2018-2019年中考数学复习《一次函数与一元一次方程》专题练习含答案
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
中考数学《一元一次方程》专题练习(附带答案)一、单选题1.方程x ﹣3=2x ﹣4的解为( )A .1B .﹣1C .7D .﹣72.下列等式变形正确的是( ) A .如果s=12ab ,那么b=s2aB .如果12x=6,那么x=3C .如果x ﹣3=y ﹣3,那么x ﹣y=0D .如果mx=my ,那么x=y3.某种商品,若单价降低110,要保持销售收入不变,那么销售量应增加( )A .110B .19C .18D .174.一个长方形的周长为 26cm ,若这个长方形的长减少 2cm ,宽增加 3cm ,就可以成一个正方形.设长方形的长为 xcm ,可列方程( ) A .x +2=(13−x)−3 B .x +2=(26−x)−3 C .x −2=(26−x)+3D .x −2=(13−x)+35.某超市将两件商品都以84元售出,一件提价 40% ,一件降价 20% ,则最后是( )A .无法确定B .亏本3元C .盈利3元D .不赢不亏6.下列方程变形中,正确的是( )A .方程3x +4=4x −5,移项得3x −4x =5−4B .方程−32x =4,系数化为1得x =4×(−32)C .方程3−2(x +1)=5,去括号得3−2x −2=5D .方程x−12−1=3x+13,去分母得3(x −1)−1=2(3x +1) 7.已知关于x 的一元一次方程 12020x +3=2x +b 的解为x=-3,那么关于y 的一元一次方程 12020(y +1)+3=2(y +1)+b 的解为( ) A .y=1B .y=-1C .y=-3D .y=-48.若(m ﹣2)x |2m ﹣3|=6是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数9.若关于x 的方程(k+1)x 2﹣ √2−k x+ 14=0有实数根,则k 的取值范围是( )A .k≤2且k≠﹣1B .k≤ 12且k≠﹣1C .k≤ 12D .k≥ 1210.下面是一个被墨水污染过的方程 12(1-2ax)=x+a ,答案显示此方程的解是x=-2,被墨水遮盖的是一个常数a ,则这个常数是( )A .1B .−52C .52D .−1211.把方程x2﹣x−16=1去分母,正确的是( )A .3x ﹣(x ﹣1)=1B .3x ﹣x ﹣1=1C .3x ﹣x ﹣1=6D .3x ﹣(x ﹣1)=612.解方程 2x−13+3x−44=0 时,去分母正确的是( ) A .4(2x −1)+9x −4=12 B .4(2x −1)+3(3x −4)=12 C .8x −1+9x +12=0D .4(2x −1)+3(3x −4)=0二、填空题13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程 .14.如表所示,已知a ,b 满足表格中的条件,则b 的值是 .x ﹣1 ax ﹣1 ax 2+b415.若关于x ,y 的方程组{x −y =m +2x +3y =m的解适合方程x +y =−2,则m = .16.某村原有林地108公顷,旱地54公公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%.设把x 公顷旱地改为林地,则为可列方程为 .17.将方程 2x +3y =6 写成用含x 的代数式表示y ,则y= .18.在①2x ﹣1②2x+1=3x ③|π﹣3|=π﹣3④t+1=3中,等式有 方程有 (填入式子的序号)三、综合题19.在习近平主席提出的“一带一路”战略构想下,甲、乙两城市决定开通动车组高速列车,如图, AD是从乙城开往甲城的第一列动车组列车距甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象, BC 是一列从甲城开往乙城的普通快车离开甲城的路程 s(km) 与运行时间 t(ℎ) 的函数图象,它比第一列动车组动车晚出发 1 小时,请根据图中的信息,解答下列问题:(1)填空:甲、乙两城市之间的距离为千米(2)若普通快车的速度为100km/ℎ,①用待定系数法求BC的函数表达式,并写出自变量的取值范围:②若普通快车与第一列动车组列车相遇后0.4小时与第二列动车组列车相遇,请直接写出相邻两列动车组列车间隔的时间③在②的条件下,请直接写出第二列动车组列车与第一列动车组列车和普通快车距离相等时的t值.20.某超市购进甲、乙两种节能灯共1200只,这两种商品的进价、售价如下表进价(元|只)售价(元|只)甲2530乙4560(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?21.根据下列条件列出方程(1)x比它的78大15(2)2xy与5的差的3倍等于24(3)y的13与5的差等于y与1的差.22.“双11”期间,某市各大商场掀起促销狂潮,现有甲、乙、丙三个商场开展的促销活动如下表所示商场优惠活动甲全场按标价的6折销售乙实行“每满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“每满100元减50元的优惠”(如某顾客购物220元,他只需付款120元)(1)三个商场同时出售某种标价为370元的破壁机和某种标价为350元的空气炸锅,若赵阿姨想买这两样厨房电器,她选择哪家商场最实惠?(2)黄先生发现在甲、乙商场同时购买一件标价为280元的上衣和一条标价为200多元的裤子,最后付款额一样,请问这条裤子的标价是多少元?(3)如果某品牌的巴西大豆在三所商场的标价都是5元/kg,请探究是否存在分别在三个商场付同样多的100多元,并且都能够购买同样质量同品牌的该大豆?如果存在,请求出在乙商场购买该大豆的方案(并指出在三个商场购买大豆的质量是多少千克,支付的费用是多少元)如果不存在,请直接回答“不存在”.23.如图,点A、B、C是数轴上三点,点A、B、C表示的数分别为-10、2、6,我们规定数铀上两点之间的距离用字母表示.例如点A与点B之间的距离,可记为AB(1)写出AB= ,BC=,AC=(2)点P是A、C之间的点,点P在数轴上对应的数为x①若PB=5时,则x=②PA =,PC=(用含x的式子表示)(3)动点M、N同时从点A、C出发,点M以每秒2个单位长度的速度沿数轴向右运动,点N以每秒2个单位长度的速度沿数向左运动,设运动时间为t(t>0)秒,求当t为何值时,点M、N之间相距2个单位长度?24.某商场将进货价为35元台灯以50元销售价售出,平均每月能售出500个,市场调研表明当销售价每上涨1元时,其销售量就将减少10个,若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空涨价后,每个台灯的销售价为元,每台利润为元,商场的台灯平均每月的销售量为台,共可获利元.(2)如果商场要想销售利润平均每月至少达到10000元,现有三种方案.方案一“在原售价每台50元的基础上再上涨25元”方案二“在原售价每台50元的基础上在上涨15元”方案三“在原售价每台50元的基础上在上涨8元”.若为了减少库存,应该采用哪一种方案?并说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】A9.