=∴n n n T n .…………13分 (18)(本小题满分13分)解:(Ⅰ)6161312133=⨯⨯⨯=A P ;………………6分 (Ⅱ)ξ的取值为3,2,1,0,分布列如下:23321=⨯=ξE .………………13分 (19)(本小题满分13分)解:(Ⅰ)1cos 31cos 21)cos(32cos 2+-=-⇒++=A A C B A 即02cos 3cos 22=-+A A )(221cos 舍或-=∴A 3π=∴A ;………………6分 (Ⅱ)21)cos(-=+C B 21sin sin 81-=--∴C B 83sin sin =∴C B ………………9分 又A bc S sin 21=即432321=⇒=⋅bc bc ………………11分 由正弦定理知CB bc A a sin sin sin 22=即834432=a 22=∴a .………………13分 (20)(本小题满分12分)解:(Ⅰ)ax x x f 21ln )(++=' a f 21)1(+=' a f =)1( ∴切线方程为)1)(21(-+=-x a a y由题知,)1()21(-⋅+=-a a 1-=∴a ;………………5分(Ⅱ)ax x x f 21ln )(++=' 要使函数()f x 在区间)1,0(内不单调,则只需)(x f '的函数值在)1,0(内有正有负,令12ln )(++=ax x x g ,则a x x g 21)(+=',而11)1,0(>⇒∈x x ……………8分 当a 2≥1-即a ≥21-时,0)(>'x g , )(x g ∴在)1,0(内单增,又0→x 时-∞→)(x g ∴只需012)1(>+=a g , 即21->a ,21->∴a ;………………10分 当12-<a 即21-<a 时,)(x g 在)21,0(a -上单增,在)1,21(a-上单减 ∴只需0)21(>-a g 即0)21ln(>-a 21->∴a ,矛盾,舍;综上,21->a .…………12分 (21)(本小题满分12分)解:(Ⅰ)由题知1,22==a b b a 4,2==∴a b 所以椭圆1C 的方程为141622=+y x ;…………4分 (Ⅱ)由题意知,两条切线的斜率均存在,可设点),(00y x M 、切线的斜率为k ,则切线方程为)(00x x k y y -=-即000=-+-kx y y kx11||200=+-+∴k kx y k 即01)1(2)2(20002020=-+-+-y k y x k x x ,记其两根分别为21,k k在)(00x x k y y -=-中,令0=x ,得00kx y y -=,∴|)(|||021x k k PQ -=∴]4)[(||21221202k k k k x PQ -+= 2002020202020200202020)2(24)2()1)(2(4)1(4--+⋅=⋅-----=x x x y x x x y x x y x ……………8分 又14162020=+y x ∴200202)2(1683||-+-=x x x PQ 200200020)2()1(43)2(44)44(3-++=-+++-=x x x x x x , 令t x =+10,则]5,1()1,3[ -∈t ,694)3(4)2()1(42200-+=-=-+tt t t x x 当3-=t 时,694-+tt 取得最小值31- ||4||||21PQ PQ CD S S ==∴的最大值为63134=-.………………12分(22)(本小题满分12分)解:(Ⅰ)记第k 行中的最大者为k a ,第m 列中的最小者为m b ,其中i k ,2,1=,j m ,,2,1 =则},,,min{21i a a a a =,},,,max {21j b b b b =,显然对任意的m k ,有,k a ≥km a ≥m b ,a ∴≥b ;………………5分(Ⅱ)要||b a -最大,则让a 尽量大,b 尽量小,当将n ,,2,1 排成i 行j 列的方阵时,要使a 尽量大,b 尽量小,则只需让n ,,2,1 中最大的i 个数分布于不同的行,最小的j 个数分布于不同的列,此时1+-=i n a ,j b =,)(20151||j i j i n b a +-=+--=-∴,又531922014⨯⨯==⨯j i ,∴当53,38==j i 或38,53==j i 时,j i +取最小值91, 所以||b a -的最大值为1924.………………12分。
2013年全国高考理科数学概率与统计试题汇编3.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设袋子中装有个红球, 个黄球, 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分. (1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列; (2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若 ,求【答案】解:(Ⅰ)由已知得到:当两次摸到的球分别是红红时 ,此时 ;当两次摸到的球分别是黄黄,红蓝,蓝红时 ,此时 ;当两次摸到的球分别是红黄,黄红时 ,此时 ;当两次摸到的球分别是黄蓝,蓝黄时 ,此时 ;当两次摸到的球分别是蓝蓝时 ,此时 ;所以的分布列是: 2 3 4 5 6 P (Ⅱ)由已知得到: 有三种取值即1,2,3,所以的分布列是: 1 2 3 P 所以: ,所以 . 