物料衡算和热量衡算
- 格式:doc
- 大小:38.00 KB
- 文档页数:4
物料衡算和热量衡算1. 引言物料衡算和热量衡算是在工程设计和过程优化中常用的方法和工具。
物料衡算是指通过对物料的进出量、质量和组成等参数的分析,计算出物料的平衡以及物料流动过程中的相关参数。
热量衡算是指通过对热量的进出量、热平衡等参数的分析,计算出热量在系统中的平衡和流动情况。
本文将介绍物料衡算和热量衡算的基本概念、方法和应用。
2. 物料衡算2.1 物料平衡物料平衡是对物料流动系统中物料的进出量进行分析和计算的过程。
物料平衡的基本原理是质量守恒定律,即在封闭系统中,物料的质量不会发生净变化。
物料平衡可用于分析物料的流动路径、损耗情况以及优化物料的使用和回收。
2.2 物料衡算的方法常用的物料衡算的方法包括输入-输出法和组分衡算法。
- 输入-输出法:通过记录系统中物料的进出量,计算出物料的平衡情况。
该方法适用于物料流动较简单且没有复杂反应的系统。
具体步骤包括确定进料和产出物料的量和质量,计算进出物料的差值,并检查误差,使其趋近于零。
- 组分衡算法:通过对物料组分的平衡进行计算,得到物料的进出量。
该方法适用于需要考虑物料成分变化的系统。
具体步骤包括确定进料和产出物料的组分及其相对含量,计算进出物料组分的差值,并检查误差。
2.3 物料衡算的应用物料衡算在化工、冶金、环境工程等领域有广泛的应用,例如: - 在化工生产中,物料衡算可以用于优化原料的使用和能源的消耗,减少产品的损耗和废物的排放。
- 在冶金过程中,物料衡算可以用于优化矿石的选矿和冶炼过程,提高生产效率和产品质量。
- 在环境工程中,物料衡算可以用于分析和优化废物处理和排放过程,减少对环境的污染。
3. 热量衡算3.1 热量平衡热量平衡是对热量在系统中的分布和流动进行分析和计算的过程。
热量平衡的基本原理是热力学第一定律,即能量守恒定律。
热量衡算可以用于分析热量的传递、损失和利用情况,以及优化热能的使用和节约。
3.2 热量衡算的方法常用的热量衡算的方法包括输入-输出法和能量平衡法。
化工原理物料衡算和热量衡算引言化工工程涉及许多物料的处理和转化过程,同时也需要考虑热量的平衡。
物料衡算和热量衡算是化工原理的重要内容,对于工程实践和过程优化具有重要的意义。
本文将介绍化工原理中的物料衡算和热量衡算的基本原理和计算方法。
物料衡算物料衡算是指对于化工工程中物料流动和转化过程的计算和分析。
在化工工程中,物料的流动和转化是实现各种反应和分离操作的基础,因此正确的物料衡算是保证工程设计和操作的关键。
在物料衡算中,我们通常需要考虑以下几个方面: 1. 物料的质量衡算:即对物料的质量输入和输出进行计算和分析。
对于物料的质量衡算,我们需要注意物料流动的平衡原则,即质量的输入必须等于输出。
2. 物料的能量衡算:即对物料的能量输入和输出进行计算和分析。
能量的输入和输出会影响物料的温度和相变过程,因此在能量衡算中需要考虑物料的热力学性质。
3. 物料的流动速度衡算:即对物料流动速度进行计算和分析。
物料的流动速度决定了反应和分离操作的效率,因此在物料衡算中需要合理地确定流量和速度的关系。
4. 物料的浓度衡算:即对物料中组分浓度的计算和分析。
物料的浓度会影响其反应和分离的速率和效果,因此在物料衡算中需要考虑不同组分浓度的变化规律。
物料衡算通常使用质量守恒和能量守恒等基本原理进行计算。
同时,还可以利用化学反应平衡的原理和质量流动的平衡原则进行衡算过程中的参数确定。
热量衡算热量衡算是化工工程中热力学过程的计算和分析。
在化工工程中,热量的平衡是保证反应和分离操作能够正常进行的基础。
热量衡算需要考虑以下几个方面: 1. 热量的输入和输出:即对于热量的输入和输出进行计算和分析。