【答案】C 10.【答案】B 11.【答案】D 12.【答案】D 13.【答案】8x+38=50 14.【答案】3 15.【答案】−316.【答案】20%(108+x )=54﹣x 17.【答案】6−2x 3 (或 2−23x )18.【答案】②③④②④ 19.【答案】(1)600(2)解①设BC 的解析式为s=kt+b , 由题意B (1,0),C (7,600),则有 {k +b =07k +b =600 ,解得 {k =100b =−100 .∴s=100t − 100(1≤t≤7)②设普通快车与第一列动车组列车x 小时后相遇,则100(x -1)+150x=600 解得x=145(小时) 设第二列动车组列车行驶了y 小时与普通快车相遇,则150y+100×(0.4+ 145-1)=600 解得y=3815∴相邻两列动车组列车间隔的时间= 145 − ( 3815 − 0.4)= 23(小时)③当t= 145小时时,普通快车与第一列动车组列车相遇,此时第二列动车组列车与第一列动车组列车和普通快车距离相等.当 100(t −1)+150(t −23)−600=23×150 时,第二列动车组列车与第一列动车组列车和普通快车距离相等.∴100(t −1)+150(t −23)−600=23×150解得 t =185答第二列动车组列车与第一列动车组列车和普通快车距离相等时,t 的值是 145 或 185 .20.【答案】(1)解设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x )只由题意,得25x+45(1200-x )=46000 解得x=400购进乙型节能灯1200-x=1200-400=800只.答购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元(2)解设乙型节能灯需打a折0.1×60a-45=45×20%解得a=9答乙型节能灯需打9折.21.【答案】(1)解根据题意可得x﹣78x=15(2)解根据题意可得3(2xy﹣5)=24(3)解根据题意可得13y﹣5=y﹣122.【答案】(1)解选甲商场需付(370+350)×0.6=432(元)选乙商场需付370+(350−3×100)=420(元)选丙商场需付370+350−7×50=370(元)因为370<420<432,故答案为丙商场最实惠.(2)解设这条裤子的标价为x元.根据题意,得(280+x)×0.6=280+x−2×100解得x=220.故这条裤子的标价为220元.(3)解设在乙商场先购买ykg大豆,需付100多元,再用100元的购物券再在乙商场购买100÷5=20kg 大豆.根据题意,得5(y+20)×0.6=5y,解得y=30.此时,在甲商场和乙商场都购买了30+20=50kg大豆,都需付30×5=150元.在丙商场购买50kg需付5×50−2×50=150元.所以存在分别在三个商场付同样多的100多元,并且都能买到同样质量同样品牌的该大豆.所以在乙商场的购买方案为先购买30kg大豆付150元,再用100元的购物券再在乙商场购买20kg大豆,共付了150元,购买了50kg大豆.23.【答案】(1)12416(2)解-3x+106-x(3)解相遇前,(6-2t)-(-10+2t) =2,解得t= 3.5相遇后(-10+2t)-(6-2t) = 2,解得t= 4.5.答当t=3.5或t=4.5时,点M、N之间相距2个单位长度.24.【答案】(1)(50+a)(15+a)(500-10a)(15+a)(500-10a)(2)解方案一当a=25时,(15+25)(500-10×25)=10000(元).方案二当a=15时,(15+15)(500-10×15)=10500(元).方案三当a=8时,(15+8)(500-10×8)=9660(元)<10000元,故舍去该方案.因为要减少库存,所以应采用方案二.。
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
2018—2019学年度第二学期八年级(下)第十九章一次函数单元检测题班级____姓名_____得分_____一、 选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。
1. 若点A (2,4)在函数2y kx =-的图象上,则下列各点在此函数图象上的是( ).A .(0,2-)B .(32,0) C .(8,20) D .(12,12) 2.变量x,y 有如下关系:①x+y=10②y=x5-③y=|x-3④y 2=8x.其中y 是x 的函数的是 A. ①②②③④B. ①②③C. ①②D. ①3. 下列各曲线中不能表示y 是x 的函数是( ).A .B .C .D .4. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 5.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是 A.k >5 B.k <5C.k >-5D.k <-56.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是 A.一象限B. 二象限C. 四象限D.不能确定7.如果通过平移直线3x y =得到53x y +=的图象,那么直线3xy =必须( ). A .向上平移5个单位 B .向下平移5个单位 C .向上平移53个单位 D .向下平移53个单位8.经过一、二、四象限的函数是 A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是10.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为 A.2B.0C.-2D. ±211. 根据如图的程序,计算当输入3x =时,输出的结果y = .12.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是 A. ①③④ B. ②③ C. ①②③④ D. ①②③二、填空题(本大题共5个小题,每小题4分,共20分。
中考数学《一次函数》专项练习题及答案一、单选题1.已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2−4ac与反比例函数y=4a+2b+cx在同一平面直角坐标系中的图象大致是()A.B.C.D.2.已知一次函数y=kx−k的图象过点(−3,4),则下列结论正确的是()A.y随x增大而增大B.k=1C.直线过点(1,0)D.直线过原点3.如图,正比例函数y1=−2x与一次函数y2=ax+3的图象相交于点A(−1,m),则关于x 的不等式−2x>ax+3的解集是()A.x>2B.x<2C.x>−1D.x<−14.如图,若一次函数y1=x+a与一次函数y2=kx+b的图象交于点P(1,3),则关于x的不等式x+a≤kx+b的解集为()A.x≤1B.x≥1C.x≤0D.x≥35.已知y1=2x﹣5,y2=﹣2x+3,如果y1<y2,则x的取值范围是()A.x>2B.x<2C.x>﹣2 D.x<﹣26.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点A,则不等式0<2x<kx+b的解集是()A.x<1 B.x<0或x>1C.0<x<1D.x>17.