人人都该了解的十大算法
- 格式:docx
- 大小:269.37 KB
- 文档页数:7
数据结构最基础的十大算法数据结构是计算机科学中的重要分支,它研究如何组织和存储数据以便于访问和修改。
在数据结构中,算法是解决问题的关键。
下面将介绍数据结构中最基础的十大算法。
1. 线性搜索算法线性搜索算法是最简单的算法之一,它的作用是在一个列表中查找一个特定的元素。
该算法的时间复杂度为O(n),其中n是列表中元素的数量。
2. 二分搜索算法二分搜索算法是一种更高效的搜索算法,它的时间复杂度为O(log n)。
该算法要求列表必须是有序的,它通过将列表分成两半来查找元素,直到找到目标元素为止。
3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。
该算法通过比较相邻的元素并交换它们的位置来排序列表。
4. 快速排序算法快速排序算法是一种更高效的排序算法,它的时间复杂度为O(nlog n)。
该算法通过选择一个基准元素并将列表分成两部分来排序列表。
5. 插入排序算法插入排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。
该算法通过将每个元素插入到已排序的列表中来排序列表。
6. 选择排序算法选择排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。
该算法通过选择最小的元素并将其放在列表的开头来排序列表。
7. 堆排序算法堆排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。
该算法通过将列表转换为堆并进行排序来排序列表。
8. 归并排序算法归并排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。
该算法通过将列表分成两部分并将它们合并来排序列表。
9. 哈希表算法哈希表算法是一种高效的数据结构,它的时间复杂度为O(1)。
该算法通过将键映射到哈希表中的位置来存储和访问值。
10. 树算法树算法是一种重要的数据结构,它的时间复杂度取决于树的深度。
树算法包括二叉树、AVL树、红黑树等。
以上是数据结构中最基础的十大算法,它们在计算机科学中有着广泛的应用。
十大速算技巧(完整版)★【速算技巧一:估算法】“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。
★【速算技巧二:直除法】李委明提示:“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
【例1】中最大的数是()。
【解析】直接相除:=30+,=30-,=30-,=30-,明显为四个数当中最大的数。
【例2】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是()。
【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。
李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。
【例3】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。
在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a小的数。
人工智能十大算法总结人工智能(Artificial Intelligence,简称AI)是一门涉及模拟和复制人类智能的科学和工程学科。
在人工智能的发展过程中,算法起着至关重要的作用。
算法是用来解决问题的一系列步骤和规则。
下面是人工智能领域中十大重要的算法总结。
一、回归算法回归算法用于预测数值型数据的结果。
常见的回归算法有线性回归、多项式回归、岭回归等。
这些算法通过建立数学模型来找到输入和输出之间的关系,从而进行预测。
二、决策树算法决策树算法是一种基于树形结构的模型,可用于分类和回归问题。
它将数据集拆分成决策节点和叶节点,并根据特征的属性进行分支。
决策树算法易于理解和解释,并且可以处理非线性关系。
三、支持向量机算法支持向量机算法用于分类和回归分析。
它通过在特征空间中构造一个超平面来将样本划分为不同的类别。
支持向量机算法具有高维特征空间的能力和较强的泛化能力。
四、聚类算法聚类算法用于将相似的数据点分组到一起。
常见的聚类算法有K均值聚类、层次聚类等。
聚类算法能够帮助我们发现数据中的模式和结构,从而对数据进行分析和处理。
五、人工神经网络算法人工神经网络是一种类似于生物神经系统的模型。
它由大量的节点和连接组成,可以模拟人脑的学习和推理过程。
人工神经网络算法可以用于分类、识别、预测等任务。
六、遗传算法遗传算法模拟生物进化的原理,通过模拟选择、交叉和变异等操作来寻找最优解。
遗传算法常用于求解复杂优化问题,如旅行商问题、背包问题等。
七、贝叶斯网络算法贝叶斯网络是一种概率图模型,用于表示变量之间的依赖关系。
