高三数学一轮复习2
- 格式:pdf
- 大小:591.80 KB
- 文档页数:2
2023届高三数学一轮复习模拟冲刺卷(二)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U ={}0,1,3,5,6,8 ,A ={}3,5,8 ,B ={}2 ,则()∁U A ∪B =( ) A .{}0,1,2,6 B .{}0,3,6 C .{}1,2,5,8 D .∅2.已知a 是实数,a -i1+i是纯虚数,则a =( )A .1B .-1C .2D .-23.某地实行高考改革,考生除参加语文、数学、外语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科,要求物理、化学、生物三科至少选一科,政治、历史、地理三科至少选一科,则考生共有多少种选考方法( )A .6B .12C .18D .24 4.陀螺指的是绕一个支点高速转动的几何体,是中国民间最早的娱乐工具之一.传统陀螺大致是木或铁制的倒圆锥形,玩法是用鞭子抽.中国是陀螺的老家,从中国山西夏县新石器时代的遗址中,就发掘了石制的陀螺.如图,一个倒置的陀螺,上半部分为圆锥,下半部分为同底圆柱,其中总高度为8 cm ,圆柱部分高度为6 cm ,已知该陀螺由密度为0.7 g/cm 3的木质材料做成,其总质量为70 g ,则最接近此陀螺圆柱底面半径的长度为( )A .2.2 cmB .2.4 cmC .2.6 cmD .2.8 cm5.从边长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点中选取4个点,其中这4个点中任意两点间的距离都相等的概率为( )A .15B .17C .335D .1356.2020年我国832个贫困县全部“摘帽”,脱贫攻坚战取得伟大胜利.湖北秭归是“中国脐橙之乡”,全县脐橙综合产值年均20亿元,被誉为促进农民增收的“黄金果”.已知某品种脐橙失去的新鲜度h 与其采摘后的时间t (天)满足关系式:h =m ·a t .若采摘后10天,这种脐橙失去的新鲜度为10%,采摘后20天失去的新鲜度为20%,那么采摘下来的这种脐橙在多长时间后失去50%的新鲜度(已知lg 2≈0.3,结果四舍五入取整数)( )A .23天B .33天C .43天D .50天7.已知P 是边长为2的正三角形ABC 的边BC 上的一点,则AP → ·AB →的取值范围是( ) A .[2,6] B .[2,4] C .(2,4) D .(0,4)8.已知定义在R 上的奇函数f ()x 满足f ()π+x =f ()-x ,当x ∈()0,π 时,f ()x =sin xx 2-πx +π,则下列结论正确的是( )A .π是函数f ()x 的周期B .函数f ()x 在R 上的最大值为2C .函数f ()x 在⎝⎛⎭⎫-π2,π2 上单调递减 D .方程f ()x -12=0在x ∈()-10,10 上的所有实根之和为3π二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知双曲线的方程为x 216 -y 29=1,则下列说法正确的是( )A .焦点为(±7 ,0)B .渐近线方程为3x ±4y =0C .离心率e =54D .焦点到渐近线的距离为410.函数f ()x =A sin ()ωx +φ ()ω>0,A >0 的部分图象如图所示,则( )A .ω=π2 B .A =6C .φ=-π4D .f ()0 =-311.已知a >0,b >0,且a -b =1,则( ) A .e a -e b >1 B .a e -b e <1C .9a -1b≤4 D .2log 2a -log 2b ≥212.下列命题中,说法正确的是( )A .已知随机变量服从二项分布B (n ,p ),若D (X )=20,E (X )=30,则p =23B .将一组数据中的每个数据都加上同一个常数后,方差恒不变C .设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ≤0)=12-pD .某人在10次射击中,击中目标的次数为X ,X ~B (10,0.8),则当X =8时概率最大 三、填空题:本题共4小题,每小题5分,共20分.13.向量a =(1,2),b =(x ,1).若(a +b )⊥(a -b ),则x =________.14.在各项都为正数的等比数列{}a n 中,已知0<a 1<1,其前n 项之积为T n ,且T 12=T 6,则T n 取最小值时,n 的值是________.15.过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与C 相交于A ,B 两点,且A ,B 两点在准线上的射影分别为M ,N ,△AFM 的面积与△BFN 的面积互为倒数,则△MFN 的面积为________.16.过曲线y =x +1x(x >0)上一点P 作该曲线的切线l ,l 分别与直线y =x ,y =2x ,y 轴相交于点A ,B ,C .设△OAC ,△OAB 的面积分别为S 1,S 2,则S 1=________,S 2的取值范围是________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c 已知b (sin B +sin C )=a sin A -c sin C .(1)求角A 的大小.(2)若sin ⎝⎛⎭⎫C -π6 =1313,求tan B 的值.18.(12分)已知首项为32的等比数列{}a n 的前n 项和为S n (n ∈N *), 且-2S 2,S 3,4S 4成等差数列.(1)求数列{}a n 的通项公式;(2)证明:S n +1S n ≤136(n ∈N *).19.(12分)华为手机作为全球手机销量第二位,一直深受消费者喜欢.惠州某学校学习小组为了研究手机用户购买新手机时选择华为品牌是否与年龄有关系,于是随机调查了100个2021年购买新手机的人,得到如下不完整的列联表.定义用户年龄30岁以下为“年轻用户”,30(1)龄有关?(2)若从购买华为手机用户中采取分层抽样的方法抽出9人,再从中随机抽取3人,其中年轻用户的人数记为X ,求X 的分布列和数学期望.附:χ2=n ()ad -bc 2()a +b ()c +d ()a +c ()b +d .20.(12分)如图,在三棱柱ABC A 1B 1C 1中,侧面ABB 1A 1是菱形,∠BAA 1=60°,E 是棱BB 1的中点,CA =CB ,F 在线段AC 上,且AF =2FC .(1)证明:CB 1∥平面A 1EF ;(2)若CA ⊥CB ,平面CAB ⊥平面ABB 1A 1,求二面角F A 1E A 的余弦值.21.(12分)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为22,焦距为2.(1)求椭圆C 的方程;(2)设A ,B 为椭圆C 上两点,O 为坐标原点,k OA ·k OB =-12,点D 在线段AB 上,且AD →=13 AB → ,连接OD 并延长交椭圆C 于E ,试问|OE ||OD | 是否为定值?若是定值,求出定值;若不是定值,请说明理由.22.(12分)已知函数f (x )=x e x .(1)求f (x )在x =-2处的切线方程;(2)已知关于x 的方程f (x )=a 有两个实根x 1,x 2,当-1e <a <-2e2 时,求证:|x 1-x 2|<(e 2+1)a +4.2023届高三数学一轮复习模拟冲刺卷(二)1.答案:A解析:由题设知:∁U A ={0,1,6},而B ={}2 , ∴()∁U A ∪B ={0,1,2,6}.故选A. 2.答案:A解析:a -i1+i =()a -i ·()1-i ()1+i ·()1-i=a -1-()a +1i 2 ,所以⎩⎪⎨⎪⎧a -1=0a +1≠0 ,a =1.故选A.3.答案:C解析:从六科中选考三科的选法有C 36 ,其中包括了没选物理、化学、生物中任意一科与没选政治、历史、地理中任意一科,这两种选法均有C 33 ,因此考生的选考方法有C 36 -2C 33 =18种.故选C. 4.答案:A解析:由题可得该陀螺的总体积为700.7=100 cm 3, 设底面半径为r ,则可得πr 2×6+13 πr 2×()8-6 =100,解得r = 15π≈2.2 cm.故选A.5.答案:D解析:从边长为1的正方体的8个顶点中选取4个点,共有C 48 =70种情况,满足4个点中任意两点间的距离都相等的有ACB 1D 1,BDA 1C 1这2种情况,所以4个点任意两点间的距离都相等的概率为135,故选D.6.答案:B解析:由题意可知⎩⎪⎨⎪⎧10%=m ×a 1020%=m ×a 20,∴⎩⎪⎨⎪⎧a 10=2,m =5%,∴50%=5%×a t , ∴a t=10,即2t 10=10,∴t =10log 210,∴t ≈33, 故选B. 7.答案:B解析:如图所示,D 为AB 的中点,AP → ·AB → =|AP → ||AB →|cos ∠BAP ,当P 在B 时,AP → 在AB →方向上的投影AB 最大, ∴(AP → ·AB →)max =2×2=4,当P 在C 时,AP → 在AB →方向上的投影AD 最小, (AP → ·AB →)min =2×1=2, ∴AP → ·AB →的取值范围是[2,4].8.答案:D解析:∵f ()x 是R 上的奇函数,∴f ()-x =-f ()x ,∵f ()π+x =f ()-x =-f ()x ≠f ()x ,故π不是函数f ()x 的周期,且f ()x +2π =-f ()x +π =f ()x ,故2π是函数f ()x 的周期,故A 错误;当x ∈⎝⎛⎭⎫0,π2 时,y =sin x >0且单调递增,y =x 2-πx +π>0且单调递减,则f ()x 单调递增,故C 错误;当x ∈⎝⎛⎭⎫π2,π 时,y =sin x >0且单调递减,y =x 2-πx +π>0且单调递增,则f ()x 单调递减;且f ()0 =f ()π =0,又f ()x 是奇函数且周期为2π,∴f ()x max=f ⎝⎛⎭⎫π2 =44π-π2 ≠2,故B 错误;由f ()π+x =f ()-x 可得f ()x 关于x =π2对称,方程f ()x -12 =0的根等价于y =f ()x 与y =12的交点的横坐标,根据f ()x 的单调性和周期可得,y =f ()x 与y =12 在()0,π 有两个关于x =π2 对称的交点,在()2π,3π 有两个关于x =5π2对称的交点,在()-2π,-π 有两个关于x =-3π2 对称的交点,所以方程f ()x -12=0在x ∈()-10,10 上的所有实根之和为π2 ×2+5π2×2+⎝⎛⎭⎫-3π2 ×2=3π,故D 正确.故选D.9.答案:BC解析:对A ,焦点为(±5,0),故A 错误;对B ,渐近线方程为x 216 -y 29=0⇒3x ±4y =0,故B 正确;对C ,e =c a =54,故C 正确;对D ,焦点到渐近线的距离为d =3×542+32 =3,故D 错误;故选BC.10.答案:ABD解析:由已知,T 2 =8.5-6.5=2,所以T =4=2πω ,解得ω=π2 ,所以f ()x =A sin ⎝⎛⎭⎫π2x +φ . 又f ()8.5 =f ()0.5 =0,所以A sin ⎝⎛⎭⎫π4+φ =0,则π4 +φ=k π,k ∈Z ,即φ=-π4+k π,k ∈Z ①. 又f ()5 =3 ,即A sin ⎝⎛⎭⎫5π2+φ =3 ,所以A cos φ=3 ②.由①②可得A =6 ,所以f ()x =6 sin ⎝⎛⎭⎫π2x -π4 .故f ()0 =6 sin ⎝⎛⎭⎫-π4 =-3 .故选ABD. 11.答案:ACD解析:对A ,由a >0,b >0,且a -b =1可得a >b >0,则e a -e b =e b ()e a -b -1 =e b ()e -1 ,∵b >0,∴e b>1,又e -1>1,∴e b()e -1 >1,即e a-e b>1,故A 正确;对B ,令a =2,b =1,则a e -b e =2e -1>1,故B 错误;对C ,9a -1b =⎝⎛⎭⎫9a -1b ()a -b =10-⎝⎛⎭⎫9b a +a b ≤10-2 9b a ·a b =4,当且仅当9b a =a b时等号成立,故C 正确;对D ,2log 2a -log 2b =log 2a 2b =log 2()b +12b=log 2⎝⎛⎭⎫b +1b +2 ≥log 2⎝⎛⎭⎫2 b ·1b +2 =2,当且仅当b =1b ,即b =1时等号成立,故D 正确.故选ACD.12.答案:BCD解析:A 选项:⎩⎪⎨⎪⎧np (1-p )=20np =30 ,两式相除得1-p =23 ,故p =13,故A 错误;B 选项:由D (aX +b )=a 2D (X )知,当a =1时D (X +b )=D (X ),故B 正确;C 选项:由ξ~N (0,1)可知P (ξ≤0)=12,且P (ξ≤-1)=P (ξ≥1)=p ,所以P (-1<ξ≤0)=P (ξ≤0)-P (ξ<-1)=12 -p ,故C 正确;D 选项:P (X =k )P (X =k +1) =C k 10 ×0.8k ×0.210-kC k +110×0.8k +1×0.29-k =k +14(10-k ),P (X =k )P (X =k -1) =C k 10 ×0.8k ×0.210-kC k -110 ×0.8k -1×0.211-k =4(11-k )k令⎩⎪⎨⎪⎧k +14(10-k )≥14(11-k )k ≥1 ,解得395 ≤k ≤445,又k ∈Z ,故k =8,故k =8时概率最大,故D 正确.故选BCD. 13.答案:±2解析:(a +b )=(1+x ,3),(a -b )=(1-x ,1),(a +b )⊥(a -b )=(1-x )(1+x )+3=1-x 2+3=4-x 2=0,所以x =±2. 14.