已知:抛物线y=−x2−4x+5与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.平行于x轴的直线l与该抛物线交于点D(x1,y1),E(x2,y2),与线段AC交于点F(x3,y3),令g=x3x1+x2,则g的取值范围是()A.0≤g≤52B.−52≤g≤0C.0≤g≤54D.−54≤g≤08.如果一元一次方程3x﹣b=0的根x=2,那么一次函数y=3x﹣b的图象一定过点()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)9.如图是一次函数y=-32x+3的图象,当-3<y<3时,x的取值范围是( )A.x>4B.0<x<2C.0<x<4D.2<x<410.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2B.x<﹣2 C.x>﹣4 D.x<﹣411.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的周长C随着边长x的变化而变化B.正方形的面积S随着边长x的变化而变化C.面积为20的三角形的一边a随着这边上的高h的变化而变化D.水箱以0.5L/min的流量往外放水,水箱中的剩水量VL随着放水时间tmin的变化而变化12.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元二、填空题13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.14.一次函数y=kx+b的图象如图所示,当x>0时,y的取值范围为.15.一个正方形的边长为3 cm,它的边长减少xcm后,得到新正方形的周长为y,y与x之间的函数表达式为.16.若函数y=kx+b的图象平行于直线y=2x,且过点(2,﹣4),则该函数的表达式是.17.一次函数y=2x-6的图象与坐标轴围成的三角形面积为。
北京市朝阳区普通中学2019-2019学年第一学期 初三数学 一次函数 专题练习题1.下列y 关于x 的函数中,是正比例函数的为( C )A .y =x 2B .y =2xC .y =x 2D .y =x +122.若一次函数y =ax +b 的图象经过第一、二、四象限,则下列不等式中总是成立的是( C )A .ab >0B .a -b >0C .a 2+b >0D .a +b >0【解析】∵一次函数y =ax +b 的图象经过第一、二、四象限, ∴a <0,b >0,∴ab <0,故选项A 错误;a -b <0,故选项B 错误;a 2+b >0,故选项C 正确;a +b 不一定大于0,故选项D 错误.故选C .3.设正比例函数y =mx 的图象经过点A (m ,4),且 y 的值随x 值的增大而减小,则m =( B )A .2B .-2C .4D .-44.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y =2x +3B .y =x -3C .y =2x -3D .y =-x +3【解析】把x =1代入y =2x ,得y =2,即点B 的坐标为(1,2).设一次函数的解析式为y =kx +b ,把(1,2)和(0,3)代入,可得⎩⎨⎧k +b =2,b =3,解得⎩⎨⎧k =-1,b =3.∴一次函数的解析式为y =-x +3.故选D . 【答案】D5.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( D ) A .-2或4 B .2或-4 C .4或-6 D .-4或66.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解是()A.x>-2 B.x>0 C.x>1 D.x<1【解析】不等式x+b>kx+4的解是一次函数y1=x+b的图象在一次函数y2=kx+4的图象的上方时对应的x的范围,故x>1.故选C.【答案】C7.已知函数y=2x2a+3+a+2b是正比例函数,则a=-1,b=1 2.8.将一次函数y=3x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为y=3x+2.10.如图,直线y=3x+3与两坐标轴分别交于A,B两点.(1)求∠ABO的度数;解:对于直线y=3x+3,令x=0,则y=3;令y=0,则x=-1,故点A的坐标为(0,3),点B的坐标为(-1,0),则AO=3,BO=1.在Rt△ABO中,∵tan∠ABO=AOBO=3,∴∠ABO=60°.(2)过A的直线l交x轴半轴于C,AB=AC,求直线l的函数解析式.解:在△ABC 中,∵AB =AC ,AO ⊥BC ,∴AO 为BC 的中垂线,即BO =CO ,则C 点的坐标为(1,0).设直线l 的解析式为y =kx +b (k ,b 为常数),则⎩⎨⎧3=b ,0=k +b , 解得⎩⎨⎧k =-3,b = 3.即直线l 的函数解析式为y =-3x + 3.11. 如图,直线l :y =-23x -3与直线y =a (a 为常数)的交点在第四象限,则a 可能在( )A .1<a <2B .-2<a <0C .-3≤a ≤-2D .-10<a <-4【解析】∵直线l :y =-23x -3与y 轴的交点坐标为(0,-3),∴要使y =a 与l 的交点在第四象限,直线y =a 应位于点(0,-3)下方,即a 的取值应小于-3.∴a 可能在-10<a <-4内.故选D .【答案】D 12.若式子k -1+(k -1)0有意义,则一次函数y = (k -1)x +1-k 的图象可能是( A )13.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( )A .(3,1)B .⎝ ⎛⎭⎪⎫3,43C .⎝ ⎛⎭⎪⎫3,53 D .(3,2) 【解析】如图,作点D 关于直线AB 的对称点H ,连结CH 与AB 的交点为E ,此时△CDE 的周长最小.∵D ⎝ ⎛⎭⎪⎫32,0,A (3,0), ∴H ⎝ ⎛⎭⎪⎫92,0,∴直线CH 的解析式为y =-89x +4,∴x =3时,y =43,∴点E 的坐标为⎝ ⎛⎭⎪⎫3,43.故选B . 【答案】B14.在20 km 的越野赛中,甲、乙两选手的行程y (单位:km)随时间x (单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10 km ;③出发后1.5小时,甲的行程比乙多3 km ;④甲比乙先到达终点.其中正确的有( )A .1个B .2个C .3个D .4个【解析】①相遇前有两段,前半小时乙的速度大于甲的速度,第0.5~1小时乙的速度小于甲的速度,因此①不正确;②出发后1小时,两人的路程均为10 km ,正确;③出发后1.5小时,乙的路程为8+1×4=12(km),甲的路程为10×1.5=15(km),∴出发后1.5小时,甲的行程比乙多3 km 正确;④甲第2小时到达终点,乙在2小时后到达,∴②③④正确.故选C .【答案】C15.已知直线y =2x +(3-a )与x 轴的交点在A (2,0),B (3,0)之间(包括A ,B 两点)则a 的取值范围是7≤a ≤9.【解析】直线y =2x +(3-a )与x 轴的交点为⎝ ⎛⎭⎪⎫a -32,0,∵交点在A (2,0),B (3,0)之间(包括A ,B 两点),∴2≤a -32≤3,解得7≤a ≤9. 