4.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))经销商经销某种农产品,在一个销售季度内,每售出 t该产品获利润元,未售出的产品,每 t亏损元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了 t该农产品,以 (单位:t, )表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将表示为的函数; (Ⅱ)根据直方图估计利润不少于57000元的概率; (Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若 ,则取 ,且的概率等于需求量落入的概率),求利润的数学期望.【答案】 5.(2013年高考江西卷(理))小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从 (如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为 .若就参加学校合唱团,否则就参加学校排球队. (1) 求小波参加学校合唱团的概率; (2) 求的分布列和数学期望.【答案】解:(1)从8个点中任意取两点为向量终点的不同取法共有种, 时,两向量夹角为直角共有8种情形;所以小波参加学校合唱团的概率为 . (2)两向量数量积的所有可能取值为时,有两种情形;时,有8种情形; 时,有10种情形.所以的分布列为: . 6.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是 ,假设各局比赛结果相互独立. (Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率; (Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分的分布列及数学期望.【答案】解:(Ⅰ)记“甲队以3:0胜利”为事件,“甲队以3:1胜利”为事件,“甲队以3:2胜利”为事件 ,由题意,各局比赛结果相互独立, 故 , , 所以,甲队以3:0,3:1,3:2胜利的概率分别是, , ; (Ⅱ)设“乙队以3:2胜利”为事件 ,由题意,各局比赛结果相互独立,所以由题意,随机变量的所有可能的取值为0,1,2,3,,根据事件的互斥性得 , , , 故的分布列为 0 1 2 3 所以 7.(2013年高考湖北卷(理))假设每天从甲地去乙地的旅客人数是服从正态分布的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为 . (I)求的值;(参考数据:若 ,有 , , .) (II)某客运公司用 . 两种型号的车辆承担甲.乙两地间的长途客运业务,每车每天往返一次, . 两种车辆的载客量分别为36人和60人,从甲地去乙地的运营成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求型车不多于型车7辆.若每天要以不小于的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的运营成本最小,那么应配备型车. 型车各多少辆?【答案】解:(I) (II)设配备型车辆, 型车辆,运营成本为元,由已知条件得 ,而作出可行域,得到最优解 . 所以配备型车5辆,型车12辆可使运营成本最小. 8.(2013年高考新课标1(理))一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验. 假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【答案】设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,根据题意有E=(AB)∪(CD),且AB与CD互斥,∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)= + = (Ⅱ)X的可能取值为400,500,800,并且 P(X=400)=1- = ,P(X=500)= ,P(X=800)= = , ∴X的分布列为X 400 500 800 P EX=400× +500× +800× =506.25 9.(2013年高考四川卷(理))某算法的程序框图如图所示, 其中输入的变量在这个整数中等可能随机产生. (Ⅰ)分别求出按程序框图正确编程运行时输出的值为的概率; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数.以下是甲、乙所作频数统计表的部分数据. 运行次数输出的值为的频数输出的值为的频数输出的值为的频数甲的频数统计表(部分) 乙的频数统计表(部分) 运行次数输出的值为的频数输出的值为的频数输出的值为的频数当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大; (Ⅲ)按程序框图正确编写的程序运行3次,求输出的值为2的次数的分布列及数学期望. 