答案:9解析:由T 12=T 6得T 12T 6=1,即a 7a 8a 9a 10a 11a 12=()a 9a 10 3=1故a 9a 10=1,因为a 1a 18=a 9a 10,则a 1a 18=1,由于0<a 1<1,得a 18>1,所以等比数列{}a n 是递增数列,故0<a 9<1<a 10, 则T n 取最小值时,n =9. 15.答案:2解析:设∠MAF =θ,||AF =a ,||BF =b ,由抛物线定义可得||AM =a ,||BN =b , 且180°-2∠AFM +180°-2∠BFN =180°,故∠AFM +∠BFN =90°, 故∠MFO +∠NFO =90°即MF ⊥NF .由余弦定理得||MF 2=2a 2(1-cos θ),||NF 2=2b 2(1+cos θ),S △MAF =12 a 2sin θ,S △NBF =12b 2sin θ因为△AFM 的面积与△BFN 的面积互为倒数, 所以有12 a 2sin θ·12b 2sin θ=1,即a 2b 2sin 2θ=4,所以(S △MFN )2=(14 ||MF 2 ||NF 2)=a 2b 2sin 2θ=4,所以△MFN 的面积为2.16.答案:2 (0,2)解析:由y =x +1x ,得y ′=1-1x 2 ,设P (x 0,x 0+1x 0 )(x 0>0),则y ′|x =x 0=1-1x 20,∴曲线在P 处的切线方程为y -x 0-1x 0 =(1-1x 20 )(x -x 0).分别与y =x 与y =2x 联立,可得A (2x 0,2x 0),B (2x 0x 20 +1 ,4x 0x 20 +1 ),取x =0,可得C (0,2x 0 ),又O (0,0),∴△OAC 的面积S 1=12 ×2x 0 ×2x 0=2;OA =4x 20 +4x 20 =22 x 0,点B 到直线x -y =0的距离 d =⎪⎪⎪⎪⎪⎪2x 0x 20 +1-4x 0x 20 +12 =2x 0x 20 +1 .∴△OAB 的面积S 2=12 ×22 x 0×2x 0x 20 +1 =2x 20 x 20 +1 =21+1x 20∈(0,2).17.解析:(1)因为b (sin B +sin C )=a sin A -c sin C , 所以由正弦定理,得b (b +c )=a 2-c 2, 即b 2+c 2-a 2=-bc .由余弦定理,得cos A =b 2+c 2-a 22bc =-12.又0<A <π,故A =2π3 .(2)由(1)知,C ∈⎝⎛⎭⎫0,π3 ,则C -π6 ∈⎝⎛⎭⎫-π6,π6 . 因为sin ⎝⎛⎭⎫C -π6 =1313 ,所以cos ⎝⎛⎭⎫C -π6 =23913 , 故tan ⎝⎛⎭⎫C -π6 =123因为A +B +C =π,所以tan B =tan ⎝⎛⎭⎫π3-C =tan ⎣⎡⎦⎤π6-⎝⎛⎭⎫C -π6 =tan π6-tan ⎝⎛⎭⎫C -π61+tan π6tan ⎝⎛⎭⎫C -π6 =13-1231+13×123=37 .18.解析:(1)设等比数列{}a n 的公比为q ,因为-2S 2,S 3,4S 4成等差数列,所以S 3 + 2S 2 =4S 4-S 3,即2a 4=-a 3,于是q =a 4a 3 =-12 ,又a 1=32,所以等比数列{}a n 的通项公式为a n =32 ×(-12 )n -1=(-1)n -1·32n .(2)由(1)得S n =1-(-12 )n ,所以S n +1S n =1-⎝⎛⎭⎫-12 n +11-⎝⎛⎭⎫-12n =⎩⎪⎨⎪⎧2+12n (2n +1),n 为奇数,2+12n (2n -1),n 为偶数,当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1 =136 ;当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2 =2512 ,故对于n ∈N *,有S n +1S n ≤136.19.解析:(1)列联表χ2=100×()12×36-24×28236×64×40×60=2524 ≈1.042<2.706,所以没有90%的把握认为购买手机时选择华为与年龄有关.(2)由9×1236 =3,9×2436 =6,即年轻用户抽取3人,非年轻用户抽取6人.所以X 所有可能的取值为0,1,2,3P ()X =0 =C 03 C 36 C 39 =521 ,P ()X =1 =C 13 C 26C 39 =1528 ,P ()X =2 =C 23 C 16 C 39 =314 ,P ()X =3 =C 33 C 06C 39=184 ,所以X 的分布列为:所以E ()X =0×521 +1×1528 +2×314 +3×184 =1所以X 的数学期望值为1.20.解析:(1)连接AB 1交A 1E 于点G ,连接FG .因为△AGA 1∽△B 1GE ,所以AG GB 1 =AA 1EB 1=2,又因为AF FC =2,所以AF FC =AGGB 1,所以FG ∥CB 1,又CB 1⊄平面A 1EF ,FG ⊂平面A 1EF ,所以CB 1∥平面A 1EF .(2)过C 作CO ⊥AB 于O ,因为CA =CB ,所以O 是线段AB 的中点.因为平面CAB ⊥平面ABB 1A 1,平面CAB ∩平面ABB 1A 1=AB ,所以CO ⊥平面ABA 1.连接OA 1,因为△ABA 1是等边三角形,O 是线段AB 的中点,所以OA 1⊥AB .如图以O 为原点,OA → ,OA 1,OC →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,不妨设AB =2,则A (1,0,0),A 1(0,3 ,0),C (0,0,1),B (-1,0,0),F (13 ,0,23),由AA 1=BB 1,得B (-2,3 ,0),BB 1的中点E ⎝⎛⎭⎫-32,32,0 ,A 1E =⎝⎛⎭⎫-32,-32,0 ,A 1F =⎝⎛⎭⎫13,-3,23 . 设平面A 1FE 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧A 1F ·n 1=0A 1E ·n 1=0 ,即⎩⎨⎧x 13-3y 1+23z 1=0-32x 1-32y 1=0 , 得方程的一组解为⎩⎪⎨⎪⎧x 1=-1y 1=3z 1=5 ,即n 1=(-1,3 ,5).平面ABA 1的一个法向量为n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2||n 1||n 2 =52929 , 所以二面角F A 1E A 的余弦值为52929. 21.解析:(1)依题意,⎩⎪⎨⎪⎧c a =222c =2a 2=b 2+c 2 ,解得⎩⎪⎨⎪⎧a =2b =1c =1, ∴椭圆C 的方程为x 22+y 2=1; (2)设点A (x 1,y 1),B (x 2,y 2),D (x 3,y 3), 由AD → =13 AB → 得⎩⎪⎨⎪⎧x 3=2x 1+x 23y 3=2y 1+y 23 ,设|OE ||OD | =λ,则结合题意可知,OE → =λOD → ,故E (λx 3,λy 3),将点E (λx 3,λy 3)代入椭圆方程可得λ2⎝⎛⎭⎫x 23 2+y 23 =1,即1λ2 =x 23 2 +y 23 =⎝ ⎛⎭⎪⎫2x 1+x 2322 +⎝ ⎛⎭⎪⎫2y 1+y 23 2, 整理可得,1λ2 =49 ⎝⎛⎭⎫x 21 2+y 21 +49 ⎝⎛⎭⎫x 1x 22+y 1y 2 +19 ⎝⎛⎭⎫x 22 2+y 22 , 又∵点A ,B 均在椭圆上,且k OA ·k OB =-12 , ∴⎩⎪⎨⎪⎧x 21 2+y 21 =1x 22 2+y 22 =1k OA ·k OB =y 1x 1·y 2x 2=-12 , ∴λ=355 ,即|OE ||OD | 为定值355. 22.解析:(1)∵f (x )=x e x ,f (-2)=-2e2 ,∴f ′(x )=(x +1)e x ,f ′(-2)=-1e 2 , 故x =-2时的切线方程是y =-1e 2 (x +2)-2e 2 , 即y =-1e 2 x -4e 2 ; (2)证明:由(1)知:f (x )在(-∞,-1)递减,在(-1,+∞)递增,∵f (-1)=-1e ,f (-2)=-2e 2 , 当-1e <a <-2e 2 时,方程f (x )=a 有2个实根x 1,x 2,则x 1,x 2∈(-2,0), 令g (x )=f (x )+1e 2 x +4e 2 (-2<x <0), 则g ′(x )=(x +1)e x +1e 2 , 令h (x )=g ′(x ),则h ′(x )=(x +2)e x >0,故g ′(x )在(-2,0)递增,故g ′(x )>g ′(-2)=0,故g (x )在(-2,0)递增,故g (x )>g (-2)=0,故g (x 1)>0,故a =f (x 1)=g (x 1)-1e 2 x 1-4e 2 >-1e 2 x 1-4e 2 , 故-(e 2a +4)<x 1,故x ∈(-2,0)时,x e x >x ,故a =f (x 2)>x 2,故|x 1-x 2|<a +e 2a +4=(e 2+1)a +4.。
第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。
题组训练10 对数函数1.(log 29)·(log 34)的值为( ) A .14 B .12 C .2 D .4答案 D解析 原式=(log 232)·(log 322)=4(log 23)·(log 32)=4·lg3lg2·lg2lg3=4.2.(2018·某某某某模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A .a =b <c B .a =b >c C .a <b <c D .a >b >c 答案 B解析 a =log 23+log 23=log 233,b =log 29-log 23=log 233,因此a =b ,而log 233>log 22=1,log 32<log 33=1,所以a =b >c ,故选B. 3.若log a 23<1(a>0且a≠1),则实数a 的取值X 围是( )A .(0,23)B .(1,+∞)C .(0,23)∪(1,+∞)D .(23,1)答案 C解析 当0<a<1时,log a 23<log a a =1,∴0<a<23;当a>1时,log a 23<log a a =1,∴a>1.∴实数a 的取值X 围是(0,23)∪(1,+∞).4.函数y =ln 1|2x -3|的图像为( )答案 A解析 易知2x -3≠0,即x≠32,排除C ,D 项.当x>32时,函数为减函数,当x<32时,函数为增函数,所以选A.5.如图,函数f(x)的图像为折线ACB ,则不等式f(x)≥log 2(x +1)的解集是( ) A .{x|-1<x≤0} B .{x|-1≤x≤1} C .{x|-1<x≤1} D .{x|-1<x≤2} 答案 C解析 作出函数y =log 2(x +1)的大致图像,如图所示.其中函数f(x)与y =log 2(x +1)的图像的交点为D(1,1),结合图像可知f(x)≥log 2(x +1)的解集为{x|-1<x≤1},故选C.6.设函数f(x)=⎩⎪⎨⎪⎧1+log 2(2-x ),x<1,2x -1,x ≥1,则f(-2)+f(log 212)等于( )A .3B .6C .9D .12答案 C解析 因为-2<1,所以f(-2)=1+log 2[2-(-2)]=3. 因为log 212>1,所以f(log 212)=2log 212-1=2log 26=6. 所以f(-2)+f(log 212)=9.故选C.7.若实数a ,b ,c 满足log a 2<log b 2<log c 2<0,则下列关系中正确的是( ) A .a<b<c B .b<a<c C .c<b<a D .a<c<b答案 C解析 根据不等式的性质和对数的换底公式可得1log 2a <1log 2b <1log 2c<0,即log 2c<log 2b<log 2a<0,可得c<b<a<1.故选C. 8.(2014·某某,理)函数f(x)=log 12(x 2-4)的单调递增区间为( )A .(0,+∞) B.(-∞,0) C .(2,+∞) D.(-∞,-2) 答案 D解析 函数y =f(x)的定义域为(-∞,-2)∪(2,+∞),因为函数y =f(x)是由y =log 12t与t =g(x)=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g(x)在(-∞,-2)上单调递减,所以函数y =f(x)在(-∞,-2)上单调递增.选D.9.(2018·某某金陵中学模拟)设函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,log 12(-x ),x<0,若f(a)>f(-a),则实数a 的取值X 围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1)答案 C解析 由题意可得⎩⎪⎨⎪⎧a>0,log 2a>log 12a 或⎩⎪⎨⎪⎧a<0,log 12(-a )>log 2(-a ),解得a>1或-1<a<0,故选C.10.已知定义在R 上的函数f(x)=2|x -m|-1(m 为实数)为偶函数.记a =f(log 0.53),b =f(log 25),c =f(2m),则a ,b ,c 的大小关系为( ) A .a<b<c B .a<c<b C .c<a<b D .c<b<a答案 C解析 因为f(x)=2|x -m|-1为偶函数,所以m =0.因为a =f(log 123)=f(log 23),b =f(log 25),c =f(0),log 25>log 23>0,而函数f(x)=2|x -m|-1在(0,+∞)上为增函数,所以f(log 25)>f(log 23)>f(0),即b>a>c.故选C.11.若函数y =log a (x 2-ax +2)在区间(-∞,1]上为减函数,则a 的取值X 围是( )A .