贝叶斯网络算法可以用于推断和预测问题,如文本分类、诊断系统等。
它具有直观、可解释性强的特点。
八、深度学习算法深度学习是一种基于神经网络的算法,具有多层次的结构。
它可以通过无监督或监督学习来进行模型训练和参数优化。
深度学习算法在图像识别、语音识别等领域取得了显著的成果。
九、马尔科夫决策过程算法马尔科夫决策过程是一种基于状态转移的决策模型。
数学之道:十大速算窍门1. 数字拆分法将大数字拆分成易于计算的小数字,例如将 12345 拆分为10000 + 2000 + 300 + 40 + 5,分别进行计算再相加。
2. 倍数加速法利用数字的倍数特性,快速计算结果。
例如,计算156 乘以2,可以先计算 150 乘以 2 得到 300,再加上 6 乘以 2 得到 12,最终结果为 312。
3. 数字分组法将数字进行分组,例如将 1234 分为 12 和 34,先计算 12 乘以5 得到 60,再计算 34 乘以 5 得到 170,最后将两个结果相加得到230。
4. 加减交换律在加减法运算中,可以改变数字的顺序,这样可以简化计算。
例如,计算 123 + 45,可以改为计算 123 + 54,更容易计算出结果。
5. 乘法分配律利用乘法分配律,将复杂的乘法运算简化。
例如,计算 (2 + 3) 乘以 4,可以先计算 2 乘以 4 得到 8,再计算 3 乘以 4 得到 12,最后将两个结果相加得到 20。
6. 数字定位法对于较大的数字,可以通过数字定位法快速计算出结果。
例如,计算 123456 乘以 7,可以先计算 123456 乘以 10 得到 1234560,再减去 123456 得到 1111004。
7. 平方速算法利用平方数的特性,快速计算数字的平方。
例如,计算 13 的平方,可以先计算 10 的平方得到 100,再计算 3 的平方得到 9,最后将两个结果相加得到 169。
8. 立方速算法利用立方数的特性,快速计算数字的立方。
例如,计算 5 的立方,可以先计算 4 的立方得到 64,再加上 1 的立方得到 65。
9. 递减相加法在加法运算中,可以使用递减相加法,将计算简化。
例如,计算 123 + 45,可以先从 123 中减去 40 得到 83,再加上 5 得到 88。
10. 递增相减法在减法运算中,可以使用递增相减法,将计算简化。
例如,计算 123 - 45,可以先加上 1 得到 124,再减去 40 得到 84。
十大数学算法数学算法是应用数学的重要组成部分,它们是解决数学问题的有效工具。
在计算机科学中,数学算法被广泛应用于图像处理、数据分析、机器学习等领域。
下面将介绍十大经典数学算法,它们涵盖了数值计算、图论、概率统计等多个数学领域的核心算法。
一、牛顿法牛顿法是一种用于求解方程的迭代数值方法。
它通过不断逼近函数的根,实现方程的求解。
牛顿法的核心思想是利用函数的局部线性近似来逼近根的位置,通过迭代求解函数的根。
牛顿法在优化问题中有广泛应用,如求解最优化问题和非线性方程组。
二、高斯消元法高斯消元法是一种用于求解线性方程组的经典方法。
通过不断进行行变换,将线性方程组转化为上三角矩阵,进而直接求解出线性方程组的解。
高斯消元法在线性代数和计算机图形学中有广泛的应用。
三、快速傅里叶变换快速傅里叶变换(FFT)是一种高效的离散傅里叶变换计算方法。
它通过分治法将离散傅里叶变换的计算复杂度降低到O(n log n)的时间复杂度。
FFT在信号处理、图像处理等领域有广泛应用。
四、Prim算法Prim算法是一种用于求解最小生成树的贪心算法。
通过不断选取与当前最小生成树连接的最小权重边,逐步构建最小生成树。
Prim算法在图论和网络优化中有重要应用。
五、Dijkstra算法Dijkstra算法是一种用于求解单源最短路径问题的贪心算法。
通过使用优先队列来存储节点,不断选择当前最短路径长度的节点,逐步求解最短路径。
Dijkstra算法在路由器和网络优化中有广泛应用。
六、最小二乘法最小二乘法是一种用于求解参数估计问题的优化方法。
通过最小化观测值与估计值之间的差异平方和,得到参数的最优估计。
最小二乘法在回归分析和数据拟合中广泛应用。
七、蒙特卡洛方法蒙特卡洛方法是一种通过随机抽样和统计模拟,来解决复杂问题的数值方法。
它通过随机抽样来估计问题的概率或者数值解,适用于各种复杂的概率和统计计算问题。
八、梯度下降法梯度下降法是一种常用的优化算法,主要用于求解无约束最优化问题。
十大数学算法数学算法是解决数学问题的方法和步骤的集合。
在数学领域中,有许多重要且被广泛使用的算法。
这些算法不仅能够解决各种数学问题,还在计算机科学、工程和其他领域中得到了广泛应用。
在本文中,我们将介绍十大数学算法,它们分别是欧几里得算法、牛顿法、二分法、高斯消元法、快速傅里叶变换、动态规划、贝叶斯定理、蒙特卡洛方法、线性规划和迭代法。
1. 欧几里得算法欧几里得算法是解决最大公约数问题的一种常见方法。
该算法的核心思想是,通过不断用较小数去除较大数,直到余数为零,最后一个非零余数即为最大公约数。