【答案】解: .变量x是在1,2,3,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y的值为1,故 ; 当x从2,4,8,10,14,16,20,22这8个数中产生时,输出y的值为2,故 ; 当x从6,12,18,24这4个数中产生时,输出y的值为3,故当n=2100时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下: 输出的值为的频率输出的值为的频率输出的值为的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大 (3)随机变量可能饿取值为0,1,2,3. 故的分布列为所以即的数学期望为1 2.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有位学生,每次活动均需该系位学生参加( 和都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为(Ⅰ)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (Ⅱ)求使取得最大值的整数 .【答案】解: (Ⅰ) .。
江苏省13大市2013届高三上学期期末数学试题分类汇编导数及其应用1、(南通市2013届高三期末)曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 答案:1e 2y x =-. 2、(苏州市2013届高三期末)过坐标原点作函数ln y x =图像的切线,则切线斜率为 . 答案:1e3、(泰州市2013届高三期末)曲线y=2lnx 在点(e,2)处的切线与y 轴交点的坐标为 (0,0)4、(扬州市2013届高三期末)已知函数xmx x f -=ln )((R m ∈)在区间],1[e 上取得最小值4,则=m ▲ . e 3-5、(常州市2013届高三期末)第八届中国花博会将于2013年9月在常州举办,展览园指挥中心所用地块的形状是大小一定的矩形ABCD ,BC a =,CD b =.a ,b 为常数且满足b a <.组委会决定从该矩形地块中划出一个直角三角形地块AEF 建游客休息区(点E ,F 分别在线段AB ,AD 上),且该直角三角形AEF 的周长为(2l b >),如图.设AE x =,△AEF 的面积为S .(1)求S 关于x 的函数关系式;(2)试确定点E 的位置,使得直角三角形地 块AEF 的面积S 最大,并求出S 的最大值. 解:(1)设AF y =,则22x y x y l +++=,整理,得222()l lxy l x -=-.………3分 2(2)4(12)l l x S lx x xy --==,](0,x b ∈. …………………………………4分(2)()()]22'222422222,(0,4224l x lx l l S x l x l x b x l x l ⎛⎫⎛⎫-+-+=⋅=-⋅-∈ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭∴当222b l -≤时,'0S >,S 在](0,b 递增,故当x b =时,()()max 24bl b l S b l -=-; 当222b l ->时,在220,2x l ⎛⎫-∈ ⎪ ⎪⎝⎭上,'0S >,S 递增,在22,2x l b ⎛⎫-∈ ⎪ ⎪⎝⎭上,'0S <,S 递减,故当222x l -=时,2max 3224S l -=.6、(连云港市2013届高三期末)(连云港市2013届高三期末)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y (万元)随医疗总费用x (万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y =0.05(x 2+4x +8)作为报销方案;(2)若该单位决定采用函数模型y =x -2ln x +a (a 为常数)作为报销方案,请你确定整数a 的值.(参考数据:ln2≈0.69,ln10≈2.3)【解】(1)函数y =0.05(x 2+4x +8)在[2,10]上是增函数,满足条件①, ……………2分 当x =10时,y 有最大值7.4万元,小于8万元,满足条件③. ………………………4分但当x =3时,y =2920<32,即y ≥x2不恒成立,不满足条件②,故该函数模型不符合该单位报销方案. ………………………6分(2)对于函数模型y =x -2ln x +a ,设f (x )= x -2ln x +a ,则f ´(x )=1-2x =x -2x≥0.所以f (x )在[2,10]上是增函数,满足条件①,由条件②,得x -2ln x +a ≥x 2,即a ≥2ln x -x2在x ∈[2,10]上恒成立,令g (x )=2ln x -x 2,则g ´(x )=2x -12=4-x2x,由g ´(x )>0得x <4,∴g (x )在(0,4)上增函数,在(4,10)上是减函数.