在化工工程中,我们通常需要对热量的输入和输出进行平衡,以保证工程操作的稳定性。
2. 热量的传递和转化:即对于热量的传递和转化过程进行计算和分析。
热量的传递可以通过传导、对流和辐射等方式进行,因此在热量衡算中需要考虑传热方式的影响。
3. 热平衡的计算:即对于反应和分离过程中热量平衡的计算和分析。
干燥过程的物料衡算与热量衡算1. 引言在工业生产中,许多物料需要经过干燥过程才能达到所需的水分含量。
干燥过程是将物料中的水分蒸发或驱除的过程,其中物料的衡算和热量的衡算是非常重要的。
本文将介绍干燥过程中的物料衡算和热量衡算的基本原理和方法。
2. 物料衡算物料衡算是指在干燥过程中对物料的质量进行衡量和追踪的过程。
通常情况下,物料的衡算可以分为进料衡算和出料衡算两个部分。
2.1 进料衡算在干燥过程中,物料的进料衡算是指对进入干燥设备的物料进行质量的测量和记录。
通常情况下,进料衡算可以通过称重装置、质量流量计等设备进行。
物料的进料衡算可以用以下公式表示:进料量 = 初始物料质量 - 终止物料质量2.2 出料衡算在干燥过程中,物料的出料衡算是指对从干燥设备中出来的物料进行质量的测量和记录。
同样地,出料衡算也可以通过称重装置、质量流量计等设备进行。
物料的出料衡算可以用以下公式表示:出料量 = 初始物料质量 - 终止物料质量3. 热量衡算热量衡算是指在干燥过程中对热量的衡量和追踪的过程。
热量衡算是确定干燥设备所需的热量输入和物料中的水分蒸发所需的热量的关键。
3.1 热量平衡公式热量平衡公式是用于计算干燥过程中所需的热量输入和物料中的水分蒸发所需的热量的关系。
热量平衡公式如下:热量输入 = 热量输出 + 热量损失其中,热量输入是指干燥设备所需的热量输入,热量输出是指物料中的水分蒸发所需的热量,热量损失是指在干燥过程中因为传导、对流和辐射等现象导致的热量损失。
3.2 热量输入的计算热量输入可以通过以下公式计算:热量输入 = 干燥空气的热量 + 干燥空气的水分蒸发热量 + 加热设备的热量其中,干燥空气的热量可以通过湿空气焓值表或湿空气定压比热容表进行查找,干燥空气的水分蒸发热量可以通过水的蒸发热量进行计算,加热设备的热量可以通过加热元件的功率和加热时间进行计算。
3.3 热量输出的计算热量输出可以通过以下公式计算:热量输出 = 出料量 * 物料的比热 * (物料的初始水分含量 - 物料的终止水分含量)其中,出料量是指干燥过程中物料的出料量,物料的比热可以通过物料的物性表进行查找,物料的初始水分含量和物料的终止水分含量可以通过物料的质量衡算进行计算。
3 物料衡算依据原理:输入的物料量=输出的物料量+损失的物料量3.1 衡算基准年生产能力:2000吨/年年开工时间:7200小时产品含量:99%3.2 物料衡算反应过程涉及一个氧化反应过程,每批生产的产品相同,虽然有原料对叔丁基甲苯和溶剂甲苯的循环,第一批以后循环的物料再次进入反应,但每批加料相同。
在此基础上,只要计算第一个批次的投料量,以后加料一样。
反应釜内加热时间2h、正常的反应时间18h、冷却时间1h。
加上进料和出料各半个小时,这个生产周期一共2+18+1+1=22h。
所以在正常的生产后,每22小时可以生产出一批产品。
每年按300天生产来计算,共开工7200小时,可以生产327个批次。
要求每年生产2000吨对叔丁基苯甲酸,则每批生产2000÷327=6.116吨。
产品纯度99 %( wt %)实际过程中为了达到高转化率和高反应速率,需要加入过量对叔丁基甲苯做溶剂,反应剩余的原料经分离后循环使用。
