人教版高中物理选修3-2电磁感应练习题(二)
- 格式:docx
- 大小:35.80 KB
- 文档页数:6
高中物理学习材料综合测验(满分100分,时间90分钟)一、选择题(本题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选对但不全的得2分,有选错的得0分)1、关于电磁感应,下述说法正确的是( )A 、穿过线圈的磁通量越大,感应电动势越大B 、穿过线圈的磁通量为零,感应电动势一定为零C 、穿过线圈的磁通量的变化越大,感应电动势越大D 、穿过线圈的磁通量变化越快,感应电动势越大2、两个电压表甲、乙是由完全相同的电流表改装而成,它们的量程分别为5V 、15V ,为了测量15~20V的电压,把甲、乙串联起来使用,则两表的( )A 、读数相同B 、指针偏转角度相同C 、读数正比于表的内阻D 、指针偏转角度正比于表的内阻3、关于磁感应强度B ,下列说法中正确的是( )A 、磁场中某点B 的大小,跟放在该点的试探电流元的情况有关B 、磁场中某点B 的方向,跟放在该点的试探电流元所受的磁场力方向一致C 、在磁场中某点试探电流元不受磁场力作用时,该点B 值大小为零D 、在磁场中磁感线越密集的地方,B 值越大4、关于带电粒子在匀强电场和匀强磁场中的运动,下列说法正确的是( )A 、带电粒子沿电场线方向射入时,电场力对带电粒子做正功,粒子的动能一定增加B 、带电粒子垂直于电场线方向射入时,电场力对带电粒子不做功,粒子的动能不变C 、带电粒子沿磁感线方向射入时,洛伦兹力对带电粒子做正功,粒子的动能一定增加D 、不论带电粒子如何射入磁场,洛伦兹力对带电粒子都不做功,粒子的动能不变5、如图所示,一个矩形线圈,在匀强磁场中绕一固定轴做匀速转动,当线圈处于图中所示位置时( )A 、磁通量和磁通量的变化率最大,感应电动势最小B 、磁通量、磁通量的变化率和感应电动势都最大C 、磁通量最小,磁通量的变化率和感应电动势最大D 、磁通量、磁通量的变化率和感应电动势都最小6、一根导体棒ab 在水平方向的匀强磁场中下落,并始终保持水平方向且与磁场方向垂直,如图所示,则( )A 、U ab =0B 、φa >φb ,U ab 保持不变C 、φa >φb ,U ab 越来越大D 、φa <φb ,U ab 越来越大7、如图所示,一导线弯成半径为a 的半圆形闭合回路。
高中物理学习材料唐玲收集整理牙林一中《电磁感应》单元测试一、不定项选择题1、下列说法中不正确的是:A 闭合电路中只要有磁通量的变化,电路中必定存在感应电动势B 将闭合电路断开,只要有磁通量的变化,电路中也一定存在感应电动势C 任一条直导线只要切割磁感线就存在感应电动势D 矩形线圈在匀强磁场中运动,只要线圈内磁通量没有变化,线圈上任何两点间一定不存在感应电动势2.发现电磁感应现象的科学家是:A.安培B.奥斯特C.法拉第D.库仑3、关于感应电动势大小的说法正确的是A、线圈中磁通量越大,产生的感应电动势大B、线圈中磁通量变化越大,产生的感应电动势大C、线圈中磁通量变化越快,产生的感应电动势大D、线圈中磁通量增加时感应电动势大,线圈中通量减小时感应电动时减小4.在通电的直导线所在的平面内有一导体圆环,环与导线绝缘,导线中通有如图所示方向的电流,环可以自由运动(忽略重力)。
当导线中的电流强度I逐步减小时,环将:A.向下运动 B.向上运动C.转动;上面的向纸外,下面的向纸内D.转动;上面的向纸内,下面的向纸处5、如图所示的电路中,A1和A2是完全相同的灯泡,线圈L 的电阻可以忽略,下列说法中正确的是A.合上开关K 接通电路时,A2始终比A1亮B.合上开关K 接通电路时,A1先亮,A2后亮,最后一样亮C.断开开关K 切断电路时,A2先熄灭,A1过一会儿才熄灭D.断开开关K 切断电路时,A1和A2都要过一会儿才熄灭6.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则其中错误的是: A .线圈中O 时刻感应电动势最大 B .线圈中D 时刻感应电动势为零 C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感电动势为0.4V( 6题 ) (7题)7.如图所示,乙线圈和甲线圈互相绝缘,且乙线圈有一半面积在甲线圈内,当甲线圈中的电流逐渐减弱时,乙线圈中的感应电流: A .为零B .顺时针流动C .逆时针流动D .无法确定8.如图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根I甲 乙abe导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则 A .ef 将匀速向右运动 B .ef 将往返运动C .ef 将减速向右运动,但不是匀减速D .ef 将加速向右运动9.如图所示,矩形线框从a 由静止下落,在穿越磁场区域时,先 后经过b 、c 、d ,由图可知A .线框在c 处和在a 处的加速度一样大B .线框在b 、d 处的加速度等于gC .线框在磁场区域内做匀速直线运动D .线圈在磁场中下落时始终受到一个竖直向上的阻力10.如图所示,L 为一个自感系数大的自感线圈,开关闭合后,小灯能正常发光,那么闭合开关和断开开关的瞬间,能观察到的现象分别是 ( ) A .小灯逐渐变亮,小灯立即熄灭 B .小灯立即亮,小灯立即熄灭C .小灯逐渐变亮,小灯比原来更亮一下再慢慢熄灭D .小灯立即亮,小灯比原来更亮一下再慢慢熄灭11.如图17—5所示,矩形线圈abcd 由静止开始运动,下列说法正确的是: A.向右平动(ab 边还没有进入磁场)有感应电流,方向为abcdaB.向左平动(bc 边还没有离开磁场)有感应电流,方向为adcbaC.以bc 边为轴转动(ad 边还未转入磁场),有感应电流,方向为abcdaD.以ab 边为轴转动(bc 边还未转入磁场),无感应电流,12.变压器的铁芯是利用薄硅钢片叠压而成的,而不是采用一整块硅钢,这是因为( )A .增大涡流,提高变压器的效率B .减小涡流,提高变压器的效率C .增大铁芯中的电阻,以产生更多的热量D .增大铁芯中的电阻,以减小发热量 13.如图所示, 在水平面(纸平面)内有一光滑的导轨,导轨上放置一金属棒ab, 在竖直方向有一匀强磁场,下述说法中正确的有A .若磁场方向垂直纸面向外并增强时,杆ab 将向右运动B .若磁场方向垂直纸面向外并减少时,杆ab 将向右运动C .若磁场方向垂直纸面向里并增强时,杆ab 将向左运动D .若磁场方向垂直纸面向里并减少时,杆ab 将向右运动14、如图11-13所示,一闭合金属圆环用绝缘细线挂于O 点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A ,B 为该磁场的竖直边界,若不计空气阻力,则( )A .圆环向右穿过磁场后,还能摆至原来的高度。
高中物理选修3-2电磁感应试题5如图,当变阻器R的滑动片P向左移动使流过B线圈的电流能均匀变化时,在A 电磁感应测试线圈中感应电流的情况是一、选择题(40分) ( )1. 如图所示,A、B、C为三组匝数不等的同心圆线圈。
当A线圈中通以电流时,穿 A(为零 B(电流向左流过G过B、C两线圈的磁通量Φ和Φ大小的关系是( ) C(电流向右流过G D(电流在变小 BCA(Φ>Φ B(Φ=Φ C(Φ<Φ D(无法确定 BCBCBCabc,在外力作用下匀速地经过一个宽为d6(有一等腰直角三角形形状的导线框的有限范围的匀强磁场区域,线圈中产生的感应电流i与沿运动方向的位移x 之间的函数图象是图中的( )2. 下列关于感应电动势的说法中,正确的是( )A(不管电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势 7 图中L 是一只有铁芯的线圈,它的电阻不计,E表示直流电源的电动势。
先将KB(感应电动势的大小跟穿过电路的磁通量变化量成正比接通,稳定后再将K断开。
若将L中产生的感应电动势记为ε,则在接通和LC(感应电动势的大小跟穿过电路的磁通量变化率成正比断K的两个瞬间,以下所说正确的是 ( ) D(感应电动势的大小跟穿过回路的磁通量多少无关,但跟单位时间内穿过回路 A(两个瞬间ε都为零 L的磁通量变化有关 B(两个瞬间ε的方向都与E相反 LC(接通瞬间ε的方向与E相反 L3.矩形金属线圈共10匝,绕垂直磁场方向的转轴在匀强磁场中匀速转动,线圈D(断开瞬间ε的方向与E相同 L随时间变化的情况如图所示.下列说法中正确的是中产生的交流电动势et ( ) 8 螺线管右端的管口正对着一个闭合线圈M(如图),线圈平面与螺线管中轴线垂直,e/V 1 A.此交流电的频率为0.2Hz 以下哪些情况能使M向右侧摆动的是:t/s O B.此交流电动势的有效值为1V A(闭合开关S瞬间 0.1 0.2 0.3C.t=0.1s时,线圈平面与磁场方向平行 B(S原来闭合,断开的瞬间 -1C(闭合S稳定后滑动变动R的触片P右移时 1D.线圈在转动过程中穿过线圈的最大磁通量为Wb 100,D(闭合S稳定后滑动变动器R的触片P左移时 4、一根长直导线中的电流按如图的正弦规律变化,规定电流从左向右为正,在直导线下方有一不闭合的金属框,则相对于b点来说,a点电势最高的时刻是在 9 在一个导线框架中通以如图所示的电流,BC边的正中间用绝缘线悬挂金属环,环A、t面与框架平面在同一平面内,在电流I减小的过程中时刻B、t时刻 1 2C、t时刻D、t时刻( ) 3 4A(环向AB边靠拢 B(环向CD边靠拢C(悬线中拉力增大 D(悬线中拉力变小16. (10分) U形导线框架宽1m,框架平面与水平面夹角30?,电阻不计。