(0,1)B .[2,+∞)C .[2,3)D .(1,3)答案 C解析 当0<a<1时,由复合函数与对数函数的性质知,不合题意;当a>1时,要满足⎩⎪⎨⎪⎧12-a +2>0,a2≥1,解得2≤a<3. 12.已知函数f(x)=2+log 2x ,x ∈[1,2],则函数y =f(x)+f(x 2)的值域为( ) A .[4,5] B .[4,112]C .[4,132]D .[4,7]答案 B解析 y =f(x)+f(x 2)=2+log 2x +2+log 2x 2=4+3log 2x ,注意到为使得y =f(x)+f(x 2)有意义,必有1≤x 2≤2,得1≤x≤2,从而4≤y≤112.13.已知函数f(x)=xln(e 2x+1)-x 2+1,f(a)=2,则f(-a)的值为( ) A .1 B .0 C .-1 D .-2答案 B解析 f(x)+f(-x)=xln(e 2x+1)-x 2+1+[-xln(e -2x+1)-(-x)2+1]=x[ln(e 2x+1)-ln(e-2x+1)]-2x 2+2=xln e 2x +1e -2x +1-2x 2+2=xlne 2x-2x 2+2 =2x 2-2x 2+2=2, 所以f(a)+f(-a)=2,因为f(a)=2,所以f(-a)=2-f(a)=0.故选B.14.(2017·课标全国Ⅰ)设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x<3y<5z B .5z<2x<3y C .3y<5z<2x D .3y<2x<5z答案 D解析 ∵2x=3y=5z,∴ln2x=ln3y=ln5z,∴xln2=yln3=zln5.∴x y =ln3ln2,∴2x 3y =2ln33ln2=ln32ln23=ln9ln8>1, ∴2x>3y ,同理可得2x<5z. ∴3y<2x<5z.故选D. 15.log 327-log 33+(5-1)0-(94)12+cos 4π3=________.答案 0解析 原式=log 3(27÷3)+1-32-12=1+1-32-12=0.16.若log a (x +1)>log a (x -1),则x∈________,a ∈________. 答案 (1,+∞)(1,+∞)17.(1)若log a 3<log a π,则实数a 的取值X 围是________. (2)若log 3a<log πa ,则实数a 的取值X 围是________. 答案 (1)a>1 (2)0<a<1 18.设函数f(x)=|lgx|,(1)若0<a<b 且f(a)=f(b).证明:a·b=1; (2)若0<a <b 且f(a)>f(b).证明:ab <1. 答案 略解析 (1)由|lga|=|lgb|,得-lga =lgb.∴ab =1. (2)由题设f(a)>f(b),即|lga|>|lgb|.上式等价于(lga)2>(lgb)2,即(lga +lgb)(lga -lgb)>0,lg(ab)lg a b >0,由已知b >a >0,得0<ab<1.∴lg ab<0,故lg(ab)<0.∴ab<1.1.已知a>b>1,若log a b +log b a =52,a b =b a ,则ab +2=________.答案 1解析 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a>b>1,∴log a b<log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2,∴2b =b 2,∴b =2,∴a =4,∴a b +2=1.2.已知函数f(x)是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.如果实数t 满足f(lnt)+f(ln 1t )≤2f(1),那么t 的取值X 围是________.答案 [1e,e]解析 由于函数f(x)是定义在R 上的偶函数,所以f(lnt)=f(ln 1t ).由f(lnt)+f(ln 1t )≤2f(1),得f(lnt)≤f(1).又函数f(x)在区间[0,+∞)上单调递增,所以|lnt|≤1,-1≤lnt ≤1,故1e≤t ≤e.3.已知函数f(x)=lg[(a 2-1)x 2+(a +1)x +1]. (1)若f(x)的定义域为R ,某某数a 的取值X 围; (2)若f(x)的值域为R ,某某数a 的取值X 围. 答案 a≤-1或a>53 (2)1≤a≤53解析 (1)依题意(a 2-1)x 2+(a +1)x +1>0,对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a>1或a<-1,a >53或a<-1. ∴a<-1或a>53.又a =-1时,f(x)=0,满足题意. ∴a ≤-1或a>53.(2)依题意,只要t =(a 2-1)x 2+(a +1)x +1能取到(0,+∞)上的任何值,则f(x)的值域为R ,故有a 2-1>0,Δ≥0,解之1<a≤53,又当a 2-1=0,即a =1时,t =2x +1符合题意;a =-1时不合题意,∴1≤a ≤53.。
第二节 函数的值域与解析式1.函数的值域在函数y =f (x )中,与自变量x 的值相对应的y 的值叫函数值,函数值的集合叫函数的值域.求函数的值域与最值没有通性通法,只能根据函数解析式的结构特征来选择对应的方法求解,常见的有:(1)形如y =ax +b cx +d(c ≠0)的函数,可用分离常数法,将函数化为y =a c +m cx +d(其中m 为常数)形式. (2)形如y =a x +b a x +c 或y =sin x -1sin x +2的函数可用反解法. (3)二次函数y =ax 2+bx +c (a ≠0)及二次型函数y =a [f (x )]2+b [f (x )]+c (a ≠0)可用配方法及换元法.(4)形如y =ax +b ±cx +d (a ,b ,c ,d 为常数,ac ≠0)的函数,可用换元法. 设cx +d =t (t ≥0),转化为二次函数求值域.(5)形如y =x +k x (k >0,x >0)的函数可用均值不等式法或函数单调性求解,注意使用均值不等式时要满足条件“一正二定三相等”.(6)对于分段函数或含有绝对值符号的函数(如y =|x -1|+|x +4|)可用分段求值域(最值)或数形结合法.[温馨提示] (1)熟记基本初等函数的值域①y =kx +b (k ≠0)的值域是R .②y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝⎛⎦⎥⎤-∞,4ac -b 24a .③y =k x (k ≠0)的值域是{y |y ∈R 且y ≠0}.④y =a x (a >0且a ≠1)的值域是(0,+∞).⑤y =log a x (a >0且a ≠1)的值域是R .⑥y =sin x ,y =cos x 的值域是[-1,1].⑦y =tan x 的值域是R .(2)利用配方法、判别式法、基本不等式求值域时,一定注意等号是否成立,必要时注明“=”成立的条件.2.函数解析式的求法(1)换元法:若已知f []g (x )的表达式,求f (x )的解析式,通常是令g (x )=t ,从中解出x =φ(t ),再将g (x )、x 代入已知解析式求得f (t )的解析式,即得函数f (x )的解析式,这种方法叫做换元法,需注意新设变量“t ”的范围.(2)待定系数法:若已知函数类型,可设出所求函数的解析式,然后利用已知条件列方程(组),再求系数.(3)消去法:若所给解析式中含有f (x )、f ⎝ ⎛⎭⎪⎫1x 或f (x )、f (-x )等形式,可构造另一个方程,通过解方程组得到f (x ).(4)配凑法或赋值法:依据题目特征,能够由一般到特殊或由特殊到一般寻求普遍规律,求出解析式.[小题速练]1.(2018·河南平顶山模拟)已知函数f (x )=2x +1(1≤x ≤3),则( )A .f (x -1)=2x +2(0≤x ≤2)B .f (x -1)=2x -1(2≤x ≤4)C .f (x -1)=2x -2(0≤x ≤2)D .f (x -1)=-2x +1(2≤x ≤4)[解析] 因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4).选B.[答案] B2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x[解析] 用待定系数法,设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧ a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧ a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.[答案] B3.函数f (x )=33x -3的值域为( ) A .(-∞,-1)B .(-1,0)∪(0,+∞)C .(-1,+∞)D .(-∞,-1)∪(0,+∞) [解析] 由3x -3≠0,得x ≠1,所以3x -3>-3且3x -3≠0.当-3<3x -3<0时,33x -3<-1;当3x -3>0时,33x -3>0.故f (x )的值域为(-∞,-1)∪(0,+∞).[答案] D4.已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,则f (x )=________. [解析] 令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1. ∴f (x )=lg 2x -1,x ∈(1,+∞). [答案] lg 2x -1,x ∈(1,+∞) 5.函数y =x 2+2x 在x ∈[0,3]时的值域为________.[解析] y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x 在x ∈[0,3]的值域为[0,15].[答案] [0,15]考点一 求函数的值域——基础考点求下列函数的值域:(1)y =x -3x +1; (2)y =x -1-2x ;(3)y =x 2+x +1x +1; (4)y =log 3x +log x 3-1.[思路引导] (1)分离常数法.(2)换元法,令1-2x =t (t ≥0)转化为二次函数的值域或利用函数单调性求最值.(3)去分母,转化为关于x 的二次方程,利用判别式“Δ”求y 的取值范围.(4)均值不等式.[解] (1)y =x -3x +1=x +1-4x +1=1-4x +1. 因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.(2)解法一:令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y ≤12. 解法二:函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧ y ⎪⎪⎪⎭⎬⎫y ≤12. (3)x ≠-1且由已知得x 2+(1-y )x +1-y =0(*)方程有解,∴Δ=(1-y )2-4(1-y )≥0,即y 2+2y -3≥0解得y ≥1或y ≤-3由x =-1不满足(*)∴函数的值域为(-∞,-3]∪[1,+∞)(4)函数定义域为{x |x ∈R ,x >0,且x ≠1}.当x >1时,log 3x >0,于是y =log 3x +1log 3x -1≥2 log 3x ·1log 3x -1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).[拓展探究] (1)若本例中(1)变为y =x -3x +1,x ∈[1,+∞)时,其值域如何求?(2)若本例中(3)变为y =x 2+x +1x +1(x >-1)其值域如何求? (3)若本例中(3)变为y =x 2+4x +1x 2+1,则其值域是________. [解析] (1)y =x -3x +1=1-4x +1, ∵函数y =1-4x +1在[1,+∞)上是增函数, ∴y ≥1-41+1=-1,故该函数的值域为[-1,+∞). (2)y =x 2+x +1x +1=(x +1)+1x +1-1,当x >-1时,(x +1)+1x +1≥2,y ≥1,当且仅当x +1=1x +1,即x =0时取等号. (3)由原函数整理得(1-y )x 2+4x +1-y =0.当1-y =0,即y =1时,x =0;当1-y ≠0,即y ≠1时,Δ=16-4(1-y )2≥0,即(1-y )2≤4, 解得-1≤y ≤3,所以-1≤y ≤3且y ≠1.综上,所求函数的值域为[-1,3].[答案] (1)[-1,+∞) (2)[1,+∞) (3)[-1,3](1)求函数值域,一定要注意到函数的定义域;(2)利用换元法时,要及时确定新变量的取值范围;(3)本例中(3)及拓展探究(3)均用了判别式“Δ”法,此方法适用y =ax 2+bx +c px 2+qx +r(ap ≠0,x ∈R )类型(即f (x )是分式函数且分子或分母至少有一个二次式,且没有公因式.解此类问题一定要检验所求最值,在定义域内是否有对应的x 值,还要注意对二次项系数是否为零的讨论),但若给定x 一个范围,则此方法不再适用,可考虑转化为其他方法求解,即拓展探究(2).[跟踪演练]1.函数y =5x -14x +2,x ∈[-3,-1]的值域为__________. [解析] 由y =5x -14x +2可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3,即y ∈⎣⎢⎡⎦⎥⎤85,3. [答案] y ∈⎣⎢⎡⎦⎥⎤85,3 2.函数y =2x +1-2x 的值域为__________.[解析] (代数换元法)令t =1-2x ,则x =1-t 22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54(t ≥0). ∴当t =12,即x =38时,y 取最大值,y max =54,且y 无最小值,∴函数的值域为⎝⎛⎦⎥⎤-∞,54. [答案] ⎝ ⎛⎦⎥⎤-∞,54 3.