3.2.1 各段物料(1) 原料对叔丁基甲苯的投料量设投料中纯的对叔丁基甲苯为X kg,则由C11H16C11H14O2 M 148.24 178.23m x 6054.8得x=6054.8×148.24÷178.23=5036.0 kg折合成工业原料的对叔丁基甲苯质量为5036.0÷0.99=5086.9kg实际在第一批生产过程加入的对叔丁基甲苯为6950.3kg(2)氧气的通入量生产过程中连续通入氧气,维持釜内压力为表压0.01MPa,进行氧化反应。
实际生产过程中,现场采集数据结果表明,通入的氧气量为1556.8 kg,设反应消耗的氧气量为x kg3/2O2C11H14O2 M 31.99 178.23m x 6054.8 得x= 3/2×6054.8×31.99÷178.23=1630.1kg此时采用的空气分离氧气纯度可达99%,因此折合成通入的氧气为1630.1÷0.99=1646.6 kg即在反应过程中,需再连续通入1646.6kg氧气。
化工设计物料衡算和热量衡算化工设计中的物料衡算和热量衡算是其重要组成部分,对于化工过程的正常运行和优化具有重要意义。
物料衡算主要是指对于化工过程中的原料、中间产物和最终产物的质量和数量进行计算和控制的过程。
而热量衡算则是指对于化工过程中的能量平衡的计算和分析。
化工设计中的物料衡算首先需要确定化工过程的原料组成和性质,包括原料的化学成分、物理性质和纯度等。
根据原料的性质和化学反应方程,可以计算出原料的消耗量和产物的生成量。
同时,还需要考虑到原料的损失和副反应的发生,以及可能的回收和再利用,从而对原料的总需求进行准确的衡算。
此外,物料的运输和储存也需要考虑到,包括原料的装卸和包装,以及仓库的容量和仓储条件等。
在化工过程中,热量的衡算是不可或缺的。
热量衡算主要包括热量输入和输出的计算和分析。
热量输入一般是通过化学反应或物理过程得到的,主要包括燃烧、加热和蒸发等。
热量输出则是指化工过程中热量的损失和传递,包括冷却、换热和放热等。
通过准确的热量衡算,可以确定化工过程中的热能转化效率和能量消耗情况,从而对能源的利用进行优化和改进。
在物料衡算和热量衡算中,还需要考虑到化工过程中可能存在的变化和调整。
化工过程中的原料组成和性质可能会随着时间的推移而发生变化,例如反应的进程或携带物等。
因此,在衡算过程中需要对变化因素进行考虑,并进行相应的调整。
例如,可以通过实验和模拟等手段对原料的性质和反应条件进行测定和预测,从而对衡算结果进行修正和优化。
总之,物料衡算和热量衡算是化工设计中的重要内容,对于化工过程的正常运行和优化具有重要的影响。
通过准确的物料衡算,可以确定化工过程中的原料需求和产物生成量,并进行合理的储存和管理。
通过热量衡算,可以确定化工过程中的能量平衡和热能转化效率,从而对能源的利用进行优化。
这些衡算结果可以为化工过程的生产计划、产品质量控制和能源管理提供重要参考。
化工中物料衡算和热量衡算公式一、物料衡算公式1.物料总量计算公式物料总量计算公式可以根据物质的密度(ρ)和体积(V)来计算。
公式如下:物料总量=密度×体积2.物料质量计算公式物料质量计算公式可以根据物质的密度(ρ)、体积(V)和物质的质量(m)之间的关系得出。
公式如下:质量=密度×体积3.物料浓度计算公式物料浓度计算公式可以根据溶质的质量(m)和溶液的体积(V)来计算。
公式如下:浓度=质量/体积4.溶液的重量和体积之间的关系溶液的重量可以根据溶液的密度(ρ)和溶液的体积(V)相乘得到。
公式如下:重量=密度×体积1.热量传递计算公式热量传递计算公式可以用于计算传热功率(Q)和传热面积(A)之间的关系。
公式如下:Q=h×A×ΔT其中,h为传热系数,ΔT为温差。
2.物料的热量计算公式物料的热量计算公式可以根据物料的质量(m)、比热容(Cp)和温度变化(ΔT)来计算。
公式如下:热量=质量×比热容×温度变化3.水的蒸发热计算公式水的蒸发热计算公式可以根据水的质量(m)和蒸发热(ΔHvap)来计算。