唐玲高中物理学习材料唐玲收集整理电磁感应练习班级 学号 姓名1、如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外.一个矩形闭合导线框abcd ,沿纸面由位置l(左)匀速运动到位置2(右).则( ) A.导线框进入磁场时,感应电流方向为a →b →c →d →a B.导线框离开磁场时,感应电流方向为a →d →c →b →a C.导线框离开磁场时,受到的安培力方向水平向右 D.导线框进入磁场时,受到的安培力方向水平向左2、如图所示,磁感应强度为B 的匀强磁场有理想界面,用力将矩形线圈从磁场中匀速拉出磁场,在其他条件不变的情况下( )A.速度越大时,拉力做功越大B.线圈长L 1越大时,拉力做功越大C.线圈宽L 2越大时,拉力做功越多D.线圈电阻越大时,拉力做功越多 3、如图所示,在磁感强度为B 的匀强磁场中,有半径为r 的光滑半圆形导体框架,OC 为一能绕O 在框架上滑动的导体棒,OC 之间连一个电阻R ,导体框架与导体电阻均不计,若要使OC 能以角速度ω匀速转动,则外力做功的功率是( )A .B 2ω2r 4/R B . B 2ω2r 4/2RC . B 2ω2r 4/4RD . B 2ω2r 4/8R4、在竖直向上的匀强磁场中,水平旋转一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图9-11所示,当磁场的磁感应强度B 随时间t 如图9-12变化时,则正确表示线圈中感应电动势E 变化的是( )图 9-12图 9-11ABCD唐玲5、如图所示,男女两位同学一起摇绳,男同学站在女同学的正东方向,两位同学分别捏住绝缘的长金属导线的两端迅速摇动,若金属导线两端连接在一个灵敏电流表的两个接线柱上.下列说法中正确的是( ) A .摇动过程中导线中的电流方向始终不改变 B .摇动过程中导线中的电流是交变电流C .若两同学加快摇动金属导线,其他条件不变,则流过电流表的电流将变大D .若两同学改为南北方向站立摇绳,其他条件不变,则流过电流表的电流将变大6、如图9-3-21所示,有一磁感强度B=0.1T 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑.已知ab 长10cm ,质量为0.1g ,电阻为0.1Ω,框架电阻不计,取g=10m/s 2.求:(1)导体ab 下落的最大加速度和最大速度; (2)导体ab 在最大速度时产生的电功率.7、如图9-24所示,间距为l 1的平行金属导轨上端接有电阻R ,导轨上垂直于导轨架有均匀金属棒ab ,导轨平面与水平面间夹角为θ,金属棒ab 的质量为m ,开始时它与电阻R 间的距离为l 2,由于摩擦,ab 棒恰好不下滑.金属棒和导轨电阻不计.若从t =0时刻开始沿垂直于导轨平面向上的方向加一B =Kt 的匀强磁场(K 为大于零的恒量),那么,需经多长时间,ab 棒开始沿导轨向上滑动?8、图9-18中MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计,导轨所在平面与磁感应强度B为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab达到图9-3-21 图9-24Rθ θ a bl 1 l 2B图9-18× × × × ×× × × × × × × × × ××× × × × × × ×××M P a bQNv R 1R 2 Bl稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2.1 D2 ABC3 C4 A5 BC6 (1)10m/s2 1m/s (2)0.001W7 2mgsinθR/k2l12l28 4.5m/s 6Ω唐玲。
电磁感应专题强化练1.(2015·新课标全国Ⅰ·19) 1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图1所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )图1A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动答案AB解析当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生感应电动势,选项A正确.如图所示,铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误.2.如图2甲所示,一个圆形线圈的匝数n=100,线圈面积S=200 cm2,线圈的电阻r =1 Ω,线圈外接一个阻值R=4 Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的是( )图2A .线圈中的感应电流方向为顺时针方向B .电阻R 两端的电压随时间均匀增大C .线圈电阻r 消耗的功率为4×10-4 WD .前4 s 内通过R 的电荷量为4×10-4 C 答案 C解析 由图可知,穿过线圈的磁通量变大,由楞次定律可得:线圈产生的感应电流方向为逆时针方向,故A 错误;根据法拉第电磁感应定律可知,磁通量的变化率恒定,所以电动势恒定,则电阻两端的电压恒定,故B 错误;由法拉第电磁感应定律:E =n ΔΦΔt =n ΔB ·SΔt =100×0.4-0.24×0.02 V =0.1 V ,根据闭合电路欧姆定律可知,电路中的电流为:I =ER +r =0.14+1A =0.02 A ,所以线圈电阻r 消耗的功率:P =I 2r =0.022×1 W =4×10-4 W ,故C正确;前4 s 内通过R 的电荷量:Q =It =0.02×4 C =0.08 C ,故D 错误.3.如图3所示,倾角为α的光滑导轨上端接入一定值电阻,Ⅰ和Ⅱ是边长都为L 的两正方形磁场区域,其区域内的磁场方向都垂直于导轨平面向上,区域Ⅰ中磁场的磁感应强度为B 1,区域Ⅱ中磁场随时间按B 2=kt 变化,一质量为m 、电阻为r 的金属杆ab 穿过区域Ⅰ垂直地跨放在两导轨上,并恰能保持静止.则( )图3A .通过金属杆的电流大小为mg sin αB 1LB .通过金属杆的电流方向从a 到bC .定值电阻的阻值为kB 1L 3mg sin α-rD .定值电阻的阻值为kB 1L 3mg sin α答案 AC解析 对金属杆:mg sin α=B 1IL ,解得:I =mg sin αB 1L,A 对;由楞次定律知,电流方向为从b 到a ,B 错;由法拉第电磁感应定律得E =ΔΦΔt =ΔB Δt L 2=kL 2,又因为:I =ER +r,故:R =E I -r =kB 1L 3mg sin α-r ,C 对,D 错.4.如图4所示,平行虚线之间有垂直于纸面向里的匀强磁场,磁场左右宽度为L ,磁感应强度大小为B .一等腰梯形线圈ABCD 所在平面与磁场垂直,AB 边刚好与磁场右边界重合,AB 长等于L ,CD 长等于2L ,AB 、CD 间的距离为2L ,线圈的电阻为R .现让线圈向右以恒定速度v 匀速运动,从线圈开始运动到CD 边刚好要进入磁场的过程中( )图4A .线圈中感应电流沿顺时针方向B .线圈中感应电动势大小为BLv C.通过线圈截面的电荷量为BL 22RD .克服安培力做的功为B 2L 3v4R答案 CD解析 当线圈向右运动时穿过线圈的磁通量在增加,根据楞次定律知,感应电流沿逆时针方向,故A 错误.设∠ADC =θ,由几何知识可得:tan θ=2LL2=4磁场宽度为L ,线圈有效的切割长度为2L tan θ=L2所以线圈中感应电动势大小为E =B ·L 2v =12BLv ,故B 错误.通过线圈截面的电荷量为q =ΔΦR=B 2L +32L 2·L -32L +L2·LR =BL 22R,故C 正确.由B 项分析知线圈产生的感应电动势不变,克服安培力做的功等于线圈产生的焦耳热,则克服安培力做的功为W =E 2Rt =12BLv 2R·L v=B 2L 3v4R,故D 正确.5.如图5甲所示,在水平面上固定一个匝数为10匝的等边三角形金属线框,总电阻为3 Ω,边长为0.4 m .金属线框处于两个半径为0.1 m 的圆形匀强磁场中,顶点A 恰好位于左边圆的圆心,BC 边的中点恰好与右边圆的圆心重合.左边磁场方向垂直水平面向外,右边磁场垂直水平面向里,磁感应强度的变化规律如图乙所示,则下列说法中正确的是(π取3)( )图5A .线框中感应电流的方向是顺时针方向B .t =0.4 s 时,穿过线框的磁通量为0.005 WbC .经过t =0.4 s ,线框中产生的热量为2.7 JD .前0.4 s 内流过线框的电荷量为0.2 C 答案 CD解析 由磁感应强度B 1垂直水平面向里,大小随时间增大;B 2垂直水平面向外,大小不变,故线框的磁通量增大,由楞次定律可得,线框中感应电流方向为逆时针方向,故A 错误;t =0.4 s 时穿过线框的磁通量为:Φ=B 1×12×πr 2-B 2×16×πr 2=5×0.5×3×0.12 Wb -4×16×3×0.12 Wb =0.055 Wb ,故B 错误;Q =I 2Rt =(n ΔΦΔt)2R ×Δt =(10×5-1×12π×0.120.4)2×3×0.4 J =2.7 J ,故C 正确;在t =0.4 s 内通过线框中的电荷量q =I t =E Rt =n ΔΦR=10×5-1×12π×0.123C =0.2 C ,故D 正确.6.如图6所示,电阻不计、相距L 的两条足够长的平行金属导轨倾斜放置,与水平面的夹角为θ,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙下方光滑,将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 始终保持静止,当MN 下滑的距离为s 时,速度恰好达到最大值v m ,则下列叙述正确的是( )图6A .导体棒MN 的最大速度v m =2mgR sin θB 2L2B .此时导体棒EF 与轨道之间的静摩擦力为mg sin θC .