函数y =2-sin x 2+sin x的值域为________.[解析] 解法一:y =2-sin x 2+sin x =-1+42+sin x,因为-1≤sin x ≤1,所以1≤2+sin x ≤3,所以43≤42+sin x ≤4,所以13≤-1+42+sin x≤3,故函数的值域为⎣⎢⎡⎦⎥⎤13,3. 解法二:由已知得sin x =2-2y 1+y ,∵sin ∈[-1,1],∴-1≤2-2y 1+y≤1,即⎝ ⎛⎭⎪⎫2-2y 1+y 2≤1,解得13≤y ≤3. [答案] ⎣⎢⎡⎦⎥⎤13,3 4.函数y =|x +1|+|x -2|的值域为________.[解析] y =|x +1|+|x -2|=⎩⎪⎨⎪⎧ -2x +1,x <-1,3,-1≤x ≤2,2x -1,x >2当x <-1时,y >3;当x >2时,y >3,故函数的值域为[3,+∞).[答案] [3,+∞)考点二 求函数的解析式——冷考点求下列函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x ). (2)已知f (1-cos x )=sin 2x ,求f (x )的解析式.(3)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1,求f (x ).[思路引导] (1)观察x +1x 与x 2+1x 2的关系.(2)令t =1-cos x ,换元法求f (t ).(3)待定系数法,令f (x )=ax +b (a ≠0).(4)用1x 代替式中x ,解方程组求f (x ).[解] (1)∵f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 又x +1x ≥2或x +1x ≤-2.∴f (x )=x 2-2(x ≥2或x ≤-2).(2)∵f (1-cos x )=sin 2x =1-cos 2x ,设1-cos x =t (0≤t ≤2),则cos x =1-t ,∴f (t )=1-(1-t )2=-t 2+2t .故f (x )=-x 2+2x (0≤x ≤2).(3)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (4)在f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,用1x 代替x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )x -1,将f ⎝ ⎛⎭⎪⎫1x =2f (x )x -1代入f (x )=2f ⎝ ⎛⎭⎪⎫1x x -1中,得f (x )=23x +13.本例中(1)看出x +1x 与x 2+1x 2之间的关系,若令t =x +1x ,则用t表示x 并不好表示,即换元法不易求f (x ),而用配凑法却易找到关系,同时注意到x +1x 的范围.本例(2)适宜用换元法.求函数解析式的3种方法:(1)配凑法、换元法:已知f [g (x )]的解析式求f (x ),可考虑配凑或换元法.(2)待定系数法:如本例中(3),一般已知所求函数的类型或具体形式可用此法.(3)解方程组法:如本例中(4),只适用于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (x )与f (-x )类型的表达式,代换后通过解方程组求出f (x ),这种方法有局限性.[跟踪演练]1.已知f (x +1)=x +2x ,求f (x ).[解] ∵f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1).2.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.[解] 设f (x )=ax 2+bx +c (a ≠0),由f (0)=0知c =0,f (x )=ax 2+bx .又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,故有⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,⇒a =b =12.因此,f (x )=12x 2+12x .3.定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[解] 当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① -x ∈(-1,1),以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).考点三 函数的综合问题——热考点(1)(2015·山东卷)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.(2)设f (x )=⎩⎨⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2][思路引导] (1)利用指数函数的单调性→建立关于a ,b的方程组→解出a ,b(2)分别求出每一段的最小值→比较最小值列式→求出a 的范围[解析] (1)当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎨⎧a =12,b =-2,所以a +b=-32.(2)由函数f (x )的解析式,得f (0)=a 2;当x ≤0时,f (x )≥0;当x >0时,f (x )≥2+a .∵f (0)是f (x )的最小值,∴a 2≤a +2,且a ≥0.解得0≤a ≤2.[答案] (1)-32 (2)D(1)对定义域、值域的综合问题,要注意定义域对函数值域的限制作用.即在定义域内用相应方法求值域.(2)若解析式中含有参数,要注意参数对函数值域的 影响,即要考虑分类讨论.(3)解题时要注意数形结合思想的应用,即借助图象确定函数的值域.[跟踪演练](2018·广东深圳调研)设函数f (x )=⎩⎪⎨⎪⎧2x +a ,x >2,x +a 2,x ≤2.若f (x )的值域为R ,则常数a 的取值范围是( )A .(-∞,-1]∪[2,+∞)B .[-1,2]C .(-∞,-2]∪[1,+∞)D .[-2,1][解析] 因为f (x )的值域是R ,且两段函数都是递增函数,所以4+a ≤2+a 2,解得a ≤-1或a ≥2,故选A.[答案] A利用几何意义或导数法求函数的值域素养解读:函数的值域或最值及其求法是近几年高考考查的重点内容之一.函数的值域是函数在定义域内对应的函数值的取值范围,其求解关键是确定相应的最值.因此,求解函数的值域时要求出定义域内的所有极值和端点处的函数值,并进行比较,得到函数的最值.在高考中主要考查求解函数的值域问题,从而带动对函数的最值等相关问题的考查,其应用广泛,综合性强,且解法灵活多变.在实际求解中,各种方法往往可以相互渗透,也可以多法并举.下面就几何法及导数法进行一简单介绍,后面要继续学习.(1)函数f (x )=sin x 2-cos x的值域是( )A.⎣⎢⎡⎦⎥⎤-33,33B .[-1,1]C .[-2,2]D .[-3,3](2)求函数f (x )=ln(1+x )-14x 2在[0,2]上的值域.[切入点] (1)根据式子的结构特点联想其几何意义,数形结合求解.(2)对于含有对数式的函数的值域问题,利用导数求解即可.[关键点] (1)转化为斜率型函数值域问题.(2)准确求导,利用导数求最值.[规范解答] (1)可以看成过A (2,0),B (cos x ,-sin x )两点直线的斜率,B 点在单位圆上运动.如图:易求得k 1=33,k 2=-33.∴y ∈⎣⎢⎡⎦⎥⎤-33,33.(2)由题意知,函数f (x )的定义域为(-1,+∞), 又f ′(x )=11+x -12x =(1-x )(x +2)2(1+x ),令f ′(x )=0,可得x =1或x =-2(舍去).当0≤x <1时,f ′(x )>0,f (x )单调递增;当1<x ≤2时,f ′(x )<0,f (x )单调递减.所以f (1)=ln2-14为函数f (x )在[0,2]上的最大值.又f (0)=0,f (2)=ln3-1>0,所以f (0)=0为函数f (x )在[0,2]上的最小值,故函数f (x )=ln(1+x )-14x 2在[0,2]上的值域为⎣⎢⎡⎦⎥⎤0,ln2-14.[答案] (1)A (2)⎣⎢⎡⎦⎥⎤0,ln2-14(1)几何法求值域步骤(2)求导法可以用来处理高次函数(大于等于三次)、分式函数或含有对数式的函数等相对比较复杂的函数的值域或最值问题,其关键是正确求导,利用导数与单调性的关系来求最值或值域.[感悟体验]1.函数f (x )=x 2-2x +2+x 2-4x +8的值域为________. [解析] f (x )=(x -1)2+(0-1)2+(x -2)2+(0+2)2表示x 轴上的动点P (x,0)与两定点A (1,1)和B (2,-2)的距离之和.由图可知,|P A |+|PB |≥|AB |.|AB |=10,故函数f (x )的值域为[10,+∞). [答案] [10,+∞)2.(2017·天津红桥区二模)试求函数f (x )=ln x -12x 2在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值.[解] 由于f ′(x )=1x -x =1-x 2x ,1e ≤x ≤e.令f ′(x )>0,得1e ≤x <1;令f ′(x )<0,得1<x ≤e.故f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在(1,e]上单调递减,故f (x )max =f (1)=-12.课时跟踪训练(五)[基础巩固]一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -3),x >0,则f (5)=( )A .32B .16 C.12D.132[解析] f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=2-1=12,故选C. [答案] C2.(2018·烟台模拟)函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( )A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,12∪[2,+∞) D .(0,+∞)[解析] ∵x ∈(-∞,1)∪[2,5), 则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪⎝ ⎛⎦⎥⎤12,2.[答案] A3.(2017·北京东城第一学期联考)若函数f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x[解析] f (sin x )=3-cos2x =2+2sin 2x ,所以f (cos x )=2+2cos 2x =3+cos2x .[答案] C4.下列函数中,值域是(0,+∞)的是( ) A .y =15-+1B .y =⎝ ⎛⎭⎪⎫12x-1 C .y =⎝ ⎛⎭⎪⎫131-xD .y =1-2x[解析] A 项,因为5-x +1>1,所以函数值域为(0,1);B 、D 项的函数值域为[0,+∞);C 项,因为1-x ∈R ,根据指数函数的性质可知函数的值域为(0,+∞),故选C.[答案] C5.已知f ⎝⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2 C .x 2-x +1D .x 2+x +1[解析] f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,令x +1x =t ,得f (t )=t 2-t +1,即f (x )=x 2-x +1.[答案] C6.(2018·江西临川一中月考)若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是( )A .(3,+∞)B .[3,+∞)C .(-∞,0]∪[3,+∞)D .(-∞,0)∪[3,+∞)[解析] 令f (x )=ax 2+2ax +3,∵函数y =ax 2+2ax +3的值域为[0,+∞),∴f (x )=ax 2+2ax +3的函数值取遍所有的非负实数,∴a 为正实数,∴该函数图象开口向上,∴只需ax 2+2ax +3=0的判别式Δ=(2a )2-12a ≥0,即a 2-3a ≥0,解得a ≥3或a ≤0(舍去).故选B.[答案] B 二、填空题7.函数y =1-x2x +5的值域为________.[解析] y =1-x 2x +5=-12(2x +5)+722x +5=-12+722x +5.∵722x +5≠0,∴y ≠-12, ∴函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12. [答案] ⎩⎨⎧⎭⎬⎫y |y ≠-128.已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=________.[解析] ∵f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x -1x 2+2(x ≠0),∴f (x )=x 2+2,∴f (3)=32+2=11.[答案] 119.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为________.[解析] 设f (x )=ax 2+2x +1,由题意知, f (x )取遍所有的正实数.