16.已知二元一次方程组⎩⎨⎧x -y =-5,x +2y =-2 的解为⎩⎨⎧x =-4,y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为(-4,1). 【解析】直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标就是二元一次方程组⎩⎨⎧x -y +5=0,x +2y +2=0的解.∴交点坐标为(-4,1).17.如图,经过点B (-2,0)的直线y =kx +b 与直线y =4x +2相交于A (-1,-2),则不等式4x +2<kx +b <0的解为-2<x <-1.18.如图,在平面直角坐标系中,函数y =2x 和y = -x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2 017的坐标为 .【解析】观察,发现规律:A 1(1,2),A 2(-2,2),A 3(-2,-4),A 4(4,-4),A 5(4,8),…,∴A 2n +1((-2)n ,2(-2)n )(n 为自然数).∵2 017=1 008×2+1,∴A2 017的坐标为((-2)1 008,2(-2)1 008)=(21 008,21 009).【答案】(21 008,21 009)19. 如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;解:直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)若点M,N位于l的异侧,确定t的取值范围;解:当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵8=1+t,∴t=7,∴4<t<7.(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.解:当t=1时,落在y轴上;当t=2时,落在x轴上.20.在新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y (元/m 2)与楼层x (1≤x ≤23,x 取整数)之间的函数关系式;解:当8≤x ≤23,x 取整数时,y =4 000+50(x -8)=50x +3 600;当1≤x <8,x 取整数时,y =4 000-30(8-x )=30x +3 760.∴y =⎩⎨⎧30x +3 760(1≤x <8,x 取整数),50x +3 600(8≤x ≤23,x 取整数).(2)王老师要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算. 解:当x =16时,y =3 600+50×16=4 400,总价=4 400×120=528 000(元).方案一:528 000×(1-8%)-a ;方案二:528 000×(1-10%).令528 000×(1-8%)-a =528 000×(1-10%),解得a =10 560.∴当a <10 560时,选择方案二更加合算;当a =10 560时,两种方案均可;当a >10 560时,选择方案一更加合算.。
2019中考一次函数专题训练(1)一、选择题1. (2018<常徳)若一次函数y 二(k ・2) x+1的函数值y 随x 的增大而增大,则 ( )A. k <2B. k >2C. k >0D. k <02. (2018>湘西州)一次函数y=x+2的图象与y 轴的交点坐标为( )A. (0, 2)B. (0, 一2)C. (2, 0)D. ( - 2, 0)3. (2018<娄底)将直线y=2x ・3向右平移2个单位,再向上平移3个单位后, 所得的直线的表达式为() A. y=2x - 4 B. y 二2x+4 C. y=2x+2 4. (2018<陕西)如图,在矩形AOBC中,A ( - 2, 0) ,B (0, 1)・若正比例5. (2018>枣庄)如图,直线I 是一次函数y 二kx+b 的图象,若点A (3, m )在 直线I 上,则m 的值是()A. - 5B. yC.昔D. 7 6. (2018>贵阳)一次函数y=kx - 1的图象经过点P,且y 的值随x 值的增大而 增大,则点P 的坐标可以为( )A. (-5, 3) B ・(1, - 3) C. (2, 2) D. (5,- 1) 7. (2018<天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速 度行驶lh 后,乙车才沿相同路线行驶.乙车先到达B 地并停留lh 后,再以原 速按原路返回,直至与甲车相遇.在此过程屮,两车之间的距离y (km )与乙车 行驶吋间x (h )之间的函数关系如图所示•下列说法:①乙车的速度是120km/h ;函数y 二kx 的图象经过点C,则k 的值为( C BA 0 X A ,气B ・* ) C. - 2 D. 2 D. y=2x - 2②m=160;③点H的坐标是(7, 80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④& (2018*沈阳)在平面直角坐标系屮,一次函数y二kx+b的图象如图所示,则k 和b的取值范围是()A. k>0, b>0B. k>0, b<0C. k<0, b>0 D・ k<0, b<09. (2018*湘潭)若b>0,则一次函数y= - x+b的图象大致是()10. (2018>遵义)如图,直线y二kx+3经过点(2, 0),则关于x的不等式kx+3>0的解集是()A. x>2B. x<2C. x22D・ xW211. (2018*咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.己知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲岀发的吋间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其屮正确的结论有()A. 1个B. 2个C. 3个D・4个12. (2018<陕西)若直线I]经过点(0, 4) , I?经过点(3, 2),且丘与0关于x轴对称,则I]与J的交点坐标为()A. (-2, 0)B. (2, 0) C・(-6, 0) D. (6, 0)13. (2018*南充)直线y=2x 向下平移2个单位长度得到的直线是() A. y=2 (x+2) B. y=2 (x - 2) C. y=2x - 2 D. y=2x+214. (2018>南通模拟)函数y=-x 的图象与函数y=x+l 的图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限 二、填空题15. (2018*长春)如图,在平而直角坐标系中,点A 、B 的坐标分别为(1, 3)、 (n, 3),若直线y 二2x 与线段AB 有公共点,则n 的值可以为 _______ ・(写出一 个即可)16. (2018*济宁)在平面直角坐标系中,已知一次函数y= - 2x+l 的图象经过 Pi (xi ,y x )、P 2(x 2, y 2)两点,若 Xi <x 2,则 % ________ y 2.