∴a ≥g (4)=2ln4-2=4ln2-2. ………………10分 由条件③,得f (10)=10-2ln10+a ≤8,解得a ≤2ln10-2. ……………………12分 另一方面,由x -2ln x +a ≤x ,得a ≤2ln x 在x ∈[2,10]上恒成立, ∴a ≤2ln2,综上所述,a 的取值范围为[4ln2-2,2ln2],所以满足条件的整数a 的值为1. ……………14分7、(南京市、盐城市2013届高三期末)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; 若函数3()1x ag x x +=+在区间[3,10]上封闭, 求实数a 的取值范围; 若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值.解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0]………2分 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的……………… 4分(2)因为33()311x a a g x x x +-==+++, ①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意……………5分 ②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a++, 由309[,]114a a++[3,10]⊆,得303119104aa +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得331a ≤≤,故331a <≤……………………7分③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 …………………8分综上所述, 实数a 的取值范围是331a ≤≤……………………………9分 (3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-, 所以()h x 在(,1)-∞-上单调递减,在(1,1)-上递增,在(1,)+∞上递增.①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解………10分 ②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意…………11分③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩, 又33()3()3a h a a a b h b b b ⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩ ………12分 ④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b ah a b ≥⎧⎨≤⎩(*), 而,a b Z ∈,经检验,均不合(*)式……………………………13分⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意…………14分⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解 ……………15分 综上所述,所求整数,a b 的值为2,2a b =-=…………………16分8、(南通市2013届高三期末)某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,()ABCD AB AD >为长方形薄板,沿AC 折叠后,AB '交DC 于点P .当△ADP 的面积最大时最节能,凹多边形ACB PD '的面积最大时制冷效果最好. (1)设AB =x 米,用x 表示图中DP 的长度,并写出x 的取值范围; (2)若要求最节能,应怎样设计薄板的长和宽? (3)若要求制冷效果最好,应怎样设计薄板的长和宽?解:(1)由题意,AB x =,2BC x =-.因2x x >-,故12x <<. …………2分设DP y =,则PC x y =-.因△ADP ≌△CB P ',故PA PC x y ==-.由 222PA AD DP =+,得 2221()(2)2(1)x y x y y x -=-+⇒=-,12x <<.……5分(2)记△ADP 的面积为1S ,则11(1)(2)S x x=-- ………………………………………………………………6分23()222x x=-+≤-,当且仅当2x =∈(1,2)时,S 1取得最大值.……………………………………8分 故当薄板长为2米,宽为22-米时,节能效果最好. ……………………9分 (3)记△ADP 的面积为2S ,则221114(2)(1)(2)3()22S x x x x x x=-+--=-+,12x <<.…………………………10分于是,33222142(2)022x S x x x x-+'=--==⇒=.……………………………11分 关于x 的函数2S 在3(1,2)上递增,在3(2,2)上递减.