当导体棒MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为BLs2RD .当导体棒MN 从静止开始下滑s 的过程中,导体棒MN 中产生的热量为mgs sin θ-12mv 2m答案 AC解析 导体棒MN 速度最大时做匀速直线运动,由平衡条件得:mg sin θ=BIL =BBLv m2RL ,解得v m =2mgR sin θB 2L2.故A 正确;在MN 下滑的过程中,穿过回路的磁通量增大,根据楞次定律判断知,EF 受到沿导轨向下的安培力,根据平衡条件得:导体棒EF 所受的静摩擦力 f =mg sin θ+F 安.故B 错误;当导体棒MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为 q =I t =E2Rt =BL v t 2R=BLs2R,故C 正确;根据能量守恒得:导体棒MN 中产生的热量为 Q =12(mgs sin θ-12mv 2m),故D 错误.7.如图7所示,固定的竖直光滑U 形金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计.初始时刻,弹簧处于伸长状态,其伸长量为x 1=mg k,此时导体棒具有竖直向上的初速度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.则下列说法正确的是( )图7A .初始时刻导体棒受到的安培力大小F =B 2L 2v 0RB .初始时刻导体棒加速度的大小a =2g +B 2L 2v 0m R +rC .导体棒往复运动,最终静止时弹簧处于压缩状态D .导体棒开始运动直到最终静止的过程中,电阻R 上产生的焦耳热Q =12mv 20+2m 2g 2k 答案 BC解析 由题意得:E =BLv 0,由闭合电路欧姆定律得:I =ER +r,由安培力公式得:F =B 2L 2v 0R +r,故A 错误;初始时刻,F +mg +kx 1=ma ,得a =2g +B 2L 2v 0m R +r,故B 正确;因为导体棒最终静止时没有安培力,只有重力和弹簧的弹力,故弹簧处于压缩状态,故C 正确;根据能量守恒,减少的动能和势能全都转化为焦耳热,但R 上产生的焦耳热只是其中一部分,故D 错误.8.如图8所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属轨道上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、板长为x 、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.图8(1)调节R x =0,释放导体棒,当导体棒速度为v 1时,求棒ab 两端的电压; (2)调节R x =R ,释放导体棒,求棒下滑的最大速度及整个回路消耗的最大功率; (3)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒(不计重力)从两板中间以水平速度v 0射入金属板间,若粒子刚好落在上板边缘,求此时的R x . 解析 (1)当导体棒速度为v 1时,有:E =Blv 1; 根据闭合电路欧姆定律,得:I =E R=Blv 1R那么:U ab =IR =Blv 1.(2)当R x =R ,棒沿导轨匀速下滑时,有最大速度v , 由平衡条件得:Mg sin θ=F 安 安培力为:F 安=BIl 解得:I =Mg sin θBl感应电动势为:E =Blv 电流为:I =E2R解得:v =2MgR sin θB 2l2回路消耗的最大功率为:P =I 2R 总=2RM 2g 2sin 2θB 2l2.(3)微粒从板中间水平射入恰好落到上板边缘,则: 竖直方向:12at 2=d2①水平方向:v 0t =x ② 根据受力分析可知:a =qE m③电场强度为:E =U d④联立①②③④,得:U =md 2v 20qx 2棒沿导轨匀速运动,由平衡条件有:Mg sin θ=BI 1l 金属板间电压为:U =I 1R x 解得:R x =mBld 2v 20qx 2Mg sin θ9. 如图10中MN 和PQ 为竖直方向的两平行足够长的光滑金属导轨,间距为L ,电阻不计.导轨所在平面与磁感应强度为B 的匀强磁场垂直,两端分别接阻值为2R 的电阻R 1和电容为C 的电容器.一质量为m 、电阻为R 的金属杆ab 始终垂直于导轨,并与其保持良好接触.杆ab 由静止开始下滑,在下滑过程中最大的速度为v ,整个电路消耗的最大电功率为P ,则( )图10A .电容器左极板带正电B .电容器的最大带电荷量为2CBLv3C .杆ab 的最大速度v =PmgD .杆ab 所受安培力的最大功率为2P3答案 BC解析 根据右手定则,感应电动势的方向为:a →b ,故右极板带正电,故A 错误;当金属杆ab 的速度达到最大时,感应电动势最大,感应电动势的最大值为:E m =BLv m =BLv ;路端电压的最大值为:U =2R2R +R E m =23BLv ,故电容器的带电荷量最大,为:Q =CU =2CBLv3,故B 正确;由P =F 安v ,当P 、F 安达到最大时,杆ab 的速度达到最大值,此时杆ab 受力平衡,即:v =P mF 安m =Pmg,故C 正确;杆ab 克服安培力的最大功率为:P =F 安m v m =mgv m =mgv =P ,故D 错误.10.如图11所示,竖直向下的匀强磁场垂直穿过固定的金属框架平面,OO ′为框架abcde 的对称轴,ab 平行于ed ,材料、横截面与框架完全相同的水平直杆gh ,在水平外力F 作用下向左匀速运动,运动过程中直杆始终垂直于OO ′且与框架接触良好,直杆从c 运动到b 的时间为t 1,从b 运动到a 的时间为t 2,则( )A .在t 1时间内回路中的感应电动势增大B .在t 2时间内a 、e 间的电压增大C .在t 1时间内F 保持不变D .在t 2时间内回路中的热功率增大解析 在t 1时间内,回路中的感应电动势为 E =BLv ,L 是有效的切割长度,由于L 增大,则感应电动势增大,故A 正确.在t 2时间内,由E =BLv 知,L 不变,E 不变,而回路的总电阻增大,电流减小,则a 、e 间的电压为 U =E -Ir ,E 、r 不变,则U 增大.故B 正确. 设杆与框架单位长度的电阻为r ,bc 与水平方向的夹角为α.则在t 1时间内,回路中的感应电动势为 E =BLv =B ·2vt ·tan α·v =2Bv 2t tan α回路的总电阻为 R =r (2vt ·tan α+2vt cos α) 电流为I =E R ,联立得I =Bv tan αr tan α+1cos α,则知I 不变. 由于杆匀速运动,F 与安培力大小相等,则F =BIL =BI ·2vt ·tan α,可知F 增大,故C 错误.在t 2时间内回路中的热功率为 P =E 2R,R 增大,E 不变,则P 减小,故D 错误. 11.如图12甲所示,不变形、足够长、质量为m 1=0.2 kg 的“U ”形金属导轨PQMN 放在绝缘水平桌面上,QP 与MN 平行且距离d =1 m ,Q 、M 间导体电阻阻值R =4 Ω,右内侧紧靠两固定绝缘小立柱1、2;光滑金属杆KL 电阻阻值r =1 Ω,质量m 2=0.1 kg ,垂直于QP 和MN ,与QM 平行且距离L =0.5 m ,左侧紧靠两固定绝缘小立柱3、4.金属导轨与桌面的动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,其余电阻不计.从t =0开始,垂直于导轨平面的磁场的磁感应强度变化如图乙所示(g =10 m/s 2).(1)求在整个过程中,导轨受到的静摩擦力的最大值f max ;(2)如果从t =2 s 开始,给金属杆KL 水平向右的外力,外力对金属杆作用的功率保持不变为P 0=320 W ,杆到达最大速度时撤去外力,求撤去外力后QM 上产生的热量Q R 为多少? 解析 (1)在0~1 s 时间内,设t 时刻磁场的磁感应强度为B ,QKLM 中的感应电动势为E ,电流为I ,金属导轨QM 受到的安培力为F ,则由题图乙得B =2+2t (T),得ΔB Δt=2 T/s 由法拉第电磁感应定律得E =ΔΦΔt =ΔB Δt dL =2×1×0.5 V =1 V I =E R +r =14+1A =0.2 A导轨所受的安培力 F =BId =(2+2t )Id当t =1 s 时,安培力最大为F m ,则F m =0.8 N设金属导轨PQMN 受到的最大静摩擦力为f m ,则f m =μ(m 1+m 2)g =0.5×(0.2+0.1)×10 N =1.5 N1 s 以后,电动势为零,QM 受到的安培力为零.即安培力最大时,仍然小于金属导轨PQMN 受到的最大静摩擦力,金属导轨PQMN 始终静止,受到的是静摩擦力,所以f max =F m ,则得f max =0.8 N(2)从t =2 s 开始,导轨QM 受到的安培力向右,由于小立柱1、2的作用,金属导轨PQMN 静止.设杆KL 的最大速度为v m 时,感应电动势为E 1,电流为I 1,受到的安培力为F 1,外力为F 0,则 E 1=B 0dv m ,I 1=E 1R +r 则得F 1=B 0I 1d =B 20d 2v m R +r速度最大时外力与安培力平衡,则有F 0=F 1据题 F 0v m =P 0即P 0v m =B 20d 2v m R +r解得v m =10 m/s 撤去外力直到停下来,产生的总热量为Q 0,则 Q 0=12m 2v 2m =12×0.1×102 J =5 JQM 上产生的热量 Q R =R R +r Q 0=44+1×5 J =4 J.专题强化练1.