欧几里得算法在密码学、数据压缩等领域得到了广泛应用。
2. 牛顿法牛顿法是一种用来求解方程近似解的迭代方法。
它基于函数的泰勒级数展开,通过不断迭代逼近函数的零点。
牛顿法在优化问题、图像处理和物理模拟等领域中广泛使用。
3. 二分法二分法又称折半查找法,是一种高效的查找算法。
它通过将查找区间一分为二,判断目标元素在哪一侧,并重复此过程,直到找到目标元素或确认不存在。
二分法在查找有序列表和解决优化问题时被广泛应用。
4. 高斯消元法高斯消元法是一种求解线性方程组的常用方法。
它通过对方程组进行一系列的行变换,将方程组化为简化的阶梯形式,从而求得方程组的解。
高斯消元法在计算机图形学、物理学和工程学等领域中得到广泛应用。
5. 快速傅里叶变换快速傅里叶变换是一种计算离散傅里叶变换的高效算法。
通过将离散信号转换为频域信号,可以在数字信号处理、图像处理和通信系统中实现快速算法和压缩方法。
6. 动态规划动态规划是一种解决具有重叠子问题和最优子结构性质的问题的算法。
通过将问题分解为子问题,并保存子问题的解,动态规划可以高效地求解一些复杂的优化问题,如最短路径、背包问题和序列比对等。
7. 贝叶斯定理贝叶斯定理是一种用来计算条件概率的方法。
它通过已知先验概率和观测数据来更新事件的后验概率。
贝叶斯定理在机器学习、人工智能和统计推断等领域中具有重要的应用。
生活中的常见算法1. 贪心算法:在面对一个问题时,贪心算法总是选择当前看起来最优的解,而不考虑整体的最优解。
例如,我们在购物时常常会使用贪心算法来选择价格最低的商品,以达到最省钱的目的。
2. 分治算法:分治算法将一个复杂的问题分解为若干个相同或类似的子问题,然后逐个解决子问题,最后将子问题的解合并起来得到原问题的解。
例如,在做数学题时,我们经常使用分治算法将一个大的问题分解为多个小的问题,然后逐个解决,最后得到整个问题的解答。
3. 动态规划算法:动态规划算法是一种通过将问题分解为子问题,并保存子问题的解来解决问题的方法。
它通常用于求解具有最优子结构的问题,例如最短路径问题、背包问题等。
在生活中,动态规划算法可以应用于制定长期规划、优化资源分配等领域。
4. 搜索算法:搜索算法用于在一个数据集中查找特定的元素或解决特定的问题。
常见的搜索算法包括线性搜索、二分搜索、广度优先搜索和深度优先搜索等。
在生活中,我们常常使用搜索算法来寻找特定的信息,例如在网络上搜索资料、在电话簿中搜索联系人等。
5. 排序算法:排序算法是将一组元素按照特定的顺序排列的算法。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序等。
在生活中,我们常常使用排序算法来对物品进行整理,例如整理书籍、整理文件等。
6. 图算法:图算法是用于解决与图相关的问题的算法。
图是由一组节点和连接这些节点的边组成的数据结构。
图算法可以用于解决最短路径问题、最小生成树问题等。
在生活中,图算法可以应用于社交网络分析、路线规划等领域。
7. 加密算法:加密算法是将信息转化为不可读的形式以保护信息安全的算法。
常见的加密算法包括对称加密算法和非对称加密算法。
在生活中,我们常常使用加密算法来保护个人隐私,例如在网上支付时使用的加密技术。
8. 线性规划算法:线性规划是一种用于求解线性优化问题的数学方法。
线性规划算法可以用于优化资源分配、生产计划等领域。
在生活中,线性规划算法可以应用于制定饮食计划、制定旅行路线等。
C语言入门必学—10个经典C语言算法C语言是一种广泛使用的编程语言,具有高效、灵活和易学的特点。
它不仅在软件开发中被广泛应用,也是计算机科学专业的必修课。
在学习C语言的过程中,掌握一些经典的算法是非常重要的。
本文将介绍10个经典C语言算法,帮助读者更好地了解和掌握C语言。
一、冒泡排序算法(Bubble Sort)冒泡排序算法是最简单、也是最经典的排序算法之一。
它通过不断比较相邻的元素并交换位置,将最大(或最小)的元素逐渐“冒泡”到数组的最后(或最前)位置。
二、选择排序算法(Selection Sort)选择排序算法是一种简单但低效的排序算法。
它通过不断选择最小(或最大)的元素,并与未排序部分的第一个元素进行交换,将最小(或最大)的元素逐渐交换到数组的前面(或后面)。
三、插入排序算法(Insertion Sort)插入排序算法是一种简单且高效的排序算法。
它通过将数组分为已排序和未排序两个部分,依次将未排序部分的元素插入到已排序部分的合适位置。
四、快速排序算法(Quick Sort)快速排序算法是一种高效的排序算法。
它采用了分治的思想,通过将数组分为较小和较大两部分,并递归地对两部分进行排序,最终达到整个数组有序的目的。
五、归并排序算法(Merge Sort)归并排序算法是一种高效的排序算法。
它采用了分治的思想,将数组一分为二,递归地对两个子数组进行排序,并将结果合并,最终得到有序的数组。
六、二分查找算法(Binary Search)二分查找算法是一种高效的查找算法。