所以当32x =时,2S 取得最大值. …………………………13分 故当薄板长为32米,宽为322-米时,制冷效果最好. ………………………14分9、(徐州、淮安、宿迁市2013届高三期末)已知函数).1,0(ln )(2≠>-+=a a a x x a x f x (1) 求函数)(x f 在点))0(,0(f 处的切线方程;(2) 求函数)(x f 单调区间;(3) 若存在]1,1[,21-∈x x ,使得e e x f x f (1)()(21-≥-是自然对数的底数),求实数a的取值范围.A BCD(第17题)B 'P⑴因为函数2()ln (0,1)x f x a x x a a a =->≠+,所以()ln 2ln x f x a a x a '=-+,(0)0f '=,…………………………………………2分 又因为(0)1f =,所以函数()f x 在点(0,(0))f 处的切线方程为1y =. …………4分 ⑵由⑴,()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.因为当0,1a a >≠时,总有()f x '在R 上是增函数, ………………………………8分 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+.………………………………………………10分 ⑶因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤,所以只要max min ()()e 1f x f x --≥即可.……………………………………………12分 又因为x ,()f x ',()f x 的变化情况如下表所示:x (,0)-∞0 (0,)∞+()f x ' -+()f x减函数极小值增函数所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++, 令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-;当01a <<时,()0g a <,即(1)(1)f f <-.………………………………………14分所以,当1a >时,(1)(0)e 1f f --≥,即l n e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a =+在(0,1)a ∈上是减函数,解得10ea <≤. 综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ .………………………………16分10、(泰州市2013届高三期末)已知函数f(x)=(x-a)2()x b -,a,b 为常数, (1)若a b ≠,求证:函数f(x)存在极大值和极小值(2)设(1)中 f(x) 取得极大值、极小值时自变量的分别为12,x x ,令点A 11(,()x f x ),B22(,()x f x ),如果直线AB 的斜率为12-,求函数f(x)和/()f x 的公共递减区间的长度(3)若/()()f x mf x ≥对于一切x R ∈ 恒成立,求实数m,a,b 满足的条件解:(1)[])2(3)()(/b a x b x x f +--= …………………………………………………1分b a ≠ 32b a b +≠∴0)(,=∴x f 有两不等 b 和32ba + ∴f (x )存在极大值和极小值 ……………………………….……………………………4分(2)①若a =b ,f (x )不存在减区间②若a >b 时由(1)知x 1=b ,x 2=32ba + ∴A (b ,0)B ⎪⎪⎭⎫⎝⎛--+9)(2,322b a b a 21329)(22-=-+-∴b b a b a ∴)(3)(22b a b a -=- 23=-∴b a○3当a <b 时 x 1=32ba +,x 2=b 。
广东省13大市2013届高三上期末考数学理试题分类汇编概率一、选择、填空题 1、(潮州市2013届高三上学期期末)某校有4000名学生,各年级男、女生人数如表,已知在全校学生中随机抽取一名奥运火炬手,抽到高一男生的概率是0.2,则高二的学生人数为______.高一高二 高三女生 600y650 男生xz750答案:1200解析:依表知400020002000x y z ++=-=,0.24000x=,于是800x =, 故高二的学生人数为1200y z +=.2、(东莞市2013届高三上学期期末).甲、乙两位选手进行乒乓球比赛,采取3局2胜制(即3局内谁先赢2局就算胜出,比赛结束,每局比赛没有平局,每局甲获胜的概率为35,则比赛打完3局且甲取胜的概率为 A .18125 B .36125 C .925 D .1825答案:B3、(佛山市2013届高三上学期期末)某学生在参加政、史、地三门课程的学业水平考试中,取得A 等级的概率分别为54、53、52,且三门课程的成绩是否取得A 等级相互独立.记ξ为该生取得A 等级的课程数,其分布列如表所示,则数学期望ξE 的值为______________. 答案:59 3、(广州市2013届高三上学期期末)在区间15,⎡⎤⎣⎦和24,⎡⎤⎣⎦分别取一个数,记为a b ,, 则方程22221x y a b+=表示焦点在x 轴上且离心率小于32的椭圆的概率为A .12 B .1532C .1732D .3132 ξ 01 2 3 P6125ab24125答案:B 4、(江门市2013届高三上学期期末)某种饮料每箱装6听,如果其中有2听不合格。