(填“>"<〃—〃)17. (2018*邵阳)如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2, 0), 与y 轴相交于点(0, 4),结合图象可知,关于x 的方程ax+b 二0的解是 ________18. (2018<安顺)正方形AiBAO, A 2B 2C 2C!,A 3B 3C 3C 2, ...按如图的方式放置, 点Ai ,A 2,A 3...和点C I ,C2,G.・.分别在直线y=x+l 和x 轴上,则点B n 的坐标为三、解答题19. (2018*徐州)为缓解油价上涨给出租车待业带来的成本压力,某市自2018 年口月17 R 起,调整出租车运价,调整方案见下列表格及图象(其中a, b, c 为常数) 行驶路程收费标准调价前调价后 不超过3km 的部分起步价6元 起步价a 元 超过3km 不超出6km 的部分超出6km 的部分每公里2.1元每公里b 元 每公里c 元设行驶路程xkm时,调价前的运价yi (元),调价后的运价为丫2 (元)如图, 折线ABCD表示丫2与x之间的函数关系式,线段EF表示当0WxW3时,“与x的函数关系式,根据图表信息,完成下列各题:①填空:a= ____ , b= ____ , c= ____ .②写出当x>3时,y】与x的关系,并在上图中画出该函数的图象.③函数“与丫2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的20. (2018•上海)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程屮,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?代(升)O 150 米)21. (2018・南通模拟)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车俩行驶的时间为Xh,两车之间的距离为ykm,图中的折线表示y与x 之间的函数关系,根据图象解决以下问题:(1) 慢车的速度为___ km/h,快车的速度为_m/h;(2) 解释图中点C的实际意义并求出点C的坐标;(3) 求当x为多少时,两车之间的距离为500km・。
2019 初三数学中考复习一次函数专项复习练习1.已知一次函数y=(m-1)x-3的图象经过(1,4),则m的值为( C )A.7 B.0 C.8 D.22.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( D ) A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<03. 把正比例函数y=2x的图象向下平移3个单位后,所得图象的函数关系式为( B )A.y=2(x-3) B.y=2x-3 C.y=2x+3 D.y=2x4.一次函数y=x+3的图象与两坐标轴所围成的三角形面积为( D )A.6 B.3 C.9 D.4.55. 当b<0时,一次函数y=x+b的图象大致是( B )6.下列四组点中,可以在同一个正比例函数图象上的一组点是( C )A.(2,-3),(-4,6) B.(-2,3),(4,6)C.(-2,-3),(4,-6) D.(2, 3),(-4,6)7.已知正比例函数y=kx过点(5,3),(m,4),则m的值为( C )A.125B.-125C.203D.-2038.一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0),在同一平面直角坐标系的图象是( A )9.已知正比例函数y=(m-1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( A )A.m<1 B.m>1 C.m<2 D.m>010.已知函数y=ax+b经过(1,3),(0,-2),则a-b=( D )A.-1 B.-3 C.3 D.711. 在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5图象交于点M,则点M的坐标为( D )A. (-1,4)B. (-1,2) C.(2,-1) D.(2,1)12.如图,直线y=kx+b与y轴交于点(0,3),与x轴交于点(a,0),当a满足-3≤a<0时,k的取值范围是( C )A.-1≤k<0 B.1≤k≤3 C.k≥1 D.k≥313.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列,用“<”连接为__a<c<b__.14.如图,已知一次函数y=kx+b(k,b均为常数,且k≠0),根据图象所提供的信息,求得关于x的方程kx+b=0的解为__x=-1__.15.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P(1,3), 则关于x 的不等式x +b >kx +4的解集是__x >1__.16.如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x 轴,y 轴分别交与点C ,点D.若DB =DC ,则直线CD 的函数解析式为__y =-2x -2__.17.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第__120__秒.18.某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请你根据图象回答下列问题:(1)出租车的起步价是多少元?当x >3时,求y 关于x 的函数解析式; (2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.解:(1)由图象得出租车的起步价是8元,设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象得⎩⎪⎨⎪⎧8=3k +b ,12=5k +b ,解得⎩⎪⎨⎪⎧k =2,b =2,故y 与x 的函数关系式为y =2x +2 (2)当y =32时,32=2x +2,x =15,答:这位乘客乘车的里程是15 km19.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1 h 后,y 甲,y 乙与x 之间的函数图象如图所示. (1)甲的速度是__60__km/h ;(2)当1≤x≤5时,求y 乙关于x 的函数解析式;(3)当乙与A 地相距240 km 时,甲与A 地相距__220__km.解:(2)当1≤x≤5时,设y 乙=kx +b ,把(1,0)与(5,360)代入得:⎩⎪⎨⎪⎧k +b =0,5k +b =360,解得k =90,b =-90,则y 乙=90x -90 (3)∵乙与A 地相距240 km ,且乙的速度为360÷(5-1)=90 km/h ,∴乙用的时间是240÷90=83 h ,则甲与A 地相距60×(83+1)=220 km20.一鱼池有一进水管和出水管,出水管每小时可排出5 m 3的水,进水管每小时可注入3 m 3的水,现鱼池约有60 m 3的水.(1)当进水管、出水管同时打开时,请写出鱼池中的水量y(m 3)与打开的时间x(h)之间的函数关系式;(2)根据实际情况,鱼池中的水量不得少于40 m 3,如果管理人员在上午8:00同时打开两水管,那么最迟不得超过几点,就应关闭两水管?