热量=质量×蒸发热三、补充说明1. 密度(ρ)是物质单位体积的质量,常用的单位有千克/立方米(kg/m^3)或克/立方厘米(g/cm^3)。
2. 比热容(Cp)是物质单位质量的热容量,表示单位质量物质温度升高1℃所需的热量,常用的单位是千焦/千克·℃(kJ/kg·°C)或焦/克·℃(J/g·°C)。
3.传热系数(h)是衡量热传导性能的参数,表示单位面积上的热量流入或流出的速率,常用的单位是瓦特/平方米·℃(W/m^2·°C)。
4.温度变化(ΔT)是物质的温度差,常用的单位是摄氏度(℃)或开尔文(K)。
5. 蒸发热(ΔHvap)是物质从液态转变为气态所需的热量,常用的单位是焦耳/克(J/g)或千焦/千克(kJ/kg)。
物料衡算和热量衡算物料衡算根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。
通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。
物料衡算的基础物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑G1=∑G2+∑G3+∑G4∑G2:——输人物料量总和;∑G3:——输出物料量总和;∑G4:——物料损失量总和;∑G5:——物料积累量总和。
当系统内物料积累量为零时,上式可以写成:∑G1=∑G2+∑G3物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准(1)对于间歇式操作的过程,常采用一批原料为基准进行计算。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。
又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。
生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。
通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。
热量衡算的基础热量衡算的基础是能量守恒定律,在无轴功的条件下,进入系统的热量与离开热量相互平衡。
实际生产中传热设备的热量衡算可由下式表示。
Q1+Q2+Q3=Q4+Q5+Q6Q1——物料进入设备带入热量,kJ;Q2——由加热剂或冷却剂传给设备和物料的热量,kJ;Q3——过程热效应,kJ;Q4——物料离开设备带出的热量,kJ;Q5——消耗在加热设备各个部件上的热量,kJ;Q6——设备向四周散失的热量,kJ。
化工设计物料衡算和热量衡算化工设计物料衡算和热量衡算是化工工程设计中非常重要的内容。
物料衡算是指在化工工程中对物料的流动进行计算和衡量的过程,而热量衡算则是指对化工工程中的热量流动进行计算和衡量的过程。
下面将详细介绍这两个内容。
首先,物料衡算是化工工程设计中的一个必不可少的环节。
物料衡算要基于反应的化学反应原理或工艺流程,计算出物料的各项数据,如流量、摩尔质量、摩尔仓数等。
具体的衡算步骤包括:确定物料的基本特性,如摩尔质量、密度等;确定物料的流动量和流速;根据反应方程式和反应器的驱动力,计算出反应速率;进一步计算出反应器的物料应用时间(HRT),以衡量物料在反应器中的停留时间。
物料衡算的目的是为了选择合适的设备和工艺流程,以确保化工工程的安全运行。
通过物料衡算,可以计算出物料在不同设备中的流速和停留时间,从而判断是否需要增加搅拌装置或延长反应器的体积等改进措施。
此外,物料衡算还能帮助设计人员确定各种物料转移设备的大小和形式,以满足工艺流程的需求。
其次,热量衡算是物料衡算的重要组成部分,也是化工工程中的关键环节。
热量衡算要根据物料的热力学特性及其运动过程,计算出热量的流动和传递。