质检人员从中随机抽出2听,检出不合格产品的概率=p A .21 B .31 C .32D .6.0 答案:D 5、(湛江市2013届高三上学期期末)点P 是圆x 2+y 2+2x -3=0上任意一点,则点P 在第一象限的概率为____ 答案:13248π-6、(中山市2013届高三上学期期末)有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( ) A .521B .27C .13D .821答案:D二、解答题 1、(潮州市2013届高三上学期期末)近年来,政府提倡低碳减排,某班同学利用寒假在两个小区逐户调查人们的生活习惯是否符合低碳观念.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.数据如下表(计算过程把频率当成概率).(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25个人,记X 表示25个人中低碳族人数,求()E X .解:(1)设事件C 表示“这4人中恰有2人是低碳族”. …… 1分2222112222222222()0.50.20.50.50.20.80.50.8P C C C C C C C =+⨯⨯⨯+⋅⋅⋅⋅⋅⋅⋅⋅0.010.160.160.33=++=. …… 4分 答:甲、乙、丙、丁这4人中恰有2人是低碳族的概率为0.33; …… 5分(2)设A 小区有a 人,两周后非低碳族的概率20.5(120%)0.32a P a⨯⨯-==. 故低碳族的概率10.320.68P =-=. ………… 9分 随机地从A 小区中任选25个人,这25个人是否为低碳族相互独立,且每个 人是低碳族的概率都是0.68,故这25个人中低碳族人数服从二项分布,即A 小区 低碳族 非低碳族 频率p 0.5 0.5B 小区 低碳族 非低碳族 频率p 0.8 0.217~(25,)25X B ,故17()251725E X =⨯=. ………… 12分2、(东莞市2013届高三上学期期末)某进修学校为全市教师提供心理学和计算机两个项目的培训,以促进教师的专业发展,每位教师可以选择参一项培训、参加两项培训或不参加培.现知垒市教师中,选择心理学培训的教师有60%,选择计算机培训的教师有75%,每位教师对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (1)任选1名教师,求该教师选择只参加一项培训的概率;(2)任选3名教师,记ξ为3人中选择不参加培训的人数,求ξ的分布列和期望. 解:任选1名教师,记“该教师选择心理学培训”为事件A ,“该教师选择计算机培训”为事件B ,由题设知,事件A 与B 相互独立,且()0.6P A =,()0.75P B =. …………1分(1)任选1名,该教师只选择参加一项培训的概率是1()()0.60.250.40.750.45P P AB P AB =+=⨯+⨯=.…………4分(2)任选1名教师,该人选择不参加培训的概率是0()=()()0.40.250.1P P AB P A P B ==⨯=. …………5分因为每个人的选择是相互独立的,所以3人中选择不参加培训的人数ξ服从二项分布(30.1)B ,, …………6分 且33()0.10.9kkkP k C ξ-==⨯⨯,0123k =,,,, …………8分即ξ的分布列是ξ0 1 2 3 P0.7290. 2430.0270.001…………10分所以,ξ的期望是10.24320.02730.0010.3E ξ=⨯+⨯+⨯=. …………12分 (或ξ的期望是30.10.3E ξ=⨯=.)3、(广州市2013届高三上学期期末)某市,,,A B C D 四所中学报名参加某高校今年自主招生的学生人数如下表所示:中学A BC D为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.(1)问,,,A B C D四所中学各抽取多少名学生?(2)从参加问卷调查的50名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的50名学生中,从来自,A C两所中学的学生当中随机抽取两名学生,用ξ表示抽得A中学的学生人数,求ξ的分布列.(1)解:由题意知,四所中学报名参加该高校今年自主招生的学生总人数为100名,抽取的样本容量与总体个数的比值为.∴应从四所中学抽取的学生人数分别为. …………… 4分(2)解:设“从参加问卷调查的名学生中随机抽取两名学生,这两名学生来自同一所中学”为事件,从参加问卷调查的名学生中随机抽取两名学生的取法共有C种,… 5分这两名学生来自同一所中学的取法共有C C CC. …… 6分∴.答:从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率为. …………… 7分(3) 解:由(1)知,在参加问卷调查的名学生中,来自两所中学的学生人数分别为.依题意得,的可能取值为,…………… 8分,,. 人数30402010(分数)0 40 50 60 70 80 90 100 频率 组距0.010 0.005 0.020 0.025 a…………… 11分∴的分布列为:…………… 12分4、(惠州市2013届高三上学期期末)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)4050,,[)5060,,…,[]90100,后得到如下图的频率分布直方图. (1)求图中实数a 的值; (2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)4050,与[]90100,两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率。