当a =0时, f (x )=2x +1符合条件;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4-4a ≥0,解得0<a ≤1.所以0≤a ≤1. [答案] [0,1] 三、解答题10.求下列函数的值域: (1)y =1-x 21+x 2;(2)y =-2x 2+x +3; (3)y =x +1x +1; (4)y =x +4-x 2.[解] (1)y =1-x 21+x 2=-1-x 2+21+x 2=-1+21+x 2.由1+x 2≥1,得0<21+x 2≤2,所以-1<-1+21+x 2≤1.故函数的值域为(-1,1]. (2)y =-2x 2+x +3=-2⎝ ⎛⎭⎪⎫x -122+258. 由0≤-2⎝⎛⎭⎪⎫x -122+258≤258,得0≤y ≤524.故函数的值域为⎣⎢⎡⎦⎥⎤0,524. (3)当x >0时,x +1x ≥2,当且仅当x =1时取等号,所以x +1x +1≥3;当x <0时,x +1x =-⎝ ⎛⎭⎪⎫-x +1-x ≤-2,当且仅当x =-1时取等号,所以x +1x +1≤-1. 故函数的值域为(-∞,-1]∪[3,+∞). (4)设x =2cos θ(0≤θ≤π),则y =x +4-x 2 =2cos θ+4-4cos 2θ=2cos θ+2sin θ =22sin ⎝⎛⎭⎪⎫θ+π4由0≤θ ≤π,得π4≤θ+π4≤5π4,所以-22≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,-2≤y ≤22, 故函数的值域为[-2,22].[能力提升]11.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x[解析] 选项A ,f (2x )=|2x |=2|x |,2f (x )=2|x |,故f (2x )=2f (x );选项B ,f (2x )=2x -|2x |=2x -2|x |,2f (x )=2x -2|x |,故f (2x )=2f (x );选项C ,f (2x )=2x +1,2f (x )=2x +2,故f (2x )≠2f (x );选项D ,f (2x )=-2x,2f (x )=-2x ,故f (2x )=2f (x ).故选C.[答案] C12.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12 [解析] 因为当x ≥1时, f (x )=ln x ≥0, f (x )的值域为R ,所以当x <1时,f (x )=(1-2a )x +3a 的值域包含一切负数.当a =12时,(1-2a )x +3a =32不成立;当a >12时,(1-2a )x +3a >1+a ,不成立;当a <12时,(1-2a )x +3a <1+a .由1+a ≥0,得a ≥-1.所以-1≤a <12.故选C.[答案] C13.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于__________.[解析] 由已知得1⊕x =⎩⎪⎨⎪⎧1 -2≤x ≤1,x2 1<x ≤2,当x ∈[-2,2]时,2⊕x =2,∴f (x )=⎩⎪⎨⎪⎧x -2,-2≤x ≤1,x 3-2,1<x ≤2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.[答案] 614.(2013·安徽卷)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________________.[解析] 当-1≤x ≤0时,有0≤x +1≤1,所以f (1+x )=(1+x )[1-(1+x )]=-x (1+x ),又f (x +1)=2f (x ),所以f (x )=12f (1+x )=-x (x +1)2.[答案] -x (x +1)215.已知函数f (x )=(1-a 2)x 2+3(1-a )x +6. (1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为[0,+∞),求实数a 的取值范围. [解] (1)①若1-a 2=0,即a =±1,(ⅰ)当a =1时,f (x )=6,定义域为R ,符合要求; (ⅱ)当a =-1时, f (x )=6x +6,定义域不为R .②若1-a 2≠0,g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数, ∵f (x )的定义域为R ,∴g (x )≥0,∀x ∈R 恒成立,∴⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≤0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0⇒-511≤a <1. 综合①②得a 的取值范围是⎣⎢⎡⎦⎥⎤-511,1.(2)∵函数f (x )的值域为[0,+∞),∴函数g (x )=(1-a 2)x 2+3(1-a )x +6取一切非负实数,①当1-a 2≠0时有⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≥0 ⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≥0⇒-1<a ≤-511. ②当1-a 2=0时a =±1,当a =1时,f (x )=6不合题意. 当a =-1时,f (x )=6x +6的值域为[0,+∞),符合题目要求.故所求实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,-511. 16.已知二次函数f (x )=ax 2+bx (a 、b 是常数,且a ≠0)满足条件:f (2)=0,且方程f (x )=x 有两个相等实根.(1)求f (x )的解析式;(2)是否存在实数m 、n (m <n ),使f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]?如存在,求出m 、n 的值;如不存在,说明理由.[解] (1)方程f (x )=x ,即ax 2+bx =x , 亦即ax 2+(b -1)x =0,由方程有两个相等实根,得Δ=(b -1)2-4a ×0=0, ∴b =1.①由f (2)=0,得4a +2b =0,②由①、②得,a =-12,b =1,故f (x )=-12x 2+x . (2)假设存在实数m 、n 满足条件,由(1)知, f (x )=-12x 2+x =-12(x -1)2+12≤12, 则2n ≤12,即n ≤14.∵f (x )=-12(x -1)2+12的对称轴为x =1, ∴当n ≤14时,f (x )在[m ,n ]上为增函数.于是有⎩⎪⎨⎪⎧f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧-12m 2+m =2m ,-12n 2+n =2n ,∴⎩⎪⎨⎪⎧m =-2或m =0,n =-2或n =0. 又m <n ≤14,∴⎩⎪⎨⎪⎧m =-2,n =0.故存在实数m =-2,n =0,使f (x )的定义域为[m ,n ],值域为[2m,2n ].[延伸拓展]设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x∈R ,(f ·g )(x )=f [g (x )].若f (x )=⎩⎪⎨⎪⎧ x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )[解析] 对于A ,(f ·f )(x )=f [f (x )]=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.[答案] A。
阶段质量检测(二)制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
一、选择题(本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的)1.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,假设A 1B 1→=a ,A 1D →=b ,A 1A →=c ,那么以下向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +cD .-12a -12b +c【答案】 A2.一个几何体的三视图如下图,那么这个几何体的外表积等于A .72B .66C .60D .30【解析】 根据题目所给的三视图可知该几何体为一直三棱柱,且底面是一直角三角形,两直角边分别为3,4,斜边为5,三棱柱高为5,所以外表积为S =3×4+3×5+4×5+5×5=72,所以答案为A.【答案】 A3.在以下图中,G、H、M、N分别是正三棱柱的顶点或者所在棱的中点,那么表示直线GH、MN是异面直线的图形有( )A.(1)(2) B.(1)(3)C.(2)(4) D.(3)(4)【解析】对于图(1),GH∥MN,对于图(2),GH与NM异面,对于图(3),GH与MN相交,对于图(4),GH与NM异面,应选C.【答案】 C4.假设正三棱锥的侧面都是直角三角形,那么侧面与底面所成二面角的余弦值是( )A.63B.33C.23D.13【答案】 B5.直线m⊥平面α,直线n⊂平面β,那么以下命题正确的选项是( ) A.假设α∥β,那么m⊥n B.假设α⊥β,那么m∥nC.假设m⊥n,那么α∥βD.假设n∥α,那么α∥β【解析】易知A选项由m⊥α,α∥β⇒m⊥β,n⊂β⇒m⊥n,故A选项命题正确.【答案】 A6.如图,四边形ABCD 的直观图是直角梯形A 1B 1C 1D 1,且A 1B 1=B 1C 1=2A 1D 1=2,那么四边形ABCD 的面积为( )A .3B .3 2C .6 2D .6【解析】 如图,取∠GB 1C 1=135°,过点A 1作A 1E ∥GB 1,易求得B 1E =2,A 1E =22,故以B 1C 1和B 1A 1为坐标轴建立直角坐标系,由直观图原那么,B ,C 与B 1,C 1重合,然后过点E 作B 1A 1的平行线,且使得AE =2A 1E =42,即得点A ,然后过A 作AD ∥BC 且使得AD =1,即四边形ABCD 上底和下底边长分别为1,2,高为42, 故其面积S =12(2+1)×42=6 2.【答案】 C7.中心角为34π,面积为B 的扇形围成一个圆锥,假设圆锥的外表积为A ,那么A :B 等于( )A .11∶8B .3∶8C .8∶3D .13∶8【解析】 设扇形半径为R ,那么B =12lR =12|α|·R 2=38πR 2,其中l 为扇形弧长,也为圆锥底面周长, 设圆锥底面圆半径为r ,2πr=|α|·R =34πR ,r =38R .S 圆=πr 2=964πR 2, 故A =B +S 圆=38πR 2+964πR 2=3364πR 2.∴A :B =3364πR 2:38πR 2=11:8.应选A. 【答案】 A8.m ,n 为不同的直线,α,β为不同的平面,以下四个命题中,正确的选项是( ) A .假设m ∥α,n ∥α,那么m ∥nB .假设m ⊂α,n ⊂α,且m ∥β,n ∥β,那么α∥βC .假设α⊥β,m ⊂α,那么m ⊥βD .假设α⊥β,m ⊥β,m ⊄α,那么m ∥α【解析】 A 错,平行于同一平面的两直线可平行、相交和异面;B 错,必须平面内有两条相交直线分别与平面平行,此时两平面才平行;C 错,两垂直平面内的任一直线与另一平面可平行、相交或者垂直;D 对,由空间想象易知命题正确. 【答案】 D9.如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,那么以下命题中正确的选项是( )①动点A ′在平面ABC 上的射影在线段AF 上;②BC∥平面A′DE;③三棱锥A′-FED的体积有最大值.A.① B.①②C.①②③ D.②③【解析】①中由可得面A′FG⊥面ABC,∴点A′在面ABC上的射影在线段AF上.②BC∥DE,∴BC∥平面A′DE.③当面A′DE⊥面ABC时,三棱锥A′-FDE的体积到达最大.【答案】 C10.在正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,那么直线OM( )A.和AC、MN都垂直B.垂直于AC,但不垂直于MNC.垂直于MN,但不垂直于ACD.与AC、MN都不垂直【答案】 A11.用一些棱长是1 cm的小正方体码放成一个几何体,图1为其俯视图,图2为其主视图(或者正视图),假设这个几何体的体积为7 cm3,那么其左视图为( )【解析】 由这个几何体的体积为7 cm 3可知一共有7个小正方体.通过俯视图可以排除选项A 、D ,结合俯视图与主视图即可选出正确答案为C(假设左视图为D ,那么只需要6个小正方体即可).【答案】 C12.一个圆柱的正视图的周长为12,那么该圆柱的侧面积的最大值等于( )A.92π B .6π C .9πD .18π【解析】 圆柱的正视图是一个矩形,假设设圆柱的底面半径为r ,高为h ,那么依题意有4r +2r =12,且0<r <3.故其侧面积S =2πr h =2πr(6-2r)=4πr(3-r)≤4π·⎝ ⎛⎭⎪⎫322=9π,此时r =32,所以圆柱的侧面积的最大值等于9π.【答案】 C二、填空题(本大题一一共4小题,每一小题5分,一共20分,把答案填在题中横线上)13.OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .假设圆M 的面积为3π,那么球O 的外表积等于________.【解析】 ∵圆M 的面积为3π,∴圆M 的半 径r =3,设球的半径为R ,由图可知,R 2=14R 2+3,∴34R 2=3,∴R 2=4.∴S 球=4πR 2=16π. 【答案】 16π14.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,那么该几何体的体积是________.