具体的衡算步骤包括:测定物料的初始和终止温度;计算物料的比热容和比焓;计算物料在设备中的热量传递和损失;计算过程中发生的温度变化和热量变化;计算设备的热损失和热水平;最终评估设备的热效率。
热量衡算的目的是为了保证化工工程的热平衡和能量效率。
通过热量衡算,可以计算出各个设备和工艺过程的热量损失和热交换,从而判断是否需要增加散热装置或回收热量等改进措施。
此外,热量衡算还能帮助设计人员确定各种热交换设备的大小和形式,以满足工艺流程的需求。
总结来说,物料衡算和热量衡算是化工工程设计中非常重要的内容。
物料衡算可以帮助设计人员选择合适的设备和工艺流程,确保化工工程的安全运行;热量衡算则可以保证化工工程的热平衡和能量效率。
通过物料衡算和热量衡算,设计人员可以更好地优化工艺流程,提高化工工程的效率和经济性。
化工设计之物料衡算及热量衡算化工设计中的物料衡算和热量衡算是非常重要的步骤,可以帮助工程师确定所需的原料数量和能源消耗。
本文将讨论物料衡算和热量衡算的原理、方法和应用。
一、物料衡算物料衡算是指根据化工过程的原理和条件,计算出所需原料的数量。
1.原料衡算的原理在化工过程中,根据反应式、反应的平衡常数、物料的摩尔平衡和原料的纯度等信息,可以得出原料的物质平衡方程。
2.原料衡算的方法(1)平衡更新法:根据反应式及其他物质平衡方程,利用线性方程组求解方法,逐步逼近平衡条件,得出原料数量的近似解。
(2)摩尔关系法:利用反应的摩尔比例来计算原料的摩尔数量。
根据反应的平衡常数和其他物质平衡方程,可以得到原料的摩尔数量。
3.原料衡算的应用物料衡算在化工过程中有广泛的应用。
例如,在合成反应中,根据反应需求,确定所需原料的摩尔数量;在萃取过程中,根据溶剂和溶质的摩尔比例,计算溶液中的溶质浓度。
二、热量衡算热量衡算是指根据化工过程的热力学原理和条件,计算出所需的能量消耗。
1.热量衡算的原理根据热力学定律,可以计算化学反应的焓变,并以此来确定反应所需的热量。
热量衡算也需要考虑其他因素,如物料的温度、压力变化等。
2.热量衡算的方法(1)焓变法:根据反应的焓变和反应的摩尔比例,计算出反应所需的热量。
焓变可以通过实验测量或热力学数据库来获取。
(2)能量平衡法:考虑物料流动和热交换等因素,通过能量平衡方程求解,计算出能量的输入和输出。
3.热量衡算的应用热量衡算在化工过程中的应用非常广泛。
例如,在高温燃烧反应中,需要计算反应所需的燃料气体的热量;在蒸汽发生器中,需要计算蒸汽的产生量和燃料的热量供应。
物料衡算和热量衡算是化工设计中不可或缺的两个步骤,可以帮助工程师确定原料的用量和能量消耗,从而优化过程设计、提高生产效率和节约能源。
在进行衡算时,需要准确地获取物料的性质数据,合理地选择计算方法,并考虑到实际操作条件的变化,以保证设计结果的可靠性和实用性。
3 物料衡算和热量衡算3.1计算基准年产4500吨的二氯甲烷氯化吸收,年工作日330天,每天工作24小时,每小时产二氯甲烷:4500×103=568.18kg/h330×243.2物料衡算和热量衡算3.2.1反应器的物料衡算和热量衡算本反应为强放热反应,如不控制反应热并移走,温度会急剧升高,产生强烈的燃烧反应,是氯化物发生裂解反应。
由此可以通过加入过量的甲烷得到循环气,以之作为稀释剂移走反应热。
(一)计算依据(1)二氯甲烷产量为:568.18 kg/h,即:6.69 kmol/h;(2)原料组成含: Cl2 96%,CH495%;(3)进反应器的原料配比(摩尔比): Cl2:CH4:循环气=1:0.68:3.0 (4)出反应器的比例: CH2Cl2:CHCl3=1:0.5(质量比)(CHCl3+CCl4)/CH2Cl2=0.38(摩尔比);(5)操作压力: 0.08MPa(表压);(6)反应器进口气体温度25o C,出口温度420o C。