(2015·新课标全国Ⅰ·19) 1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图1所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动2.如图2甲所示,一个圆形线圈的匝数n=100,线圈面积S=200 cm2,线圈的电阻r =1 Ω,线圈外接一个阻值R=4 Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的是( )A.线圈中的感应电流方向为顺时针方向B.电阻R两端的电压随时间均匀增大C.线圈电阻r消耗的功率为4×10-4 WD .前4 s 内通过R 的电荷量为4×10-4 C3.如图3所示,倾角为α的光滑导轨上端接入一定值电阻,Ⅰ和Ⅱ是边长都为L 的两正方形磁场区域,其区域内的磁场方向都垂直于导轨平面向上,区域Ⅰ中磁场的磁感应强度为B 1,区域Ⅱ中磁场随时间按B 2=kt 变化,一质量为m 、电阻为r 的金属杆ab 穿过区域Ⅰ垂直地跨放在两导轨上,并恰能保持静止.则( )A .通过金属杆的电流大小为mg sin αB 1LB .通过金属杆的电流方向从a 到bC .定值电阻的阻值为kB 1L 3mg sin α-rD .定值电阻的阻值为kB 1L 3mg sin α4.如图4所示,平行虚线之间有垂直于纸面向里的匀强磁场,磁场左右宽度为L ,磁感应强度大小为B .一等腰梯形线圈ABCD 所在平面与磁场垂直,AB 边刚好与磁场右边界重合,AB 长等于L ,CD 长等于2L ,AB 、CD 间的距离为2L ,线圈的电阻为R .现让线圈向右以恒定速度v 匀速运动,从线圈开始运动到CD 边刚好要进入磁场的过程中( )A .线圈中感应电流沿顺时针方向B .线圈中感应电动势大小为BLvC .通过线圈截面的电荷量为BL 22RD .克服安培力做的功为B 2L 3v4R5.如图5甲所示,在水平面上固定一个匝数为10匝的等边三角形金属线框,总电阻为3 Ω,边长为0.4 m .金属线框处于两个半径为0.1 m 的圆形匀强磁场中,顶点A 恰好位于左边圆的圆心,BC 边的中点恰好与右边圆的圆心重合.左边磁场方向垂直水平面向外,右边磁场垂直水平面向里,磁感应强度的变化规律如图乙所示,则下列说法中正确的是(π取3)( )A .线框中感应电流的方向是顺时针方向B .t =0.4 s 时,穿过线框的磁通量为0.005 WbC .经过t =0.4 s ,线框中产生的热量为2.7 JD .前0.4 s 内流过线框的电荷量为0.2 C6.如图6所示,电阻不计、相距L 的两条足够长的平行金属导轨倾斜放置,与水平面的夹角为θ,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙下方光滑,将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 始终保持静止,当MN 下滑的距离为s 时,速度恰好达到最大值v m ,则下列叙述正确的是( )A .导体棒MN 的最大速度v m =2mgR sin θB 2L2 B .此时导体棒EF 与轨道之间的静摩擦力为mg sin θC .当导体棒MN 从静止开始下滑s 的过程中,通过其横截面的电荷量为BLs2RD .当导体棒MN 从静止开始下滑s 的过程中,导体棒MN 中产生的热量为mgs sin θ-12mv 2m7.如图7所示,固定的竖直光滑U 形金属导轨,间距为L ,上端接有阻值为R 的电阻,处在方向水平且垂直于导轨平面、磁感应强度为B 的匀强磁场中,质量为m 、电阻为r 的导体棒与劲度系数为k 的固定轻弹簧相连放在导轨上,导轨的电阻忽略不计.初始时刻,弹簧处于伸长状态,其伸长量为x 1=mgk ,此时导体棒具有竖直向上的初速度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.则下列说法正确的是( )A .初始时刻导体棒受到的安培力大小F =B 2L 2v 0RB .初始时刻导体棒加速度的大小a =2g +B 2L 2v 0m R +rC .导体棒往复运动,最终静止时弹簧处于压缩状态D .导体棒开始运动直到最终静止的过程中,电阻R 上产生的焦耳热Q =12mv 20+2m 2g 2k8.如图8所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属轨道上.导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置、板长为x 、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.(1)调节R x =0,释放导体棒,当导体棒速度为v 1时,求棒ab 两端的电压;(2)调节R x =R ,释放导体棒,求棒下滑的最大速度及整个回路消耗的最大功率;(3)改变R x ,待棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒(不计重力)从两板中间以水平速度v 0射入金属板间,若粒子刚好落在上板边缘,求此时的R x .9. 如图10中MN 和PQ 为竖直方向的两平行足够长的光滑金属导轨,间距为L ,电阻不计.导轨所在平面与磁感应强度为B 的匀强磁场垂直,两端分别接阻值为2R 的电阻R 1和电容为C 的电容器.一质量为m 、电阻为R 的金属杆ab 始终垂直于导轨,并与其保持良好接触.杆ab 由静止开始下滑,在下滑过程中最大的速度为v ,整个电路消耗的最大电功率为P ,则( )图10A .电容器左极板带正电B .电容器的最大带电荷量为2CBLv 3C .杆ab 的最大速度v =PmgD .杆ab 所受安培力的最大功率为2P 310.如图11所示,竖直向下的匀强磁场垂直穿过固定的金属框架平面,OO ′为框架abcde 的对称轴,ab 平行于ed ,材料、横截面与框架完全相同的水平直杆gh ,在水平外力F 作用下向左匀速运动,运动过程中直杆始终垂直于OO ′且与框架接触良好,直杆从c 运动到b 的时间为t 1,从b 运动到a 的时间为t 2,则( )A .在t 1时间内回路中的感应电动势增大B .在t 2时间内a 、e 间的电压增大C.在t1时间内F保持不变D.在t2时间内回路中的热功率增大11.如图12甲所示,不变形、足够长、质量为m1=0.2 kg的“U”形金属导轨PQMN放在绝缘水平桌面上,QP与MN平行且距离d=1 m,Q、M间导体电阻阻值R=4 Ω,右内侧紧靠两固定绝缘小立柱1、2;光滑金属杆KL电阻阻值r=1 Ω,质量m2=0.1 kg,垂直于QP和MN,与QM平行且距离L=0.5 m,左侧紧靠两固定绝缘小立柱3、4.金属导轨与桌面的动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,其余电阻不计.从t=0开始,垂直于导轨平面的磁场的磁感应强度变化如图乙所示(g=10 m/s2).(1)求在整个过程中,导轨受到的静摩擦力的最大值f max;(2)如果从t=2 s开始,给金属杆KL水平向右的外力,外力对金属杆作用的功率保持不变为P0=320 W,杆到达最大速度时撤去外力,求撤去外力后QM上产生的热量Q R为多少?。
电磁感应小练习1.物理课上,教师做了一个奇妙的“电磁阻尼”实验。
如图3所示,A 是由铜片和绝缘细杆组成的摆,其摆动平面通过电磁铁的两极之间,当绕在电磁铁上的励磁线圈未通电时,铜片可自由摆动,要经过较长时间才会停下来。
当线圈通电时,铜片摆动迅速停止。
某同学另找来器材再探究此实验。
他连接好电路,经重复试验,均没出现摆动迅速停止的现象。
对比老师的演示实验,下列四个选项中,导致实验失败的原因可能是( )A .线圈接在了交流电源上B .电源的电压过高C .所选线圈的匝数过多D .构成摆的材料与老师的不同2.在半径为r 、电阻为R 的圆形导线框内,以直径为界,左、右两侧分别存在着方向如图甲所示的匀强磁场.以垂直纸面向外的磁场为正,两部分磁场的磁感应强度B 随时间t 的变化规律分别如图乙所示.则0~t 0时间内,导线框中A .没有感应电流B .感应电流方向为逆时针C .感应电流大小为πr 2B 0/(t 0R )D .感应电流大小为2πr 2B 0/(t 0R )3.如图甲所示,A 、B 为两个相同的环形线圈,共轴并靠近放置,A 线圈中通过如图乙所示的电流Ⅰ,则A .在t 1到t 2时间内A 、B 两线圈相吸引B .在t 2到t 3时间内A 、B 两线圈相吸引C .t 1时刻两线圈作用力为零D .t 2时刻两线圈作用力最大4.光滑曲面与竖直平面的交线是抛物线,抛物线的方程是y=x 2,如图所示。
下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a 的直线(图中的虚线所示)。
一个小金属块从抛物线上y=b(b>a)处从静止开始沿抛物线下滑。