【解析】 由可得几何体是底面半径为1,母线长为2的圆锥的一半,即半圆锥,易知其体积为12×13×π×12×3=36π. 【答案】36π. 15.a ,b ,c 是空间中互不重合的三条直线,下面给出五个命题: ①假设a ∥b ,b ∥c ,那么a ∥c ; ②假设a ⊥b ,b ⊥c ,那么a ∥c ;③假设a 与b 相交,b 与c 相交,那么a 与c 相交;④假设a ⊂平面α,b ⊂平面β,那么a ,b 一定是异面直线; ⑤假设a ,b 与c 成等角,那么a ∥b . 上述命题中正确的________(只填序号). 【解析】 由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故 ②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内〞,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 【答案】 ①16.如图为一几何体的展开图,其中ABCD 是边长为6的正方形,SD =PD =6,CR =SC ,AQ =AP ,点S ,D ,A ,Q 及点P ,D ,C ,R 一共线,沿图中虚线将它们折叠起来,使P ,Q ,R ,S 四点重合,那么需要________个这样的几何体,可以拼成一个棱长为6的正方体.【解析】 由题意知,将该展开图沿虚线折叠起来以后,得到一个四棱锥P -ABCD (如图),其中PD ⊥平面ABCD ,因此该四棱锥的体积V =13×6×6×6=72,而棱长为6的正方体的体积V =6×6×6=216,故需要21672=3个这样的几何体,才能拼成一个棱长为6的正方体.【答案】 6三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤) 17.图1(10分)如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直(图1),图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形图2(1)根据图2所给的正视图、侧视图画出相应的俯视图,并求出该俯视图的面积.(2)图3中,E 为棱PB 上的点,F 为底面对角线AC 上的点,且BE EP =CF FA,求证:EF ∥平面PDA .图3【解析】 (1)该四棱锥的俯视图为内含对角线,边长为6 cm 的正方形,如图.其面积为36 cm 2.(2)连接BF 并延长交AD 于G ,连接PG , 那么在正方形ABCD 中,BF FG =CF FA.又CF FA =BE EP ,∴BF FG =BEEP,∴在△BGP 中,EF ∥PG . 又EF ⊄平面PDA ,PG ⊂平面PDA , ∴EF ∥平面PDA .18.(12分)如图,在四棱台ABCD -A 1B 1C 1D 1中,下底ABCD 是边长为2的正方形,上底A 1B 1C 1D 1是边长为1的正方形,侧棱DD 1⊥平面ABCD ,DD 1=2.(1)求证:B 1B ∥平面D 1AC ; (2)求证:平面D 1AC ⊥平面B 1BDD 1.【证明】 (1)设AC ∩BD =E ,连结D 1E ,∵平面ABCD∥平面A1B1C1D1.∴B1D1∥BE,∵B1D1=BE=2,∴四边形B1D1EB是平行四边形,所以B1B∥D1E.又因为B1B⊄平面D1AC,D1E⊂平面D1AC,所以B1B∥平面D1AC(2)证明:侧棱DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.∵下底ABCD是正方形,AC⊥BD.∵DD1与DB是平面B1BDD1内的两条相交直线,∴AC⊥平面B1BDD1∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.19.(12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1=7,点D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.【解析】(1)证明:如下图,由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.又DE⊂平面ABC,所以DE⊥AA1.而DE⊥A1E.AA1∩A1E=A1,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,故平面A 1DE ⊥平面ACC 1A 1. (2)如图所求,设O 是AC 的中点,以O 为原点建立空间直角坐标系,那么相关各点的坐标分别是A (2,0,0),A 1(2,0,7),D (-1,3,0),E (-1,0,0).易知A 1D →=(-3,3,-7),D E →=(0,-3,0),A D →=(-3,3,0).设n =(x ,y ,z )是平面A 1DE 的一个法向量,那么⎩⎪⎨⎪⎧ n ·D E →=-3y =0,n ·A 1D →=-3x +3y -7z =0.解得x =-73z ,y =0. 故可取n =(7,0,-3).于是cos n ,A D →=n ·A D →|n |·|AD →|=-374×23 =-218. 由此即知,直线AD 和平面A 1DE 所成角的正弦值为218. 20.(12分)某高速公路收费站入口处的平安标识墩如图(1)所示.墩的上半局部是正四棱锥P -EFGH ,下半局部是长方体ABCD -EFGH .图(2)、图(3)分别是该标识墩的正(主)视图和俯视图.(1)请画出该平安标识墩的侧(左)视图;(2)求该平安标识墩的体积;(3)证明:直线BD ⊥平面PEG .【解析】 (1)侧视图同正视图(略).(2)该平安标识墩的体积为V =V P -EFGH+V ABCD -EFGH =13×402×60+402×20 =32 000+32 000=64 000(cm 3).(3)证明:如图,连结EG 、HF 及BD ,EG 与 HF 相交于O 点,连结PO ,由正四棱锥的性质可知,PO ⊥平面EFGH ,∴PO ⊥HF .又∵EG ⊥HF ,∴HF ⊥平面PEG .又∵BD ∥HF ,∴BD ⊥平面PEG .21.(12分)四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1.E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN?(3)假设存在,求线段AS 的长;假设不存在,请说明理由.【解析】 (1)如图,以D 为坐标原点,建立空间直角坐标系D -xyz .依题意,易得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0. ∴NE →=⎝ ⎛⎭⎪⎫-12,0,-1, AM →=(-1,0,1).∵cos N E →,A M →=NE →·AM →|NE →|·|AM →|=-1252×2=-1010, ∴异面直线NE 与AM 所成角的余弦值为-1010. (2)假设在线段AN 上与存在点S .使得ES ⊥平面AMN .∵A N →=(0,1,1), 可设A S →=r AN →=(0,λ,λ),又E A →=(12,-1,0), ∴E S →=E A →+A B →=(12,λ-1,λ). 由ES ⊥平面AMN ,得⎩⎪⎨⎪⎧ E S →·A M →=0,E S →·A N →=0,即⎩⎪⎨⎪⎧ -12+λ=0,(λ-1)+λ=0.故λ=12, 此时A S →=⎝ ⎛⎭⎪⎫0,12,12,|A S →|=22. 经检验,当AS =22时. ES ⊥平面AMN .故线段AN 上存在点S ,使得ES ⊥平面AMN ,此时AS =22. 22.(12分)如图,M 、N 、P 分别是正方体ABCD -A 1B 1C 1D 1的棱AB 、BC 、DD 1上的点.(1)假设BM MA =BN NC,求证:无论点P 在D 1D 上如何挪动,总有BP ⊥MN ; (2)假设D 1P :PD =1∶2,且PB ⊥平面B 1MN ,求二面角M -B 1N -B 的余弦值;(3)棱DD 1上是否总存在这样的点P ,使得平面APC 1⊥平面ACC 1?证明你的结论.【解析】 (1)连接AC 、BD 、那么BD ⊥AC , ∵BM MA =BN NC,∴MN ∥AC ,∴BD ⊥MN .又∵DD 1⊥平面ABCD ,∴DD 1⊥MN ,∵BD ∩DD 1=D ,∴MN ⊥平面BDD 1.又P 无论在DD 1上如何挪动,总有BP ⊂平面BDD 1, ∴无论点P 在D 1D 上如何挪动,总有BP ⊥MN .(2)以D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴,建立如下图的坐标系.设正方体的棱长为1,AM =NC =t ,那么M (1,t,0),N (t,1,0),B 1(1,1,1),P (0,0,23),B (1,1,0),A (1,0,0), ∵MB 1→=(0,1-t,1),B P →=⎝ ⎛⎭⎪⎫-1,-1,23. 又∵BP ⊥平面MNB 1,∴MB 1→·B P →=0,即t -1+23=0,∴t =13, ∴MB 1→=(0,23,1), M N →=(-23,23,0). 设平面MNB 1的法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧ MB 1→·n =0M N →·n =0,得x =y ,z =-23y .令y =3,那么n =(3,3,-2). ∵AB ⊥平面BB 1N ,∴A B →是平面BB 1N 的一个法向量, A B →=(0,1,0).设二面角M -B 1N -B 的大小为θ, ∴cos〈n ,A B →〉 =|(3,3,-2)·(0,1,0)|22=32222. 那么二面角M -B 1N -B 的余弦值为32222. (3)存在点P ,且P 为DD 1的中点, 使得平面APC 1⊥平面ACC 1. 证明:∵BD ⊥AC ,BD ⊥CC 1, ∴BD ⊥平面ACC 1.取BD 1的中点E ,连PE ,那么PE ∥BD ,∴PE ⊥平面ACC 1.∵PE ⊂平面APC 1,∴平面APC 1⊥平面ACC 1.制卷人:打自企; 成别使; 而都那。
第七节 函数的图象1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;③y =f (x )的图象――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图271A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ B [设甲骑车速度为V 甲骑,甲跑步速度为V 甲跑,乙骑车速度为V 乙骑,乙跑步速度为V 乙跑,依题意V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选B.]3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 D [依题意,与曲线y =e x 关于y 轴对称的曲线是y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.] 4.(2016·某某高考)函数y =sin x 2的图象是( )D [∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,故选D.]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值X 围是________.【导学号:51062049】(0,+∞) [在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.]作函数的图象作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1. [解] (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.3分①②(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.7分(3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位得到,如图③.11分③④(4)∵y =⎩⎪⎨⎪⎧ x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.15分[规律方法] 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.[变式训练1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =sin|x |.[解] (1)∵y =|lg x |=⎩⎪⎨⎪⎧ lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.8分(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②.15分识图与辨图(1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)如图272,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )图272A B C D(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.][规律方法] 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.