CH3ClCH2Cl2CHCl3CH4 CCl4HCl假设循环气不参与反应,只起到带走热量的作用。
则设进口甲烷为X kmol/h,出反应器的一氯甲烷Y kmol/h,氯化氢Z kmol/h。
由进反应器的原料配比(摩尔比)Cl2:CH4:循环气=1:0.68:3.0原料组成含: Cl2 96%,CH495%。
可知:Cl296%⁄X95%⁄=10.68得进口Cl2为1.48X kmol/h由CH2Cl2:CHCl3=1:0.5(质量比)可得CHCl3每小时产量为:568.18×0.5/119.5=2.38kmol/h由(CHCl3+CCl4)/CH2Cl2=0.38(摩尔比)可得CCl4的量为0.38×6.69-2.38=0.162kmol/h用元素守衡法则:Cl元素守衡 2.96X=Y+6.69×2+2.38×3+0.162×4+Z ①H 元素守衡4X=3Y+6.69×2+2.38+Z ②C 元素守衡X=Y+6.69+2.38+0.162 ③解方程①①③得X=24.87kmol/hY=15.64kmol/hZ=36.81kmol/h(1)所以反应器进口原料中各组分的流量:Cl2: 24.87×1.48=36.81kmol/h=824.49Nm3/h (纯)36.81/0.96=38.34kmol/h=865.82Nm3/h (含杂质)CH4: 24.87kmol/h=557.09Nm3/h (纯)24.87/0.95=26.18kmol/h=585.79Nm3/h (含杂质)循环气流量:3×38.34=115.02 kmol/h=2576.45 Nm3/h其中:CH3Cl:15.64 kmol/hN2:38.34×4%+26.18×3%=2.319 kmol/hCO2:26.18×2%=0.524 kmol/hCH4:115.02-15.64-2.319-0.524=96.54 kmol/h 进口气体总量:38.34+26.18+96.54=161.06 kmol/h(2)反应器出口中各组分流量:CH3Cl:15.64 kmol/hCH2Cl2:6.69 kmol/hCHCl3:2.38 kmol/hCCl4:0.162 kmol/hHCl:36.81 kmol/h循环气:115.02 kmol/h出口气体总量:115.02+36.81+0.162+2.38+6.69=161.06 kmol/h (3)出口气体中各组分的含量:CH3Cl:15.64/161.06×100%=9.65%CH2Cl2:6.69/161.06×100%=4.15%CHCl3:2.38/161.06×100%=1.48%CCl4:0.162/161.06×100%=0.10%HCl:36.81/161.06×100%=22.85%N2: 2.319/161.06×100%=1.44%CO2:0.524/161.06×100%=0.33%CH4:96.54/161.06×100%=59.94%表3—1反应器物料平衡组分反应器进口反应器出口kmol/h 组成%(mol)kg/h kmol/h 组成%(mol)kg/hCH4121.41 75.38 1942.56 96.5459.941544.64 Cl236.8122.85 2513.51CH3Cl 15.649.65789.82 CH2Cl2 6.69 4.15568.65 CHCl3 2.38 1.48 284.41 CCl40.1620.10 24.95 HCl 36.8122.851343.57 N2 2.319 1.44 106.67 2.319 1.44106.67 CO20.5240.33 23.07 0.5240.3323.06 总计161.06 100 