假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是A .mgbB .mgaC .mg(b-a)D .221)(mv a b mg +-5.如图所示,闭合小金属环从高h 的光滑曲面上端无初速滚下,又沿曲面的另一端上升, ( )A .若是匀强磁场,则穿过环的磁通量不变,且在左侧滚上的高度小于hB .若是匀强磁场,则穿过环的磁通量不变,且在左侧滚上的高度等于hC .若是非匀强磁场,则穿过环的磁通量改变,且在左侧滚上的高度大于hD .若是非匀强磁场,则穿过环的磁通量改变,且在左侧滚上的高度小于h6.如图所示,一电子以初速度v 沿金属板平行方向飞入MN 极板间,若突然发现电子向M 板偏转,则可能是().A .电键S 闭合瞬间B .电键S 由闭合到断开瞬间C .电键S 是闭合的,变阻器滑片P 向左迅速滑动D .电键S 是闭合的,变阻器滑片P 向右迅速滑动7.如图所示.电阻为R ,其他电阻均可忽略,ef 是一电阻可不计质最为m 的水平放置的导体棒,棒的两端分别与竖直放置的ab 、cd 框保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后( )A .导体棒ef 的加速度一定大于gB .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度跟S 闭合的时刻无关D .导体棒ef 的机械能与回路内产生的内能之和一定守恒8.如图所示,相距为d 的两条水平虚线L 1、L 2之间是方向水平向里的匀强磁场,磁感应强度为B ,正方形线圈abcd 边长为L (L<d ),质量为m 、电阻为R ,将线圈在磁场上方h 高处由静止释放,cd 边刚进入磁场时速度为v 0,cd 边刚离开磁场时速度也为v 0,则线圈穿过磁场的过程中(从cd 边刚进入磁场起一直到ab 边离开磁场为止)( )A.感应电流所做的功为mgdB.感应电流所做的功为mghC. 线圈的最小速度一定是)(2d L h g -+D. 线圈的最小速度一定是mgR/B 2L 29.如图所示,相距为L 的两条足够长的光滑平行轨道上,平行放置两根质量和电阻都相同的滑杆ab 和cd ,组成矩形闭合回路.轨道电阻不计,匀强磁场B 垂直穿过整个轨道平面(如右图所示).开始时ab 和cd 均处于静止状态,现用一个平行轨道的恒力F 向右拉ab 杆,则下列说法正确的是( )A .cd 杆向左运动B .cd 杆静止C .ab 与cd 杆均先做变加速运动,后做匀加速运动D .ab 与cd 杆均先做变加速运动,后做匀速运动10.如图所示,平行金属导轨光滑并且固定在水平面上,导轨一端连接电阻R,其它电阻不计,垂直于导轨平面有一匀强磁场,磁感应强度为B,当一质量为m 的金属棒ab 在水平恒力F 作用下由静止向右滑动:A. 棒从静止到最大速度过程中,棒的加速度不断增大B. 棒从静止到最大速度过程中,棒克服安培力所做的功等于棒的动能的增加量和电路中产生的内能C. 棒ab 作匀速运动阶段,外力F 做的功等于电路中产生的内能D. 无论棒ab 做何运动,它克服安培力做的功一定等于电路中产生的内能11.电阻R 、电容C 与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
电磁感应练习(含答案)一、单项选择题:(每题3分,共计18分)1、下列说法中正确的有: ( ) A 、只要闭合电路内有磁通量,闭合电路中就有感应电流产生B 、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C 、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流和感应电动势D 、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流,但有感应电动势2、根据楞次定律可知感应电流的磁场一定是: ( ) A 、阻碍引起感应电流的磁通量; B 、与引起感应电流的磁场反向;C 、阻碍引起感应电流的磁通量的变化;D 、与引起感应电流的磁场方向相同。
3、穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则 ( ) A.线圈中感应电动势每秒增加2V B.线圈中感应电动势每秒减少2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势始终为2V4、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是 ( ) A . B . C . D . 5磁场,螺线管下方水平桌面上有一导体圆环,导线abcd 所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力( )6.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a 、b 两点间电势差绝对值最大的是( )2E E-E -2E 2E E -E -2E E 2E -E -2E E 2E -E -2E /s 图2B(A ) (B ) (C ) (D )二、多项选择题:(每题4分,共计16分)7、如图所示,导线AB 可在平行导轨MN 上滑动,接触良好,轨道电阻不计 电流计中有如图所示方向感应电流通过时,AB 的运动情况是:( ) A 、向右加速运动; B 、向右减速运动; C 、向右匀速运动; D 、向左减速运动。
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式第四章《电磁感应》测试题一、单选题(共15小题)1.电吉他是利用电磁感应原理工作的一种乐器.如图a所示为电吉他的拾音器的原理图,在金属弦的下方置有一个连接到放大器的螺线管.一条形磁铁固定在管内,当拨动金属弦后,螺线管内就会产生感应电流,经一系列转化后可将电信号转为声音信号.若由于金属弦的振动,螺线管内的磁通量随时间的变化如图b所示,则对应感应电流的变化为()A.B.C.D.2.物理学中的许多规律是通过实验发现的,下列说法中符合史实的是()A.法拉第通过实验发现了电磁感应现象B.牛顿通过理想斜面实验发现了物体的运动不需要力来维持C.奥斯特通过实验发现了电流的热效应D.卡文迪许通过扭秤实验测出了静电力常量3.金属圆环的圆心为O,金属棒Oa、Ob与金属环接触良好且可绕O在环上转动,整个装置处于垂直纸面向里的匀强磁场中,如图所示,当外力使Oa顺时针方向加速转动时,在Oa追上Ob之前,Ob将()A.顺时针方向转动B.逆时针方向转动C.先顺时针方向转动,后逆时针方向转动D.先逆时针方向转动,后顺时针方向转动4.如图所示的电路中,电源的电动势为E,内阻为r,线圈的自感系数很大,线圈的直流电阻RL与灯泡的电阻R满足RL<R.在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示通过灯泡的电流随时间变化的图象中,正确的是()A.B.C.D.5.磁通量可以形象地理解为“穿过磁场中某一面积的磁感线条数”.在如图所示磁场中,S1、S2、S3为三个面积相同的相互平行的线圈,穿过S1、S2、S3的磁通量分别为Φ1、Φ2、Φ3且都不为0.下列判断正确的是()A.Φ1最大B.Φ2最大C.Φ3最大D.Φ1、Φ2、Φ3相等6.一根导体棒ab在水平方向的匀强磁场中自由下落,并始终保持水平方向且与磁场方向垂直.如图所示,则有()A.Uab=0B.Ua>Ub,Uab保持不变C.Ua>Ub,Uab越来越大D.Ua<Ub,Uab越来越大7.如图所示,一水平放置的矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现若使矩形线框以左边的边为轴转到竖直的虚线位置,则此过程中磁通量改变量的大小是()A.BSB.BSC.BSD. 2BS8.如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流逐渐增强时,导体ab和cd的运动情况是()A.一起向左运动B.一起向右运动C.ab和cd相向运动,相互靠近D.ab和cd相背运动,相互远离9.穿过某闭合回路的磁通量Φ随时间t变化的图象分别如图中的①~④所示,下列说法正确的是()A.图①有感应电动势,且大小恒定不变B.图②产生的感应电动势一直在变大C.图③在0~t1时间内的感应电动势是t1~t2时间内感应电动势的2倍D.图④产生的感应电动势先变大再变小10.在图中,条形磁铁以速度v远离螺线管,螺线管中的感应电流的情况是()A.穿过螺线管中的磁通量增加,产生感应电流B.穿过螺线管中的磁通量减少,产生感应电流C.穿过螺线管中的磁通量增加,不产生感应电流D.穿过螺线管中的磁通量减少,不产生感应电流11.如图所示,线框abcd放置在磁感应强度为B的匀强磁场中,线框面积为S.a′b′cd为线框在垂直于磁场方向的投影,与线框平面的夹角为θ,则穿过线框的磁通量为()A.BSB.BS sinθC.BS cosθD.BS tanθ12.用相同导线绕制的边长为L或2L的四个闭合导线框,以相同的速度匀速进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为Ua、Ub、Uc和Ud.下列判断正确的是()A.Ua<Ub<Uc<UdB.Ua<Ub<Ud<UcC.Ua=Ub<Uc=UdD.Ub<Ua<Ud<Uc13.如图所示,一个闭合回路由两部分组成.右侧是电阻为r的圆形线圈,置于竖直向上均匀变化的磁场B1中,左侧是光滑的倾角为θ的平行导轨,宽度为d,其电阻不计.磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒ab此时恰好能静止在导轨上,下述判断不正确的是()A.圆形线圈中的磁场方向向上且均匀增强B.导体棒ab受到的安培力大小为mg sinθC.回路中的感应电流为D.圆形线圈中的电热功率为(r+R)14.物理学家通过艰苦的实验来探究自然的物理规律,为人类的科学事业做出了巨大贡献,值得我们敬仰.下列描述中符合物理学史实的是()A.楞次经过严密实验与逻辑推导,最终确认了电磁感应的产生条件:闭合线圈中磁通量变化,并找到了感应电流的方向的判断规律B.安培发现了电流的磁效应并提出了分子电流假说C.奥斯特发现了电流的磁效应并提出了分子电流假说D.“闭合电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比”,这是法拉第在对理论和实验资料严格分析后得出的法拉第电磁感应定律的内容15.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图连接.