[变式训练2] (1)已知函数f (x )的图象如图273所示,则f (x )的解析式可以是( )图273A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1 D .f (x )=x -1x(2)(2017·某某二模)函数y =a +sin bx (b >0且b ≠1)的图象如图274所示,那么函数y =log b (x -a )的图象可能是( )图274(1)A (2)C [(1)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A. (2)由题图可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]函数图象的应用☞角度1 研究函数的性质 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]☞角度2 确定函数零点的个数已知f (x )=⎩⎪⎨⎪⎧ |lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【导学号:51062050】5 [方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.]☞角度3 求参数的值或取值X 围(2017·某某某某五校联盟一诊)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ kx -1,x >0,-ln -x ,x <0有两个“伙伴点组”,则实数k 的取值X 围是( )A .(-∞,0)B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)B [根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=1x, 即km -1=ln m ,k =1m,解得m =1,k =1, 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.]☞角度4 求不等式的解集函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图275所示,那么不等式f xcos x <0的解集为________.图275 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上,y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上,y =cos x <0. 由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f x cos x <0, 因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f x cos x 为偶函数, 所以f x cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.] [规律方法] 函数图象应用的常见题型与求解方法(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(X 围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[思想与方法]1.识图:对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f (x )=g (x )的解的个数,求不等式的解集等.[易错与防X]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.课时分层训练(九) 函数的图象A 组 基础达标(建议用时:30分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 的图象上所有的点( ) 【导学号:51062051】A .向右平行移动2个单位长度B .向右平行移动1个单位长度C .向左平行移动2个单位长度D .向左平行移动1个单位长度B [因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度,即可得到y =2(x -1)=2x -2的图象,故B 正确.]2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A B C DC [出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.]3.(2017·某某某某第一中学能力测试)若函数y =a x-b 的图象如图276所示,则( )图276A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1D [由题图易知0<a <1,b >0,而函数y =a x-b 的图象是由函数y =a x的图象向下平移b 个单位得到的,且函数y =a x的图象恒过点(0,1),所以由题图可知0<b <1,故选D.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值X 围是( )A .(0,+∞) .(-∞,1) C .(1,+∞)D .(0,1]D [作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1],故选D.]5.(2017·某某市镇海中学模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)D [由{ x ≥0,f x <0,得0≤x <1.由f (x )为偶函数.结合图象(略)知f (x )<0的解集为-1<x <1.所以f (x -1)<0⇔-1<x -1<1,即0<x <2.] 二、填空题6.已知函数f (x )的图象如图277所示,则函数g (x )=log 2f (x )的定义域是________. 【导学号:51062052】图277(2,8] [当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].]7.如图278,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.图278f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0[当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,=1,得⎩⎪⎨⎪⎧k =1,=1,∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1. ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14,即y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0.]8.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值X 围是________.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) [由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15.所以a 的取值X 围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞).] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],-3,x ∈2,5].(1)在如图279所示给定的直角坐标系内画出f (x )的图象;图279(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. [解] (1)函数f (x )的图象如图所示.6分(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].10分 (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.15分 10.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.【导学号:51062053】[解] (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3],(1,2],(3,+∞),其中(-∞,1],(2,3]是减区间;[1,2],[3,+∞)是增区间.10分(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.15分B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4mB [∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ [对任意的x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.]3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.【导学号:51062054】[解] (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,4分∴y =x +1x ,即f (x )=x +1x.7分(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2].10分 ∵x ∈(0,2],∴a +1≥x (6-x ), 即a ≥-x 2+6x -1.12分令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7, 故a 的取值X 围为[7,+∞).15分。
滚动测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A=,集合B={y|y=x2,x∈A},则A∩B=()A. B.{2} C.{1} D.⌀2.复数=()A.1-2iB.1+2iC.-1+2iD.-1-2i3.下列结论正确的是()A.若命题p:∀x>0,都有x2>0,则 p:∃x0≤0,使得≤0B.若命题p和p∨q都是真命题,则命题q也是真命题C.在△ABC中,a,b,c是内角A,B,C所对的边,则a<b的充要条件是cos A>cos BD.命题“若x2+x-2=0,则x=-2或x=1”的逆否命题是“x≠-2或x≠1,则x2+x-2≠0”4.命题“存在x∈[0,2],x2-x-a≤0为真命题”的一个充分不必要条件是()A.a≤0B.a≥-1C.a≥-D.a≥35.已知函数f(x)是定义在R上的偶函数,当x<0时,f(x)=-log2(-2x),则f(32)=()A.-32B.-6C.6D.646.(2017某某实验中学3月模拟)已知函数f(x)=ln x-x2与g(x)=(x-2)2+-m(m∈R)的图象上存在关于(1,0)对称的点,则实数m的取值X围是()A.(-∞,1-ln 2)B.(-∞,1-ln 2]C.(1-ln 2,+∞)D.[1-ln 2,+∞)7.设x0是函数f(x)=-log2x的零点.若0<a<x0,则f(a)的值满足()A.f(a)=0B.f(a)<0C.f(a)>0D.f(a)的符号不确定8.在四边形ABCD中,AC⊥BD,且AC=2,BD=3,则的最小值为()A. B.- C. D.-9.若不等式≤a≤在t∈(0,2]上恒成立,则a的取值X围是()A. B. C. D.10.(2017某某某某一模)函数f(x)=的图象可能是()11.在△ABC中,内角A,B,C的对边分别是a,b,c.若cos B==2,且S△ABC=,则b=()A.4B.3C.2D.112.定义在R上的函数f(x)满足f(1)=1,且对任意的x∈R,都有f'(x)<,则不等式f(log2x)>的解集为()A.(1,+∞)B.(0,1)C.(0,2)D.(2,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.已知|a|=,|b|=2,若(a+b)⊥a,则a与b的夹角是.14.已知函数f(x)=(其中e为自然对数的底数),则函数y=f(f(x))的零点是.15.已知非零向量a,b的夹角为60°,且|a-b|=1,则|a+b|的最大值是.16.在△ABC中,内角A,B,C所对的边分别为a,b,c,若=1,则c=.三、解答题(本大题共6小题,共70分)17.(10分)设向量a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β,-4sin β).(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值;(3)若tan αtan β=16,求证:a∥b.18.(12分)请你设计一个包装盒,如图所示,四边形ABCD是边长为60 cm的正方形硬纸片,切去阴影部分的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上,且E,F是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S(单位:cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(单位:cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.19.(12分)函数f(x)=A sin(ωx+φ)的部分图象如图所示.(1)求f(x)的解析式;(2)设g(x)=,求函数g(x)在x∈上的最大值,并确定此时x的值.20.(12分)(2017某某某某三模)如图,已知△ABC中,D为BC上一点,∠DAC=,cos∠BDA=-,AC=4.(1)求AD的长;(2)若△ABD的面积为14,求AB的长.21.(12分)已知函数f(x)=x3+ax2-x+c,且a=f'.