4685.80 161.06 100 4685.80 (三)热量衡算以25℃为基准温度由《氯碱工业理化常数手册》查得如下数据:表3—2 反应物料标准摩尔生成焓Δf Hθ/(kJ/mol )Δf H m θ=∑生成物n Δf H m θ-∑反应物n Δf H m θ=-3.455×106 kJ420℃时,由《氯碱工业理化常数手册》查得如下数据:表3—3生成物的标准摩尔定压热容C p,m θ/(J ﹒K -1﹒mol -1) 物质CH 3Cl CH 2Cl2CHCl 3 CCl 4 HCl N 2 CO 2n(kmol) 15.64 6.69 2.38 0.162 36.81 2.319 0.524C p,m θ66.0745.97588.28798.88729.9630.6552.27Δt = 420-25=395℃输出焓:∑输出H = ∑n C p,m θΔt = 1.093×106 kJ输入焓:∑输入H = 0则放出的热量:Q 放出=Δf H m θ+∑输出H+∑输入H=-2.362×106 kJ222.5℃时,由《氯碱工业理化常数手册》查得如下数据:表3—4 循环气各物质的标准摩尔定压热容C p,m θ/(J ﹒K -1﹒mol -1) 物质 CH 4 CH 3Cl N 2 CO 2n(kmol)96.54 15.64 2.319 0.524 C p,m θ49.6254.8330.8153.43循环气带出热量:Q 带出=∑n C p,m θΔt=2.27×106 kJ 考虑4%热损失,则2.362×106×(1-4%)=2.27 则Q 放出= Q 带出循环气能带走的热量恰好为反应气放出的热量,是反应温度保持在420℃左右可以维持反应顺利进行。
物料衡算和热量衡算
物料衡算
根据质量守恒定律,以生产过程或生产单元设备为研究对象,对其进出口处进行定量计算,称为物料衡算。
通过物料衡算可以计算原料与产品间的定量转变关系,以及计算各种原料的消耗量,各种中间产品、副产品的产量、损耗量及组成。
物料衡算的基础
物料衡算的基础是物质的质量守恒定律,即进入一个系统的全部物料量必等于离开系统的全部物料量,再加上过程中的损失量和在系统中的积累量。
∑G1=∑G2+∑G3+∑G4
∑G2:——输人物料量总和;
∑G3:——输出物料量总和;
∑G4:——物料损失量总和;
∑G5:——物料积累量总和。
当系统内物料积累量为零时,上式可以写成:
∑G1=∑G2+∑G3
物料衡算是所有工艺计算的基础,通过物料衡算可确定设备容积、台数、主要尺寸,同时可进行热量衡算、管路尺寸计算等。
物料衡算的基准
(1)对于间歇式操作的过程,常采用一批原料为基准进行计算。
(2)对于连续式操作的过程,可以采用单位时间产品数量或原料量为基准进行计算。
物料衡算的结果应列成原材料消耗定额及消耗量表。
消耗定额是指每吨产品或以一定量的产品(如每千克针剂、每万片药片等)所消耗的原材料量;而消耗量是指以每年或每日等时间所消耗的原材料量。
制剂车间的消耗定额及消耗量计算时应把原料、辅料及主要包装材料一起算入。
热量衡算
制药生产过程中包含有化学过程和物理过程,往往伴随着能量变化,因此必须进行能量衡算。
又因生产中一般无轴功存在或轴功相对来讲影响较小,因此能量衡算实质上是热量衡算。
生产过程中产生的热量或冷量会使物料温度上升或下降,为了保证生产过程在一定温度下进行,则外界须对生产系统有热量的加入或排除。
通过热量衡算,对需加热或冷却设备进行热量计算,可以确定加热或冷却介质的用量,以及设备所需传递的热量。
热量衡算的基础
热量衡算的基础是能量守恒定律,在无轴功的条件下,进入系统的热量与离开热量相互平衡。
实际生产中传热设备的热量衡算可由下式表示。
Q1+Q2+Q3=Q4+Q5+Q6
Q1——物料进入设备带入热量,kJ;