它通过不断将查找范围折半,根据中间元素与目标值的大小关系,缩小查找范围,最终找到目标值所在的位置。
七、递归算法(Recursive Algorithm)递归算法是一种通过自我调用的方式解决问题的算法。
在C语言中,递归算法常用于解决树的遍历、问题分解等情况。
八、斐波那契数列算法(Fibonacci Sequence)斐波那契数列是一列数字,其中每个数字都是前两个数字的和。
计算机领域常用算法列表在计算机科学领域,算法是解决问题的基础工具。
各种算法的应用领域广泛,包括数据处理、搜索、排序、图形处理、机器学习等。
本文将介绍计算机领域常用的一些算法,以帮助读者了解和熟悉这些算法的基本原理和应用。
一、搜索算法1. 顺序搜索算法顺序搜索算法是最简单的搜索算法之一,其基本思想是按顺序逐个比较目标元素和列表中的元素,直到找到匹配项或搜索完整个列表。
顺序搜索算法适用于未排序的列表。
2. 二分搜索算法二分搜索算法也称为折半搜索算法,适用于已排序的列表。
其基本思想是将列表从中间切分,然后将目标元素与中间元素进行比较,根据比较结果缩小搜索范围,以达到快速搜索的目的。
3. 广度优先搜索算法广度优先搜索算法是一种图遍历算法,用于搜索图或树的结构。
它从起始节点开始,按照广度优先的方式依次访问与当前节点相邻的节点,直到找到目标节点或访问完整个图。
二、排序算法1. 冒泡排序算法冒泡排序算法是一种简单且常用的排序算法。
它通过不断比较相邻的元素并交换位置,将最大或最小的元素逐步“冒泡”到正确的位置,直到整个列表有序。
2. 快速排序算法快速排序算法是一种高效的排序算法。
它通过选择一个基准元素,将列表划分为两个子列表,其中一个子列表的元素都小于基准元素,另一个子列表的元素都大于基准元素。
然后对子列表递归地应用快速排序算法,最终得到有序列表。
3. 归并排序算法归并排序算法是一种稳定的排序算法。
它将列表划分为多个子列表,然后逐个合并子列表,直到得到完全排序的列表。
归并排序算法的核心思想是分治法,将大问题拆分为小问题并解决。
三、图算法1. 最短路径算法最短路径算法用于求解两个节点之间的最短路径。
著名的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法适用于单源最短路径问题,而弗洛伊德算法适用于所有节点对之间的最短路径问题。
2. 最小生成树算法最小生成树算法用于求解连通图的最小生成树。
其中,普里姆算法和克鲁斯卡尔算法是两种常用的最小生成树算法。
最常⽤的10⼤算法1.String/Array/Matrix在Java中,String是⼀个包含char数组和其它字段、⽅法的类。
如果没有IDE⾃动完成代码,下⾯这个⽅法⼤家应该记住:toCharArray() //get char array of a StringArrays.sort() //sort an arrayArrays.toString(char[] a) //convert to stringcharAt(int x) //get a char at the specific indexlength() //string lengthlength //array sizesubstring(int beginIndex)substring(int beginIndex, int endIndex)Integer.valueOf()//string to integerString.valueOf()/integer to stringString/arrays很容易理解,但与它们有关的问题常常需要⾼级的算法去解决,例如动态编程、递归等。
下⾯列出⼀些需要⾼级算法才能解决的经典问题:2.链表在Java中实现链表是⾮常简单的,每个节点都有⼀个值,然后把它链接到下⼀个节点。
class Node {int val;Node next;Node(int x) {val = x;next = null;}}⽐较流⾏的两个链表例⼦就是栈和队列。
栈(Stack)class Stack{Node top;public Node peek(){if(top != null){return top;}return null;}public Node pop(){if(top == null){return null;}else{Node temp = new Node(top.val);top = top.next;return temp;}}public void push(Node n){if(n != null){n.next = top;top = n;}}}队列(Queue)class Queue{Node first, last; public void enqueue(Node n){if(first == null){first = n;last = first;}else{last.next = n;last = n;}} public Node dequeue(){if(first == null){return null;}else{Node temp = new Node(first.val);first = first.next;return temp;}}}值得⼀提的是,Java标准库中已经包含⼀个叫做Stack的类,链表也可以作为⼀个队列使⽤(add()和remove())。