解:(1)由题意,得y =3x +60-5x ,y =-2x +60(2)由题意,得-2x +60≥40,解得:x≤10.∴10+8=18,∴最迟不得超过18点21. 胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.解:(1)甲旅行社的总费用:y 甲=640×0.85x=544x ;乙旅行社的总费用:当0≤x≤20时,y 乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x-20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社2019-2020学年数学中考模拟试卷一、选择题1.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°2x的取值范围在数轴上表示正确的是()A.B.C.D.3.已知下列命题:①若a<b<0,则1a>1b;②若三角形的三边a、b、c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形;③斜边和一条直角边对应成比例的两个直角三角形相似;④两条对角线互相垂直平分的四边形是矩形.其中原命题与逆命题均为真命题的个数是 ( )A.1个B.2个C.3个D.4个4.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,OC=3,则EC 的长为()B.8 D.25.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n.则11m n+的值为()A.35B.35-C.53D.53-6.如图,直线a∥b,等边三角形ABC的顶点B在直线b上,若∠1=34°,则∠2等于()A.84°B.86°C.94°D.96°7.下面四个图形中,能判断∠1>∠2的是()A .B .C .D .8.如图,已知正五边形 ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒9.函数1(0)y x x =>与4(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点,直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连结AC 、BC .当AB 从左向右平移时,△ABC 的面积( )A .不变B .逐渐减小C .逐渐增大D .先增大后减小10.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .11.下列说法中,正确的是( )A .为检测某市正在销售的酸奶质量,应该采用普查的方式B .若两名同学连续六次数学测试成绩的平均分相同,则方差较大的同学的数学成绩更稳定C .抛掷一个正方体骰子,朝上的面的点数为偶数的概率是12D .“打开电视,正在播放广告”是必然事件12.如图,在平面直角坐标系网格中,点Q 、R 、S 、T 都在格点上,过点P(1,2)的抛物线y=ax 2+2ax+c(a<0)可能还经过( )A .点QB .点RC .点SD .点T二、填空题13.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛.设共有x 个队参加比赛,则依题意可列方程为__________.14=2,则x 的值为_______.15.如图,▱ABCD 中,E 是AD 边上一点,,CD=3,,∠A=45°,点P 、Q 分别是BC ,CD 边上的动点,且始终保持∠EPQ=45°,将△CPQ 沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP 的长为______.16.一个三角板(含30、60角)和一把直尺摆放位置如图所示,直尺与三角板的一角相交于点A ,一边与三角板的两条直角边分别相交于点D 、点E ,且CD CE =,点F 在直尺的另一边上,那么BAF ∠的大小为_____°.17有意义,那么x 的取值范围是________.18.如图,六边形ABCDEF 是正六边形,若l 1∥l 2,则∠1﹣∠2=_____.三、解答题19.吴京同学根据学习函数的经验,对一个新函数y =2545x x --+的图象和性质进行了如下探究,请帮他把探究过程补充完整(1)该函数的自变量x的取值范围是.(2)列表:表中m=,n=.(3)描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:(4)观察所画出的函数图象,写出该函数的两条性质:①;②.20.如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若DE=4,AD=6,求⊙O半径.21.已知二次函数y=﹣x2+2mx﹣m2﹣1(m为常数).(1)证明:不论m为何值,该函数的图象与x轴没有公共点;(2)当自变量x的值满足﹣3≤x≤﹣1时,与其对应的函数值y的最大值为﹣5,求m的值.22.给定关于x的二次函数y=kx2﹣4kx+3(k≠0),(1)当该二次函数与x轴只有一个公共点时,求k的值;(2)当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;(3)由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.23.学习完一次函数后,小荣遇到过这样的一个新颖的函数:y=|x-1|,小荣根据学校函数的经验,对函数y=|x-1|的图象与性质进行了探究。
2018 初三中考数学复习一次函数专题复习练习1. 下列表达式中,y不是x的函数的是( B )A.y=-x2 B.y2=x C.y=|x| D.y=-x2+12.下列函数中,自变量x的取值范围是x>0的函数是( D )A.y=x B.y=1xC.y=x2+1 D.y=12x-13. 下列变量之间的变化关系不是一次函数的是( B )A.圆的周长和它的半径 B.圆的面积和它的半径C.2x+y=5中的y和x D.正方形的周长C和它的边长a4.下列说法中不正确的是( D )A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数5. 下列图象中,表示y是x的函数的个数有( B )A.1个 B.2个 C.3个 D.4个6.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长恰好为24米,要围的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是( B )A .y =-2x +24(0<x<12)B .y =-12x +12(0<x<24)C .y =2x -24(0<x<12)D .y =12x -12(0<x<24)7.一次函数y =mx +|m -1|的图象过点(0,2),且y 随x 的增大而增大,则m 等于( B )A .-1B .3C .1D .-1或38.下列四组点中可以在同一个正比例函数图象上的一组点是( A ) A .(2,-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 9.