(1)解:由于图中所有小矩形的面积之和等于1,所以10(0.0050.010.02⨯++0.0250.01)1a +++=.…………………………1分 解得0.03a =.………………………………………………………………………2分(2)解:根据频率分布直方图,成绩不低于60分的频率为110(0.0050.01)-⨯+0.85=.……3分 由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人.………………………………………5分(3)解:成绩在[)4050,分数段内的人数为400.052⨯=人,……………… 6分 成绩在[]90,100分数段内的人数为400.14⨯=人, …………………………7分 若从这6名学生中随机抽取2人,则总的取法有2615C = ……………… 9分331122(A ) (B )图5 如果两名学生的数学成绩都在[)4050,分数段内或都在[]90100,分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[)4050,分数段内,另一个成绩在[]90100,分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10.………………… 10分则所取两名学生的数学成绩之差的绝对值不大于10分的取法数为 22247C C +=……11分 所以所求概率为()715P M =.………………………………………………………13分5、(江门市2013届高三上学期期末)如图5所示,有两个独立的转盘(A )、(B ),其中三个扇形区域的圆心角分别为060、0120、0180。
用这两个转盘玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不动,当指针恰好落在分界线时,则这次转动无效,重新开始)为一次游戏,记转盘(A )指针所对的数为x ,转盘(B )指针对的数为y 。
设y x +的值为ξ,每次游戏得到的奖励分为ξ分.⑴求2<x 且1>y 的概率;⑵某人玩12次游戏,求他平均可以得到多少奖励分?解: ⑴由几何概型知61)1(==x P ,31)2(==x P ,21)3(==x P ,31)1(==y P ,21)2(==y P ,61)3(==y P ……3分,(对1-2个给1分,3-4个给2分,……) 所以61)1()2(===<x P x P ,32)3()2()1(==+==>y P y P y P ……5分,91)1()2()12(=>⋅<=><y P x P y x P 且……7分.⑵ξ的取值为2、3、4、5、6……8分,其分布列为ξ 2 3 4 5 6P181 367 3613 3611 121 ……11分他平均每次可得到的奖励分为1216361153613436731812⨯+⨯+⨯+⨯+⨯=ξE ……12分,625=……13分, 所以,他玩12次平均可以得到的奖励分为5012=⨯ξE ……14分.6、(茂名市2013届高三上学期期末)某连锁超市有A 、B 两家分店,对该超市某种商品一个月30天的销售量进行统计:A 分店的销售量为200件和300件的天数各有15天;B 分店的统计结果如下表:销售量(单位:件)200 300 400 天 数10155(1)根据上面统计结果,求出B 分店销售量为200件、300件、400件的频率; (2)已知每件该商品的销售利润为1元,ξ表示超市A 、B 两分店某天销售该商品的利润之和,若以频率作为概率,且A 、B 两分店的销售量相互独立,求ξ的分布列和数学期望.解:(1)B 分店销售量为200件、300件、400件的频率分别为13,12和16………3分 (2)A 分店销售量为200件、300件的频率均为12, ……………4分 ξ的可能值为400,500,600,700,且 …………5分P (ξ=400)=111236⨯=, P (ξ=500)=11115223212⨯+⨯=,P (ξ=600)=1111126223⨯+⨯=, P (ξ=700)=1112612⨯=, ………9分ξ的分布列为ξ400500600700P16 512 13 112………10分E ξ=400⨯16+500⨯512+600⨯13+700⨯112=16003(元) …………………12分7、(汕头市2013届高三上学期期末)汕头市澄海区以塑料玩具为主要出口产品,塑料厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(I)若厂家库房中的每件产品合格的概率为0.8,从中任意取出3件进行检验.求恰有1件是合格品的概率;(H)若厂家发给商家20件产品,其中有3件不合格,按合同规定,该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,求该商家可能检验出不合格产品数ξ的分布列及期望E ξ,并指出该商家拒收这批产品的概率。