在开关闭合、线圈A放在线圈B中的情况下,某同学发现当他将滑动变阻器的滑片P向左加速滑动时,电流计指针向右偏转,由此可以推断()A.线圈A向上移动或滑动变阻器的滑片P向右加速滑动,都能引起电流计指针向右偏转B.线圈A向上拔出或断开开关,都能引起电流计指针向右偏转C.滑动变阻器的滑片P匀速向左或匀速向右滑动,都能使电流计指针静止在中央D.因为线圈A、线圈B绕线方向未知,故无法判断电流计指针偏转方向二、实验题(共3小题)16.如图是做探究电磁感应的产生条件实验的器材.(1)在图中用实线代替导线把它们连成实验电路.(2)由哪些操作可以使灵敏电流计的指针发生偏转()A.闭合开关B.断开开关C.保持开关一直闭合D.将线圈A从B中拔出(3)假设在开关闭合的瞬间,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,灵敏电流计的指针向______(填“左”或“右”)偏转.17.在研究电磁感应现象的实验中所用的器材如图所示.它们是:①电流计②直流电源③带铁芯的线圈A④线圈B⑤电键⑥滑动变阻器(1)试按实验的要求在实物图上连线(图中已连好一根导线).(2)怎样才能使线圈B中有感应电流产生?试举出三种方法.①________________________________________________________________________;②________________________________________________________________________;③________________________________________________________________________.18.如图所示为“研究电磁感应现象”的实验装置.(1)将图中所缺的导线补接完整;(2)如果在闭合开关时发现灵敏电流计的指针向右偏了一下,那么合上开关后可能出现的情况有:(填“向左偏一下”、“向右偏一下”或“不动”)①将线圈A迅速插入线圈B时,灵敏电流计指针将________.②线圈A插入线圈B后,将滑动变阻器的滑片迅速向左拉时,灵敏电流计指针________.三、计算题(共3小题)19.如图甲所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上.以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图乙所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图丙所示;磁场B(t)和B(x)的方向均竖直向上.在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.20.如图所示,边长为L的正方形金属框abcd,质量为m,电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外.磁场随时间变化规律为B=kt(k>0),已知细线所能承受的最大拉力为2mg,求:(1)线框中感应电流的方向;(2)分析线框的各边所受安培力的方向;(3)从t=0开始,经多长时间细线会被拉断?21.如图,两光滑导体框ABCD与EFGH固定在水平面内,在D点平滑接触,A、C分别处于FE、HG 的沿长线上,ABCD是边长为a的正方形;磁感强度为B的匀强磁场竖直向上;导体棒MN置于导体框上与导体框良好接触,以速度v沿BD方向从B点开始匀速运动,已知线框ABCD及棒MN单位长度的电阻为r,线框EFGH电阻不计.求:(1)导体棒MN在线框ABCD上运动时,通过MN电流的最大值与最小值;(2)为维持MN在线框ABCD上的匀速运动,必须给MN施加一水平外力,用F(t)函数表示该力;(3)导体棒达D点时立即撤去外力,则它还能前进多远(设EF、GH足够长)?四、填空题(共3小题)22.如图所示,半径为R的圆形线圈,其中心位置处半径为r的虚线范围内有界匀强磁场,磁场方向垂直线圈平面.若磁感应强度为B,则穿过线圈的磁通量为________.23.有一个称为“千人震”的趣味物理小实验,实验是用一节电动势为1.5 V的新干电池,几根导线、开关和一个用于日光灯上的镇流器来完成.几位做实验的同学手拉手成一串,和电池、镇流器、开关、导线连成图示实验电路,闭合开关,经过一段时间再断开开关,此过程中同学们会有触电的感觉.人有触电感觉发生在开关________(填“接通瞬间”、“断开瞬间”或“一直接通”)时,其原因是________________________________________________________________________.24.图甲为“探究电磁感应现象”实验中所用器材的示意图.现将电池组、滑动变阻器、带铁芯的线圈A、B、电流计及开关连接成如图所示的电路.(1)开关闭合后,下列说法中正确的是________.A.只要将线圈A放在线圈B中就会引起电流计指针偏转B.线圈A插入或拔出线圈B的速度越大,电流计指针偏转的角度越大C.滑动变阻器的滑片P滑动越快,电流计指针偏转的角度越大D.滑动变阻器的滑片P匀速滑动时,电流计指针不会发生偏转(2)在实验中,如果线圈A置于线圈B中不动,因某种原因,电流计指针发生了偏转.这时,线圈B相当于产生感应电流的“电源”.这个“电源”内的非静电力是________.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时,是________转化为电能.(3)上述实验中,线圈A可等效为一个条形磁铁,将线圈B和灵敏电流计简化如图乙所示.当电流从正接线柱流入灵敏电流计时,指针向正接线柱一侧偏转.则乙图中灵敏电流计指针向其________接线柱方向偏转(填“正”或“负”).五、简答题(共3小题)25.如果磁场是用变化的电流来获取的,导体用整块铁代替,如图所示.请问铁块中有感应电流吗?如果有,它的形状像什么?26.如图所示,有两个同心导体圆环.内环中通有顺时针方向的电流,外环中原来无电流.当内环中电流逐渐增大时,外环中有无感应电流?方向如何?27.如图所示,在同一平面内的a、b两线圈,当开关S闭合和断开瞬间,b线圈中感应电流的方向如何?答案解析1.【答案】D【解析】在0~时间内,磁通量增加但增加的越来越慢,因此感应电流越来越小,到时刻,感应电流减小到零,在~t0间内,磁通量越来越小,感应电流反向,磁通量变化的越来越快,感应电流越来越大,到t0时刻达到反向最大值,从这两段时间断定选项D正确,A、B、C错误.2.【答案】A【解析】法拉第通过实验发现了电磁感应现象,A正确;伽利略通过理想斜面实验发现了物体的运动不需要力来维持,故B错误;奥斯特通过实验发现了电流的磁效应,故C错误;卡文迪许通过实验测出了引力常量,故D错误.3.【答案】A【解析】根据楞次定律,感应电流的磁通量总是阻碍引起感应电流的磁通量的变化,aOb和优弧ab构成的平面的磁通量在减少,所以Ob顺时针转动以阻止磁通量的减少,aOb和劣弧ab构成的平面磁通量在增加,所以Ob顺时针方向转动以减少磁通量的增加,所以应选A.4.【答案】D【解析】S闭合瞬间,由于线圈的自感系数很大,故在线圈中产生很大的自感电动势,阻碍电流的增大,线圈中此时的电流几乎为零,而灯泡中有电流通过,随时间的推移,线圈对电流的阻碍作用减弱,线圈中的电流不断增大,流过电源的电流也在增大,路端电压不断减小,故通过灯泡的电流不断减小;当稳定时,由于RL<R,故线圈中的电流大于灯泡中的电流;当S断开后,线圈相当于电源对灯泡供电,回路中的电流将在稳定时通过线圈电流的基础上不断减小,通过灯泡中的电流方向与S断开前方向相反,D正确.5.【答案】A【解析】从图中可看出,穿过线圈S1的磁感线条数最多,所以磁通量最大.故B、C、D错误,A 正确.6.【答案】D【解析】ab棒向下运动时,可由右手定则判断,感应电流方向为a→b,所以Ub>Ua,由Uab=E=Blv及棒自由下落时v越来越大,可知Uab越来越大,故D选项正确.7.【答案】C【解析】Φ是标量,但有正负之分,在计算ΔΦ=Φ2-Φ1时必须注意Φ2、Φ1的正负,要注意磁感线从线框的哪一面穿过,此题中在开始位置磁感线从线框的下面穿进,在末位置磁感线从线框的另一面穿进,Φ2、Φ1一正一负,再考虑到有效面积,故此题选C.8.【答案】C【解析】由于ab和cd电流方向相反,所以两导体运动方向一定相反,排除A、B;当载流直导线中的电流逐渐增强时,穿过闭合回路的磁通量增大,根据楞次定律,感应电流总是阻碍穿过回路磁通量的变化,所以两导体相互靠近,减小面积,达到阻碍磁通量增加的目的,故选C.9.【答案】C【解析】感应电动势E=,而对应Φ-t图象中图线的斜率,根据图线斜率的变化情况可得:①中无感应电动势;②中感应电动势恒定不变;③中感应电动势0~t1时间内的大小是t1~t2时间内大小的2倍;④中感应电动势先变小再变大.10.【答案】B【解析】条形磁铁从左向右远离螺线管的过程中,穿过线圈的原磁场方向向下,且磁通量在减小,所以能产生感应电流.故选B.11.【答案】C【解析】矩形线圈abcd如题图所示放置,匀强磁场方向竖直向下,平面abcd与水平方向成θ角,此时通过线框的磁通量为Φ1=BS cosθ,故C正确.12.【答案】B【解析】Ua=BLv,Ub=BLv,Uc=·B·2Lv=BLv,Ud=B·2L·v=BLv,故选B.13.【答案】D【解析】导体棒此时恰好能静止在导轨上,根据左手定则,感应电流的方向b→a,感应电流的磁场方向向下,则右侧圆形线圈中的磁场应均匀增加,A正确;由导体棒平衡有:F安=mg sinθ,B 正确;根据安培力公式F=B2dI=mg sinθ,所以I=,C正确;圆形线圈中的电热功率P=r,D错误.14.