(1)求a的值;(2)求函数f(x)的单调区间;(3)设函数g(x)=(f(x)-x3)·e x,若函数g(x)在x∈[-3,2]上单调递增,某某数c的取值X围.22.(12分)已知函数f(x)=x2-a ln x(a∈R).(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;(2)若函数f(x)在(1,+∞)上为增函数,求a的取值X围;(3)讨论方程f(x)=0的解的个数,并说明理由.参考答案滚动测试卷二(第一~五章)1.C解析当x=1时,y=1;当x=2时,y=4;当x=时,y=;故B=,因此A∩B={1}.故选C.2.A解析=1-2i,故选A.3.C解析若命题p:∀x>0,都有x2>0,则¬p:∃x0>0,使得≤0.故A错误;若命题p和p∨q都是真命题,则命题q可能是真命题,也可能是假命题.故B错误;在△ABC中,由a<b可知0<A<B<π,而y=cos x在(0,π)内单调递减,故cos A>cos B,C正确;命题“若x2+x-2=0,则x=-2或x=1”的逆否命题是“x≠-2且x≠1,则x2+x-2≠0”.故D错误.故选C.4.D解析∵存在x∈[0,2],x2-x-a≤0为真命题,∴a≥(x2-x)min==-.因此上述命题的一个充分不必要条件是a≥3.故选D.5.B解析因为当x<0时,f(x)=-log2(-2x),且函数f(x)是R上的偶函数,所以f(32)=f(-32)=-log264=-6,故选B.6.D解析∵f(x)=ln x-x2与g(x)=(x-2)2+-m(m∈R)的图象上存在关于(1,0)对称的点,∴f(x)+g(2-x)=0有解,∴ln x-x2=-x2-+m,∴m=ln x+在(0,+∞)内有解.∵m'=,∴函数在内单调递减,在内单调递增,∴m≥ln+1=1-ln2.7.C解析f(x)=-log2x为减函数,f(x0)=-log2x0=0,由0<a<x0,可知f(a)>f(x0)=0.8.B解析设AC与BD相交于点O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),故=(2-a,b-3),=(-a,b).∴=a(a-2)+b(b-3)=(a-1)2+.∴当a=1,b=时,取得最小值-.9.B解析∵函数y=在t∈(0,2]上为减函数,∴当t=2时,y=的最小值为1.令f(t)=,则f'(t)=.当t∈(0,2]时,f'(t)>0,故f(t)在区间(0,2]上为增函数.故当t=2时,f(t)=的最大值为.故由题意知≤a≤,即≤a≤1.10.C解析函数f(x)=的图象,可以看作f(x)=向左平移1个单位长度得到的,∵f(x)=是奇函数,∴函数f(x)=的图象关于(-1,0)中心对称,排除A,D;当x>0时,函数f(x)=没有零点,所以排除B,故选C.11.C解析由cos B=,0<B<π得sin B=.又=2得=2,即c=2a.由S△ABC=ac sin B=a2·,得a=1.所以c=2.由b2=a2+c2-2ac cos B=1+4-2×1×2×=4,得b=2.12.C解析设g(x)=f(x)-x.∵f'(x)<,∴g'(x)=f'(x)-<0.∴g(x)是R上的减函数.又f(1)=1,∴f(log2x)>=log2x+,即g(log2x)=f(log2x)-log2x>=g(1)=f(1)-=g(log22).∴log2x<log22.又y=log2x是定义域上的增函数,∴0<x<2.∴不等式f(log2x)>的解集为(0,2).故选C.13.150°解析因为(a+b)⊥a,所以(a+b)·a=0⇔a2+b·a=0⇔3+b·a=0,所以b·a=-3,可知a与b的夹角的余弦值为=-.则a与b的夹角为150°.14.e解析令f(x)=t,则y=f(t).由f(t)=0,可得t=1;由f(x)=1,可得x=e.故函数y=f(f(x))的零点是e.15.解析∵|a-b|=1,∴a2+b2-2|a||b|cos60°=1,即a2+b2=1+|a||b|≥2|a||b|.∴|a||b|≤1,当且仅当|a|=|b|=1时等号成立.∴|a+b|=.∴2|a||b|+1≤3.∴|a+b|的最大值是.16.解析由内角A,B,C所对的边分别为a,b,c,可知AB=c,AC=b,BC=a.由,得cb cos A=ca cos B.故由正弦定理,得sin B cos A=cos B sin A,即sin(B-A)=0.因为-π<B-A<π,所以B=A,从而b=a.由已知=1,得ac cos B=1.故由余弦定理知ac·=1,即a2+c2-b2=2,故c=.17.(1)解因为a与b-2c垂直,所以a·(b-2c)=4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=4sin(α+β)-8cos(α+β)=0,因此tan(α+β)=2.(2)解由b+c=(sinβ+cosβ,4cosβ-4sinβ),得|b+c|==≤4.又当β=kπ-(k∈Z)时,等号成立,所以|b+c|的最大值为4.(3)证明由tanαtanβ=16,得16cosαcosβ=sinαsinβ,故a∥b.18.解设包装盒的高为h cm,底面边长为a cm,则a=x,h=(30-x),0<x<30.(1)由题意知S=4ah=8x(30-x)=-8(x-15)2+1800,故当x=15时,S取最大值.(2)由题意知V=a2h=2(-x3+30x2),则V'=6x(20-x).由V'=0得x=20(x=0舍去).当x∈(0,20)时,V'>0;当x∈(20,30)时,V'<0;故当x=20时,包装盒容积V最大,此时,即此时包装盒的高与底面边长的比值是.19.解(1)由题图知A=2,,则=4×,即ω=.又f=2sin=2sin=0,∴sin=0,∵0<φ<,-<φ-,∴φ-=0,即φ=,∴f(x)的解析式为f(x)=2sin.(2)由(1)可得f=2sin=2sin,g(x)==4×=2-2cos,∵x∈,∴-≤3x+,∴当3x+=π,即x=时,g(x)max=4.20.解(1)∵cos∠BDA=-,∴sin∠BDA=,sin C=sin=sin∠BDA·cos-cos∠BDA·sin,由正弦定理,得, 即,得AD=7.(2)S△ABD=·AD·BD·sin∠ADB=×7×BD×=14,得BD=5,由余弦定理,得AB2=AD2+BD2-2AD·BD·cos∠ADB=49+25+2×7×5×=116,∴AB=2.21.解(1)由f(x)=x3+ax2-x+c,得f'(x)=3x2+2ax-1.当x=时,得a=f'=3×+2a×-1,解得a=-1.(2)由(1)可知f(x)=x3-x2-x+c,则f'(x)=3x2-2x-1=3(x-1),由f'(x)>0,得x<-或x>1;由f'(x)<0,得-<x<1.所以f(x)的单调递增区间是和(1,+∞),f(x)的单调递减区间是.(3)函数g(x)=(f(x)-x3)·e x=(-x2-x+c)·e x,有g'(x)=(-2x-1)e x+(-x2-x+c)e x=(-x2-3x+c-1)e x,因为函数g(x)在x∈[-3,2]上单调递增,所以h(x)=-x2-3x+c-1≥0在x∈[-3,2]上恒成立.故只要h(x)在[-3,2]上的最小值h(2)≥0即可,解得c≥11,所以c的取值X围是[11,+∞).22.解(1)因为f'(x)=x-(x>0),又f(x)在x=2处的切线方程为y=x+b,所以解得a=2,b=-2ln2.(2)若函数f(x)在(1,+∞)上为增函数,则f'(x)=x-≥0在(1,+∞)上恒成立,即a≤x2在(1,+∞)上恒成立,所以a≤1.(3)当a=0时,f(x)在定义域(0,+∞)上恒大于0,此时方程无解.当a<0时,f'(x)=x->0在(0,+∞)上恒成立,所以f(x)在(0,+∞)上为增函数.因为f(1)=>0,f()=-1<0,所以方程有唯一解.当a>0时,f'(x)=x-.因为当x∈(0,)时,f'(x)<0,则f(x)在(0,)上为减函数;当x∈(,+∞)时,f'(x)>0,则f(x)在(,+∞)上为增函数.所以当x=时,f(x)有极小值,即最小值为f()=a-a ln a(1-ln a).当a∈(0,e)时,f()=a(1-ln a)>0,方程无解;当a=e时,f()=a(1-ln a)=0,此方程有唯一解x=.当a∈(e,+∞)时,f()=a(1-ln a)<0,因为f>0且>1,所以方程f(x)=0在区间(0,)上有唯一解.因为当x>1时,(x-ln x)'>0,所以x-ln x>1,所以x>ln x.所以f(x)=x2-a ln x>x2-ax.因为2a>>1,所以f(2a)>(2a)2-2a2=0,所以方程f(x)=0在区间(,+∞)上有唯一解.所以方程f(x)=0在区间(e,+∞)上有两解.综上,当a∈[0,e)时,方程无解;当a<0或a=e时,方程有唯一解;当a>e时,方程有两解.。
精品基础教育教学资料,仅供参考,需要可下载使用!专题2-4二次函数与幂函数【核心素养分析】1.了解幂函数的概念;结合函数y =x ,y =x 2,y =x 3,y =x 12,y =1x 的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.3.培养学生逻辑推理、直观想象、数学运算的素养。
【重点知识梳理】 知识点一 幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 知识点二 二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质【特别提醒】1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.【典型题分析】高频考点一 幂函数的图象与性质例1.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.【答案】-1【解析】由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数, ∴α<0,取α=-1.【方法技巧】(1)幂函数y =x α的形式特点是“幂指数坐在x 的肩膀上”,图象都过点(1,1).它们的单调性要牢记第一象限的图象特征:当α>0时,第一象限图象是上坡递增;当α<0时,第一象限图象是下坡递减.然后根据函数的奇偶性确定y 轴左侧的增减性即可.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象和性质是解题的关键.【变式探究】(2020·山东临沂一中质检)幂函数y =x (m ∈Z)的图象如图所示,则m 的值为( )A .-1B .0C .1D .2【答案】C【解析】从图象上看,由于图象不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图象看,函数是偶函数,故m 2-2m -3为负偶数,将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.高频考点二 求二次函数的解析式例2.(2020·河北衡水中学调研) 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【答案】f (x )=-4x 2+4x +7.【解析】法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n (a ≠0).∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 2-2-3mm法三:(利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1. 又函数有最大值y max =8, 即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7. 【方法技巧】求二次函数解析式的策略 (1)已知三点坐标,选用一般式(2)已知顶点坐标、对称轴、最值,选用顶点式 (3)已知与x 轴两点坐标,选用零点式【变式探究】(2020·湖南湘潭二中模拟)已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.【答案】19x 2+49x -59【解析】法一:(一般式)设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎨⎧-b2a=-2,4ac -b24a=-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:(顶点式)设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.高频考点三 二次函数的图象及应用例3.(2020·吉林长春实验中学模拟)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()【答案】A【解析】若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y=(a-1)x2-x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.【方法技巧】1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【变式探究】(2020·河南商丘一中模拟)已知abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()A BC D【答案】D【解析】A项,因为a<0,-b2a<0,所以b<0.又因为abc>0,所以c>0,而f(0)=c<0,故A错.B项,因为a<0,-b2a>0,所以b>0.又因为abc>0,所以c<0,而f(0)=c>0,故B错.C项,因为a>0,-b2a<0,所以b>0.又因为abc>0,所以c>0,而f(0)=c<0,故C错.D项,因为a>0,-b2a>0,所以b<0,因为abc>0,所以c<0,而f(0)=c<0,故选D。