对于函数y =-12x +3,下列说法错误的是( C )A .图象经过点(2,2)B .y 随着x 的增大而减小C .图象与y 轴的交点是(6,0)D .图象与坐标轴围成的三角形面积是9 10.关于x 的一次函数y =kx +k 2+1的图象可能正确的是( C )11.P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-2x +5图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是( C )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1>y 2>012.已知一次函数y =32x +m 和y =-12x +n 的图象都经过点A(-2,0),且与y 轴分别交于B ,C 两点,那么△ABC 的面积是( C ) A .2 B .3 C .4 D .613.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( C )A .4B .8C .16D .8 214.如图,已知直线l ∶y =33x ,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 2 013的坐标为( C )A .(0,22 013)B .(0,22 014)C .(0,24 026)D .(0,24 024) 15.将直线y =2x 向上平移1个单位长度后得到的直线是__y =2x +1__. 16.函数y =x +3x -4中,自变量x 的取值范围是__x ≥0且x ≠4__.17.一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是 __m >-2__.18.直线y =3x -m -4经过点A(m ,0),则关于x 的方程3x -m -4=0的解是 __x =2__.19.已知某一次函数的图象经过点A(0,2),B(1,3),C(a ,1)三点,则a 的值是__-1__.20.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是__4__.21.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式为__y =x -2或y =-x +2__.22.直线l 与y =-2x +1平行,与直线y =-x +2交点的纵坐标为1,则直线l 的解析式为__y =-2x +3__.23.已知:一次函数y =kx +b 的图象经过M(0,2),N(1,3)两点. (1)求k ,b 的值;(2)若一次函数y =kx +b 的图象与x 轴的交点为A(a ,0),求a 的值.解:(1)由条件得b =2,把⎩⎪⎨⎪⎧x =1y =3代入y =kx +2中得k =1(2)由(1)得y =x +2,当y =0时,x =-2,即a =-224.联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式; (2)月通话时间多长时,A ,B 两种套餐收费一样? (3)什么情况下A 套餐更省钱? 解:(1)y 1=0.1x +15,y 2=0.15x(2)由y 1=y 2得0.1x +15=0.15x 解得x =300 (3)当通话时间多于300分钟时,A 套餐省钱25.设函数y =x +n 的图象与y 轴交于点A ,函数y =-3x -m 的图象与y 轴交于点B ,两个函数的图象交于点C(-3,1),D 为AB 中点. (1)求m ,n 的值;(2)求直线DC 的一次函数表达式. 解:(1)m =8,n =4(2)由(1)得A(0,4),B(0,-8).因为D 是AB 的中点,所以D(0,-2),设直线CD 的表达式为y =kx +b ;⎩⎪⎨⎪⎧b =-2,-3k +b =1解得⎩⎪⎨⎪⎧k =-1b =-2,即y =-x -226.某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的关系,并画出如下的图象(AC 是线段,直线CD 平行于x 轴.) (1)该植物从观察时起,多少天以后停止长高? (2)求直线AC 的表达式,并求该植物最高长多少厘米?解:(1)50天后(2)设直线AC 的表达式为y =kx +6,将(30,12)代入,得12=30k +6,解得k =15,表达式为y =15x +6,最高长16厘米27.1号探测气球从海拔5 m 处出发,以1 m/min 的速度上升.与此同时,2号探测气球从海拔15 m 处出发,以0.5 m/min 的速度上升,两个气球都匀速上升了50min.设气球上升时间为 x min(0≤x ≤50) (1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当30≤x ≤50时,两个气球所在位置的海拨最多相差多少米? 解:(1)35 x +5 20 0.5x +15(2)能.由x +5=0.5x +15得x =20,所以x +5=25,即气球上升20 min 时位于海拔25 m 处(3)当30≤x ≤50时,1号气球始终在2号汽球上方,设两气球的海拔差为y ,则y =(x +5)-(0.5x +15)=0.5x -10,y 随x 的增大而增大,所以当x =50时,y 的值最大,为15米28.如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0),点P(x ,y)是第二象限内的直线上的一个动点. (1)求k 的值;(2)在点P 的运动过程中,写出△OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置(求P 的坐标)时,△OPA 的面积为278?解:(1)k =34(2)由(1)得y =34x +6所以S =12×6×(34x +6)所以S =94x +18(-8<x<0)(3)由S =94x +18=278得x =-132,y =34×(-132)+6=98,所以P(-132,98)即P 运动到点(-132,98)时,△OPA 的面积为27829.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y =k 1x +b 1(k 1≠0)的图象为直线l 1,一次函数y =k 2x +b 2(k 2≠0)的图象为直线l 2,若k 1=k 2,且b 1≠b 2,我们就称直线l 1与直线l 2互相平行.解答下面的问题:(1)求过点P(1,4)且与已知直线y =-2x -1平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A ,B ,如果直线m :y =kx +t(t >0)与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:(1)y =-2x +6,图略(2)当0<t<6时,S =9-32t ;当t ≥6时,S =32t -9。
中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。