【答案】D【解析】电磁感应的产生条件是法拉第通过实验找到的,感应电流的方向规律是楞次找到的,选项A错误;奥斯特发现电流周围存在磁场即电流的磁效应,但提出分子电流假说的是安培,选项B、C错误;“闭合电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比”,这是法拉第在对理论和实验资料严格分析后得出的法拉第电磁感应定律的内容.选项D正确.15.【答案】B【解析】当P向左滑动时,电阻变大,通过线圈A的电流减小,则通过线圈B中的的磁场减弱,磁通量减少,线圈B中有使电流计指针向右偏转的感应电流通过;当线圈A向上移动或断开开关,则通过线圈B中的原磁场减弱,磁通量减少,所以线圈B中也有使电流计指针向右偏转的感应电流通过;而滑动变阻器的滑片P向右滑动,则通过线圈B中的原磁场增强,磁通量增加,所以线圈B中有使电流计指针向左偏转的感应电流通过,故B选项正确.16.【答案】(1)见解析(2)ABD(3)右【解析】(1)将灵敏电流计与大线圈B组成闭合回路,电源、开关、小线圈A组成闭合回路,电路图如图所示.(2)将开关闭合或断开,导致穿过线圈的磁通量变化,产生感应电流,灵敏电流计指针偏转,故A、B正确;保持开关一直闭合,则穿过线圈B的磁通量不变,没有感应电流产生,灵敏电流计指针偏转,故C错误;将螺线管A插入(或拔出)螺线管B时穿过线圈B的磁通量发生变化,线圈B中产生感应电流,灵敏电流计指针偏转,故D正确.(3)在开关闭合的瞬间,穿过线圈B的磁通量增大,灵敏电流计的指针向左偏转,则当螺线管A向上拔出的过程中,穿过线圈B的磁通量减小,灵敏电流计的指针向右偏转.17.【答案】(1)如图所示(2)①闭合开关②断开开关③开关闭合时移动滑动变阻器滑片【解析】(1)使线圈A与电键、直流电源、滑动变阻器串联,线圈B与电流计连成闭合回路;(2)只要能使穿过线圈B的磁通量发生变化,就可以使线圈B中产生感应电流.18.【答案】(1)电路连接如图(2)①向右偏转一下②向左偏转一下【解析】(1)电路连接如图(2)因在闭合开关时,电路中的电流变大,磁通量增大,此时发现灵敏电流计的指针向右偏了一下,则当将线圈A迅速插入线圈B时,磁通量也是增大的,则灵敏电流计指针将向右偏转一下;线圈A 插入线圈B后,将滑动变阻器的滑片迅速向左拉时,电路中的电流减小,磁通量减小,则灵敏电流计指针向左偏转一下.19.【答案】(1)L2(2)+mg-mv2(3),x= 0处,感应电流最大【解析】(1)由图乙可知=,根据法拉第电磁感应定律,感应电动势E==L2=L2①(2)当金属棒在弧形轨道上滑行过程中,产生的焦耳热Q1=t=金属棒在弧形轨道上滑行过程中,根据机械能守恒定律mg=mv②金属棒在水平轨道上滑行的过程中,产生的焦耳热为Q2,根据能量守恒定律Q2=mv-mv2=mg-mv2,所以,金属棒在全部运动过程中产生的焦耳热Q=Q1+Q2=+mg-mv2.(3)a.根据图丙,x=x1(x1<x0)处磁场的磁感应强度B1=.设金属棒在水平轨道上滑行时间为Δt.由于磁场B(x)沿x方向均匀变化,根据法拉第电磁感应定律Δt时间内的平均感应电动势===,所以,通过金属棒电荷量q=Δt=Δt=b.金属棒在弧形轨道上滑行过程中,根据①式,I1==金属棒在水平轨道上滑行过程中,由于滑行速度和磁场的磁感应强度都在减小,所以,在此过程中,金属棒刚进入磁场时,感应电流最大.根据②式,刚进入水平轨道时,金属棒的速度v0=所以,水平轨道上滑行过程中的最大电流I2==若金属棒自由下落高度,经历时间t=,显然t0>t,所以I1=<==I2,综上所述,金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.20.【答案】(1)线框中感应电流的方向a→d→c→b→a;(2)ab边所受的安培力方向向下,bc边所受的安培力方向向左,cd边不受安培力,ad边的安培力方向向右;(3)【解析】(1)根据楞次定律,则有感应电流的方向:逆时针方向(即a→d→c→b→a);(2)根据左手定则,结合感应电流的方向,则有:ab边所受的安培力方向向下,bc边所受的安培力方向向左,cd不受安培力,ad边的安培力方向向右.(线框有收缩的趋势);(3)根据平衡条件,结合安培力表达式,则有:2mg=mg+B L且B=kt解得:t=.21.【答案】(1)I min=I max=(2)F=(3)【解析】(1)设某时刻棒MN交线框于P、S点,令PS长为l,此时电动势E=BlvMN左侧电阻R1=lrMN右侧电阻R2=(4a-l)r则R并==故:I==因导线框ABCD关于AC对称,所以通MN的电流大小也具有对称性,所以当l=0时,电流最小值I min=当l=a时,电流最大值I max=(2)设MN到达B的时间为t0,则t0=,到达D点用时2t0,当0≤t≤t0时,由I=代入得:I=(其中vt=l)代入F=BIl得:F=当t0≤t≤2t0时,将l=2(a-vt)代入④式得:I=代入F=BIl得:F=(3)导线框进入矩形磁场后,由牛顿第二定律得:BIL=ma=ma取任意Δt时间有:Δt=maΔtΔx=mΔvΣΔx=mΣΔvx=mvx==.22.【答案】Bπr2【解析】本题需要切记,在使用ΔΦ=BS计算磁通量时,一定要注意公式中的S为磁场穿过线圈的有效面积,本题中S=πr2,所以穿过线圈的磁通量为ΔΦ=BS=Bπr2.23.【答案】断开瞬间断开瞬间产生瞬间高压【解析】当开关闭合后,镇流器与同学们并联,由于电源为1.5 V的新干电池,所以电流很小.当断开时,镇流器电流发生变化,导致镇流器产生很强的电动势,从而使同学们有触电的感觉.24.【答案】(1)BC(2)感应电场的电场力机械能(3)负【解析】(1)将线圈A放在线圈B中,由于磁通量不变化,故不会产生感应电流,也不会引起电流计指针偏转,选项A错误;线圈A插入或拔出线圈B的速度越大,则磁通量的变化率越大,产生的感应电流越大,电流计指针偏转的角度越大,选项B正确;滑动变阻器的滑片P滑动越快,电流的变化率越大,磁通量的变化率越大,则感应电流越大,电流计指针偏转的角度越大,选项C 正确;滑动变阻器的滑片P匀速滑动时,电流发生变化,磁通量变化,也会产生感应电流,故电流计指针也会发生偏转,选项D错误.故选BC.(2)这个“电源”内的非静电力是感应电场的电场力.如果是因为线圈A插入或拔出线圈B,导致电流计指针发生了偏转.这时是机械能转化为电能.(3)根据楞次定律可知,通过电流计的电流从负极流入,故灵敏电流计指针向其负接线柱方向偏转.25.【答案】有.变化的电流产生变化的磁场,变化的磁场产生感生电场,感生电场在铁块中产生感应电流,它的形状像水中的旋涡,所以把它叫做涡电流,简称涡流.【解析】变化的电流产生变化的磁场,变化的磁场产生感生电场,感生电场在铁块中产生感应电流,它的形状像水中的旋涡,所以把它叫做涡电流,简称涡流.26.【答案】由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外向外的所有磁感线条数相等,所以外环所围面积内的总磁通量向里、增大,所以外环中感应电流磁场的方向向外,由安培定则,外环中感应电流方向为逆时针.【解析】由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外向外的所有磁感线条数相等,所以外环所围面积内的总磁通量向里、增大,所以外环中感应电流磁场的方向向外,由安培定则,外环中感应电流方向为逆时针.27.【答案】S闭合瞬间,b线圈中产生顺时针方向的电流;S断开瞬间,b线圈中产生逆时针方向的电流.【解析】当开关S闭合的瞬间,a线圈中有电流I通过,由安培定则可知其将在a线圈周围产生磁场,该磁场从b线圈内垂直纸面穿出,使b线圈中的磁通量增大,由楞次定律可知b线圈中将产生感应电流,感应电流的磁场方向应与a线圈中电流产生的磁场方向相反即垂直纸面向里,再由安培定则可判定b中感应电流方向应是顺时针方向.当开关S断开的瞬间,电流I所产生的磁场穿过b线圈的磁通量减少,这时b线圈内将产生感应电流,感应电流的磁场方向与原磁场方向相同,。
高中物理学习材料桑水制作磁场电磁感应测试题一、选择题:(每小题至少有一个选项是正确的,请把正确的答案填入答题卡中,每小题4分,共48分,漏选得2分,错选和不选得零分)1、首先发现电流产生磁场的科学家是()A、富兰克林B、法拉第C、安培D、奥斯特2、如图所示,两根非常靠近且互相垂直的长直导线,当通以如图所示方向的电流时,电流所产生的磁场在导线所在平面内的哪个区域内方向是一致且向里的()A、区域ⅠB、区域ⅡC、区域ⅢD、区域Ⅳ3、关于磁现象的电本质,下列说法中正确的是()A、磁体随温度升高磁性增强B、安培分子电流假说揭示了磁现象的电本质C、所有磁现象的本质都可归结为电荷的运动D、一根软铁不显磁性,是因为分子电流取向杂乱无章4、下列关于楞次定律的说法正确的是()A.感应电流的磁场总是阻碍引起感应电流的磁通量B.感应电流的磁场总是阻止引起感应电流的磁通量C.感应电流的磁场总是与引起感应电流的磁场相反D.感应电流的磁场方向也可能与引起感应电流的磁场方向一致5、如图,均匀绕制的螺线管水平放置,在其正中心的上方附近用绝缘绳水平吊起通电直导线A,A与螺线管垂直,A导线中的电流方向垂直纸面向里,开关S闭合,A受到通电螺线管磁场的作用力的方向是()A、水平向左B、水平向右C、竖直向下D、竖直向上6、如图所示,在垂直纸面向里的匀强磁场中,有 a 、 b 两个电子从同一处沿垂直磁感线方向开始运动, a 的初速度为 v , b 的初速度为 2 v .则( )A 、a 先回到出发点B 、b 先回到出发点C 、 a b 同时回到出发点D 、不能确定不能确定7、如图所示,通有恒定电流的导线MN 与闭合金属框共面,第一次将金属框由I 平移到Ⅱ,第二次将金属框绕cd 边翻转到Ⅱ,设先后两次通过金属框的磁通量变化分别为△φ1和△φ2,则 ( )A.△φ1>△φ2B.△φ1=△φ2C.△φ1<△φ2D.