人人都该了解的十大算法标签:算法2015-11-30 15:10 2711人阅读评论(7) 收藏举报分类:服务器架构(79)版权声明:本文为博主原创文章,未经博主允许不得转载。
算法一:快速排序算法快速排序是由东尼·霍尔所发展的一种排序算法。
在平均状况下,排序n 个项目要Ο(n log n)次比较。
在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。
事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法步骤:1 从数列中挑出一个元素,称为“基准”(pivot),2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
在这个分区退出之后,该基准就处于数列的中间位置。
这个称为分区(partition)操作。
3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。
虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
算法二:堆排序算法堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。
堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
堆排序的平均时间复杂度为Ο(nlogn) 。
算法步骤:创建一个堆H[0..n-1]把堆首(最大值)和堆尾互换3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置4. 重复步骤2,直到堆的尺寸为1算法三:归并排序归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。
该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
算法步骤:1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置4. 重复步骤3直到某一指针达到序列尾5. 将另一序列剩下的所有元素直接复制到合并序列尾算法四:二分查找算法二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。
搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。
如果在某一步骤数组为空,则代表找不到。
这种搜索算法每一次比较都使搜索范围缩小一半。
折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。
算法五:BFPRT(线性查找算法)BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。
该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。
算法步骤:1. 将n个元素每5个一组,分成n/5(上界)组。
2. 取出每一组的中位数,任意排序方法,比如插入排序。
3. 递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。
4. 用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。
5. 若i==k,返回x;若i<k,在小于x的元素中递归查找第i小的元素;若i>k,在大于x的元素中递归查找第i-k小的元素。
终止条件:n=1时,返回的即是i小元素。
算法六:DFS(深度优先搜索)深度优先搜索算法(Depth-First-Search),是搜索算法的一种。
它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
当节点v 的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。
这一过程一直进行到已发现从源节点可达的所有节点为止。
如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。
DFS属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。
一般用堆数据结构来辅助实现DFS算法。
深度优先遍历图算法步骤:1. 访问顶点v;2. 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;3. 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