2018~2019 数学中考专项练习:一元一次方程【沙盘预演】1.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【解析】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.2.若m=﹣2,则代数式m2﹣2m﹣1的值是()A.9 B.7 C.﹣1 D.﹣9【解析】解:当m=﹣2时,原式=(﹣2)2﹣2×(﹣2)﹣1=4+4﹣1=7,故选B.3.已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.3【解析】解:∵a2+3a=1,∴2a2+6a﹣1=2(a2+3a)﹣1=2×1﹣1=1.故选:B.4.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【解析】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选D5.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【解析】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.6.若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.5【解析】解:当a=2,b=﹣1时,原式=2﹣2+3=3,故选B7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元【解析】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.8.若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣ C.﹣5 D.【解析】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C.9.在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)【解析】解:方程两边同时乘以6得:2(x﹣1)+6x=3(3x+1),故选B.10.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【解析】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.11.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16 台.【解析】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.12.解方程:5x+2=3(x+2) .【解析】解:去括号得5x+2=3x+6,移项合并得2x=4,∴x=2.【沙场点兵】1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元【解析】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.2.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人【解析】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.3.将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019 B.2018 C.2016 D.2013【解析】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.4.(2018•香坊区)某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元【解析】解:设这种商品每件的进价为x元,由题意得,270×0.8﹣x=20%x,解得:x=180,即每件商品的进价为180元.故选:A.5.(2018•曲靖)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为80元.【解析】解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.6.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【解析】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.7.(2018•张家界)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?【解析】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(员),答:买羊人数为21人,羊价为150元.8.2018•安徽)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【解析】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.。
初三中考数学复习一次函数与一元一次方程
专题复习练习
1. 以下列长度为三边构成的三角形不是直角三角形的是( )
A.2,3,4
B.5,12,13
C.6,8,10
D.7,24,25
2. ABCD中,∠A∶∠B∶∠C∶∠D的值可以是( )
A. 4∶3∶3∶4
B. 7∶5∶5∶7
C. 4∶3∶2∶1
D. 7∶5∶7∶5
3. 直线y=kx+3与x轴的交点是(1,0),则kx+3=0的解是( )
A.x=3
B.x=1
C.x=-2
D.x=-3
4. 已知直线y=kx+b与直线y=3x-1交y轴于同一点,则b的值是( )
A. 1
B.-1
C. 13
D. -13
5. 下列哪个点不在一次函数y=2x+3的图象上?( )
A.(0,3)
B. (-2,-1)
C. (3,0)
D.(1,5)
6. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是( )
A.钝角三角形 B.锐角三角形 C.直角三角形 D.等边三角形
7. 直线y=x-1上的点在x轴上方时对应的自变量的范围是( )
A.x>1
B.x≥1
C.x<1
D.x≤1
8. 一次函数y=-4x+12的图象向下平移3个单位长度,则平移后的函数解析式为___________.
9. 直线y=3x+9与x轴的交点是_________.
10. 当自变量x的值满足___________时,直线y=-x+2上的点在x轴下方.
11. 当自变量x为何值时,函数y=2x+20的值为0?
12. 根据图中所示图象,直接写出相应方程以及方程的解.
13. 根据图中所示,直接写出关于x的方程kx+b=0的解为_______,关于x的方程kx+b=2的解为________.
14. 已知直线y=kx-3经过点M(-2,1),求此直线与x轴,y轴的交点坐标.
15. 已知直线y=-2x+4与x轴交于点A,与y轴交于点B,求△AOB的面积.
参考答案:
1---7 ADBBC CA
8. y=-4x+9
9. (-3,0)
10. x>2
11. 解:x=-10.
12. (1)-3x+6=0,x=2;(2)x+2=0,x=-2.
13. x=1 x=0
14. 解:与x轴交点为(-,0),与y轴交点为(0,-3).
15. 解:4.。