不能判断8、如图所示,宽40cm 的匀强磁场区域,磁场方向垂直纸面向里,一边长20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v =20m/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t=0,在下面图乙中,正确反映感应电流随时间变化规律的是哪个?( )9、如图所示,矩形线圈有N 匝,长为a ,宽为b ,每匝线圈电阻为R ,从磁感应强度为B 的匀强磁场中以速度v 匀速拉出来,那么,产生的感应电动势和流经线圈中的感应电流的大小应为( )A .E = NBav ,R Bav I =B .E = NBav ,NRBav I = C .E = Bav ,NR BaN I = D .E = Bav ,R Bav I = 10、在匀强磁场中,有一接有电容器的导线回路,如图,已知C=30μF ,L 1= 5cm,L 2 = 8cm ,磁场以5×10-2 T/s 的速率增强,则( )A 、电容器上板带正电,带电量为2×10—9C ;B 、电容器上板带负电,带电量为4×10—9C ;C 、电容器上板带正电,带电量为6×10—9C ;D 、电容器上板带负电,带电量为8×10—9C .11、如图所示电路,L 为一自感线圈,A 为电灯,L 的电阻比A 的电阻小得多,接通S,待电路稳定后再断开S,断开时:( )A、灯A将比原来更亮一些后再逐渐熄灭B、通过灯A的电流方向为从左向右C、灯A将立即熄灭D、通过L的电流方向为从左向右12、2001年11月,我国第一条磁悬浮列车的导轨在上海浦东安装,图是磁悬浮的原型图,图中P是柱形磁铁,Q是用高温超导材料制成的超导圆环。
高中物理学习材料
(马鸣风萧萧**整理制作)
高二物理选修3-2阶段练习2——电磁感应
一、单选题
1. 一根0.2m长的直导线,在磁感应强度B=0.8T的匀强磁场中以V=3m/S的速度做切割磁感线运动,直导线垂直于磁感线,运动方向跟磁感线、直导线垂直.那么,直导线中感应电动势的大小是()
A.0.48v B.4.8v C.0.24v D.0.96v
2. 如图所示,有导线ab长0.2m,在磁感应强度为0.8T的匀
强磁场中,以3m/S的速度做切割磁感线运动,导线垂直磁感线,
运动方向跟磁感线及直导线均垂直.磁场的有界宽度L=0.15m,
则导线中的感应电动势大小为()
A.0.48V B.0.36V C.0.16V D.0.6V
3. 在磁感应强度为B、方向如图所示的匀强磁场中,金属杆PQ
在宽为L的平行金属导轨上以速度v向右匀速滑动,PQ中产生的
感应电动势为e1;若磁感应强度增为2B,其它条件不变,所产生的感应电动势大小变为e2.则e1与e2之比及通过电阻R的感应电流方向为()
A.2:1,b→a B.1:2,b→a C.2:1,a→b D.1:2,a→b
4. 图中的四个图分别表示匀强磁场的磁感应强度B、闭合电路中一部分直导线的运动速度v和电路中产生的感应电流I的相互关系,其中正确是(
)
来,下列哪个说法是正确的是()
A.向左拉出和向右拉出,其感应电流方向相反
B.不管从什么方向拉出,环中的感应电流方向总是顺时针的
C.不管从什么方向拉出,环中的感应电流方向总是逆时针的
D.在此过程中感应电流大小不变
6. 如图所示,在环形导体的中央放一小条形磁铁,开始时,磁铁和环
在同一平面内,磁铁中心与环的中心重合,下列能在环中产生感应电
流的过程是()
A.环在纸面上绕环心顺时针转动30°的过程
B.环沿纸面向上移动一小段距离的过程\par C.磁铁绕轴OO ' 转动
30°的过程
D.磁铁绕中心在纸面上顺时针转动30°的过程
7. 两水平金属导轨置于竖直向下的匀强磁场中(俯视如图),一金属方框abcd两头焊上金属短轴放在导轨上,以下说法中正确的是哪一个()
A.方框向右平移时,有感应电流,方向是d→a→b→c
B.方框平移时,无感应电流流过R
C.当方框绕轴转动时,有感应电流通过R
D.当方框绕轴转动时,方框中有感应交变电流,但没有电流通过R
8. 图中,“∠”形金属导轨COD上放有一根金属棒MN,拉动MN
使它以速度v 向右匀速平动,如果导轨和金属棒都是粗细相同的均匀导
体,电阻率都为ρ,那么MN在导轨上运动的过程中,闭合回路的()
A.感应电动势保持不变 B.感应电流保持不变
C.感应电流逐渐减弱 D.感应电流逐渐增强
9. 如图所示,矩形导线框从通电直导线EF左侧运动到右侧的过程
中,关于导线框中产生的感应电流的正确说法是()
A.感应电流方向是先沿abcd方向流动,再沿adcb方向流动
B.感应电流方向是先沿adcb方向流动,然后沿abcd方向流动,再
沿adcb方向流动
C.感应电流始终是沿adcb方向流动
D.感应电流始终是沿abcd方向流动
二、填空题
1. 英国物理学家____________通过实验首先发现了电磁感应现象.
2. 在图中,当导线ab向右运动时,cd所受磁场力
的方向是_____;ab棒上____端相当于电源的正极.
3. 长10cm的直导线在0.2T的匀强磁场中沿垂直磁
感线方向匀速运动,当导线运动速率为2m/s时,直
导线中产生的感应电动势大小为____________.
4. ①将条形磁铁按图所示方向插入闭合线圈.在磁
铁插入的过程中,灵敏电流表示数____________.
②磁铁在线圈中保持静止不动,灵敏电流表示数
__________________.
③将磁铁从线圈上端拔出的过程中,灵敏电流表示数______________.(以上各空均填“为零”或“不为零”)
5. 线圈的自感系数通常称为自感或电感,它主要与__________、________、___________以及___________有关.
6. 绕在同一铁芯上的线圈Ⅰ、Ⅱ按图所示方法连接,判断在以下各情况中,线圈Ⅱ中是否有感应电流产生.
①闭合电健K的瞬时___________________.
②保持电键K闭合的时候________________________.
③断开电键K的瞬时_______________________.
④电键K闭合将变阻器R O的滑动端向左滑动时:
_________________.
7. 如图所示,一个连有电容器的U形金属框架放置在匀强磁场
中,磁感应强度为B,磁感线方向如图,框架宽L,一根导体棒
MN放置在框架上,棒与框架接触良好且相互垂直,若棒向左以
速度V匀速运动,则电容器两极板间的电势差
U a b=_____________;电容器___________板带正电荷.
8. 在磁感应强度B为0.4T 的匀强磁场中,让长为0.2m的导体 a b
在金属框上以6m/s的速度向右移动,如图所示.此时感应电动势
大小为______V.如果R1=6W,R2=3W,其余部分电阻不计.则通过
ab的电流大小为______A.
四、计算题
1. 光滑 M 形导轨,竖直放置在垂直于纸面向里的匀强磁场中,
已知导轨宽L=0.5m,磁感应强度B=0.2T.有阻值为0.5W的导体
棒AB紧挨导轨,沿着导轨由静止开始下落,如图所示,设串联在导轨中的电阻R阻值为2W,其他部分的电阻及接触电阻均不计.问:
(1)导体棒AB在下落过程中,产生的感应电流的方向和AB棒受到的磁场力的方向.
(2)当导体棒AB的速度为5m/s(设并未达到最大速度)时,其感应电动势和感应电流的大小各是多少
?
2. 单匝矩形线圈abcd部分地放置在具有理想边界的匀强磁场中,磁感应强度为0.1T,线圈绕ab轴以100p rad/s角速度匀速旋转,如图所示,当线圈由图示位置转过60°,在这过程中感应电动势平均值为多大? 当转过90°时,感应电动势即时值为多大?
3. 如图所示,L1、L2、L3、L4 是四根足够长的相同的光滑导体棒,它们彼此接触,正好
构成一个正方形闭合电路,匀强磁场的磁感应强度为B,方向垂直于纸面向外,现设法使四根导体棒分别按图示方向以相同大小的加速度a'同时从静止开始做匀速平动.若从开始运动时计时且开始计时时abcd回路边长为\i l,求开始运动后经时间t回路的总感应电动势.
4. 图中,有一个磁感应强度B=0.10T的匀强磁场,方向是水平向外.在垂直于磁场的竖直面内放有宽度为L=10cm、电阻不计、足够长的金属导轨,质量为m=0.20g.有效电阻为R=0.20W的金属丝MN可在导轨上无摩擦地上下平动,空气阻力不计,g取10m/s,试求MN 从静止开始释放后运动的最大速度.
高中物理单元练习试题(电磁感应)答案
一、单选题
1. A
2. B
3. D
4. A
5. B
6. C
7. D
8. B
9. B
二、填空题
1. 法拉弟
2. 向下;b
3. 0.04
4. ①不为零②为零③不为零
5. 线圈匝数;线圈的长度;线圈的面积;有无铁芯
6. ①有②无③有④有
7. BLV b
8. 0.48;0.24
三、多选题
1. CDE
2. CD
3. ACD
4. ACD
5. BD
四、计算题
1. 解:(1)电流方向是A—→B,磁场力方向竖直向上.\par(2)e =BLv=0.2×0.5×5=0.5( V )
I
R r A A
=
+==
ε05
2502
.
.
().()
2. 0;0.628v
3. 经时间 t 后,4根导体棒又构成边长为l ' = l +a' t2的正方形闭合电路,每根导体棒产生的感应电动势为e1=B l ' v t,式中v t =a' t.题中所求的总电动势
e总=4e1=4B(l+a' t2)a' t.
4. 最佳解法:金属丝被释放后,先向下做加速度逐渐减小的变加速运动,当加速度减小到零时,速度达到最大值,以后就以这一速度做匀速运动.由并注意到,,可得.或由·得,以下同上.
电重重电υυυυυυυm m m 2m 22-32222P =P P =mg P =(BL /R)R =mgR /(B L )=0.20100.10=4.0(m /s)F =BIL =B BL R =B L R =mg =Rmg B ⨯⨯⨯⨯1002001022..L L。