Q2——由加热剂或冷却剂传给设备和物料的热量,kJ;
Q3——过程热效应,kJ;
Q4——物料离开设备带出的热量,kJ;
Q5——消耗在加热设备各个部件上的热量,kJ;
Q6——设备向四周散失的热量,kJ。
热量衡算的方法
热量衡算时一般建议以273K为基准温度,以液态为基准物态。
(1)物料进入设备带人热量Q1(或物料由设备带出的热量Q4)的计算
Ql(Q4)=∑Gicpi(T—T0)
Gi——1物料质量,kg;
Gi——1物料平均等压比热容,kJ/(kg•℃);
T ——物料温度,℃;
T0——计算基准温度,℃。
生产过程中有相变化时还要加上相变热。
(2)过程热效应(Q3)
过程热效应包括化学过程热效应(Qr)和物理过程热效应(Qp)。
即:
Q3=Qr+Qp
Qr=1000×qr?×GA/MA
GA——参与反应的A物质量,kg;
qr?——标准化学反应热,kJ/mol;
MA——A物质的分子量。
Qp可通过盖斯定律来计算。
消耗在加热设备各个部件上的热量(Qs)的计算
Q 5=∑Micpi (T2—T1)
Mi——设备上i部件质量,kg;
cpi——设备上i部件比热容,kJ/(kg•℃)
T1——设备各部件初温,℃;
T2——设备各部件终温,℃。
设备向四周散失的热量(Q6)的计算
Q6=∑Aαt(TW2一T0)t ×10-3
A——设备散热表面积,m2;
αt——散热表面向四周介质的联合给热系数,W/(m2•℃);
Tw2——四壁向四周散热时的表面温度,℃;
To——周围介质温度,℃;
t ——过程持续时间,s。
由加热剂或冷却剂传给设备和物料的热量的计算
Q2=Q4+Q5+Q6-Q1-Q3
选定加热剂(或冷却剂),即可从有关手册查出该物质cp,再确定其进出口温差ΔT,则加热剂(或冷却剂)的用量为:
w=Q2/cp•ΔT
Q2=κA1•ΔT m
κ——传热系数,kJ/(m2•h.℃);
Al——传热面积,m2;
ΔT m ——对数平均温差,℃。
ΔT m=(ΔT1—ΔT2)/ln(ΔTl/ΔT2)
从上式即可计算所需的传热面积。
对不需加热或冷却的设备可不必进行热量计算,此时水、汽等消耗量的确定可从同类型的生产车间取得。
热量衡算结束应列成动力消耗定额及消耗量表。
物料和热量恒算举例
物料恒算和热量恒算主要用于设计中的设备选型。
每个工艺段都应该进行核算。
列:某厂年生产速效感冒胶囊3亿粒/年,年工作时间为250天,一天一班,实行8小时工作制。
处方:
对乙酰基粉 0.3g 维生素C 0.1g
胆汁粉 0.1g 咖啡因 0.003g
扑尔敏 0.003g 10%淀粉浆适量
色用色素适量
速效感冒胶囊工艺流程:粉碎、过筛、填充、包装。
现只针对粉碎工段进行物料恒算,其他相同。
注:处方中对乙酰基粉、维生素C、胆汁粉、咖啡因、扑尔敏都要经过粉碎。
并且考虑20%的富余量。
300000000*0.3*10-3
对乙酰基粉每天用量:-------------------- *1.2 =432kg
250
300000000*0.1*10-3
维生素C每天用量: ------------------- *1.2=144kg
250
300000000*0.1*10-3
胆汁粉每天用量: ------------------ *1.2 =144kg
250
300000000*0.003*10-3
咖啡因每天用量: -------------------- *1.2 =4.32kg
250
300000000*0.003*10-3
扑尔敏每天用量: -------------------- *1.2 =4.32kg
250
根据以上计算,可以选择粉碎设备有:
40B型万能粉碎机:160-800kg/h
40B型粉碎机组:160-800kg/h。