上述描述可能比较抽象,举个实例:DFS 在访问图中某一起始顶点v 后,由v 出发,访问它的任一邻接顶点w1;再从w1 出发,访问与w1邻接但还没有访问过的顶点w2;然后再从w2 出发,进行类似的访问,… 如此进行下去,直至到达所有的邻接顶点都被访问过的顶点u 为止。
接着,退回一步,退到前一次刚访问过的顶点,看是否还有其它没有被访问的邻接顶点。
如果有,则访问此顶点,之后再从此顶点出发,进行与前述类似的访问;如果没有,就再退回一步进行搜索。
重复上述过程,直到连通图中所有顶点都被访问过为止。
算法七:BFS(广度优先搜索)广度优先搜索算法(Breadth-First-Search),是一种图形搜索算法。
简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。
如果所有节点均被访问,则算法中止。
BFS同样属于盲目搜索。
一般用队列数据结构来辅助实现BFS算法。
算法步骤:1. 首先将根节点放入队列中。
2. 从队列中取出第一个节点,并检验它是否为目标。
如果找到目标,则结束搜寻并回传结果。
否则将它所有尚未检验过的直接子节点加入队列中。
3. 若队列为空,表示整张图都检查过了——亦即图中没有欲搜寻的目标。
结束搜寻并回传“找不到目标”。
4. 重复步骤2。
算法八:Dijkstra算法戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。
迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。
该算法常用于路由算法或者作为其他图算法的一个子模块。
该算法的输入包含了一个有权重的有向图G,以及G中的一个来源顶点S。
我们以V 表示G 中所有顶点的集合。
每一个图中的边,都是两个顶点所形成的有序元素对。
(u, v) 表示从顶点u 到v 有路径相连。
我们以E 表示G中所有边的集合,而边的权重则由权重函数w: E → [0, ∞] 定义。
因此,w(u, v) 就是从顶点u 到顶点v 的非负权重(weight)。
边的权重可以想像成两个顶点之间的距离。
任两点间路径的权重,就是该路径上所有边的权重总和。
已知有V 中有顶点s 及t,Dijkstra算法可以找到s 到t的最低权重路径(例如,最短路径)。
这个算法也可以在一个图中,找到从一个顶点s 到任何其他顶点的最短路径。
对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。
算法步骤:1. 初始时令S={V0},T={其余顶点},T中顶点对应的距离值若存在<v0,vi>,d(V0,Vi)为<v0,vi>弧上的权值若不存在<v0,vi>,d(V0,Vi)为∞2. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S3. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止算法九:动态规划算法动态规划(Dynamic programming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。
动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。
大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。
通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。
这种做法在重复子问题的数目关于输入的规模呈指数增长时特别有用。
关于动态规划最经典的问题当属背包问题。
算法步骤:1. 最优子结构性质。
如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。
最优子结构性质为动态规划算法解决问题提供了重要线索。
2. 子问题重叠性质。
子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。
动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。
算法十:朴素贝叶斯分类算法朴素贝叶斯分类算法是一种基于贝叶斯定理的简单概率分类算法。
贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。
概率推理是与确定性推理相对应的。
而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。
朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。
在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。