安徽省2010年中考数学真题及答案解析
- 格式:doc
- 大小:4.79 MB
- 文档页数:14
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2。
89×107B.2。
89×106C.2。
89×105D.2.89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg) 20单位捕捞成本(元/kg)5﹣捕捞量(kg) 950﹣10x(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2考点:有理数。
2010安徽省中中考数学试题(WORD )一.选择题:(本大题10小题,每小题4分,满分40分)1. 在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1-B )0C )1D )22. 计算3(2)x x ÷的结果正确的是…………………………( ) A )28x B )26x C )38x D )36x3. 如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( ) A )500. B )550 C )600 D )6504. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.5. 如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是6. 某企业1~5月分利润的变化情况图所示,以下说法与图中反映的信息相符的是………………( ) A )1~2月分利润的增长快于2~3月分利润的增长 B )1~4月分利润的极差于1~5月分利润的极差不同 C )1~5月分利润的的众数是130万元 D )1~5月分利润的的中位数为120万元7. 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A )0.5B )0.1C )—4.5D )—4.18. 如图,⊙O 过点B 、C 。
圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6,则⊙O 的半径为………………( )A )10B )32C )23D )139. 下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
绝密*启用前2010年安徽芜湖市中考试题解析数学本试卷分选择题和填空题和解答题,共三大题24小题,共8页,满分150分,考试用时120分钟一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2010安徽芜湖,1,4分)-6的绝对值是()A.6 B.-6 C.+16D.-16【分析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.-6是负数,它的绝对值是它的相反数6【答案】A【涉及知识点】绝对值【点评】本题属于基础题,主要考查学生掌握求绝对值的方法,考查知识点单一,有利于提高本题的信度.【推荐指数】★2.(2010安徽芜湖,2,4分)2010年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238亿元,用科学计数法可记作()A.238×108B.23.8×109C.2.38×1010D.0.238×1011【分析】238亿可表示为2.38×10000000000,10000000000=1010,因此23800000000=2.38×1010.【答案】C【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).本题还要注意把亿进行转化,1亿=1×108【推荐指数】★★3.(2010安徽芜湖,3,4分)一个几何体的三视图如图所示,那么这个几何体是()【分析】.本题考查的是基本几何体的三视图,从俯视图看,排除B和C,从主视图或者左视图看,可以排除D。
2010年安徽省中考数学试卷(word版含解析答案)[1] 2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1(在,1,0,1,2这四个数中,既不是正数也不是负数的是( )A(,1 B(0 C(1 D(2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0( 解答:解:A、,1,0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1,0,是正数,故C错误;D、2,0,是正数,故D错误(故选B(点评:理解正数和负数的概念是解答此题的关键(32(计算(2x)?x的结果正确的是( )2233 A(8x B(6x C(8x D(6x考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答(332解答:解:(2x)?x=8x?x=8x(故选A(点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键( 3(如图,直线l?l,?1=55?,?2=65?,则?3为( ) 12A(50? B(55? C(60? D(65?考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出?3所在三角形其余两角的度数,再根据三角形内角和定理即可求出?3的度数(解答:解:如图所示:?l?l,?2=65?, 12??6=65?,??1=55?,??1=?4=55?,在?ABC中,?6=65?,?4=55?,??3=180?,65?,55?=60?(故选C(点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目(4( 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )765 4 A(2.89×10 B(2.89×10 C(2.89×10 D(2.89×10 考点:科学记数法—表示较大的数。
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×1045.(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O 的半径为()A.B.2C.3D.9.(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s 和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(2010•安徽)计算:×﹣=_________.12.(2010•安徽)不等式组的解集是_________.13.(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=_________度.14.(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是_________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(2010•安徽)在小正方形组成的15×15的网络中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.门票价格一览表指定日普通票2 00元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:20鲜鱼销售单价(元/kg)单位捕捞成本(元5﹣/kg)捕捞量(kg)950﹣10x(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b >c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2考点:有理数。
1、根据所给的信息,写出相关的答案(9分)1、忽如一夜春风来,千树万树梨花开描写的事物______________________。
2、四大民间传说、、、。
3、“蒋干中计”“跃马过澶溪”作品______________________。
4、“青山有幸埋忠骨,白铁无辜铸臣”中的“忠骨”是指(人物名),“佞臣”是指(人物名)。
5、请写出“洛阳亲友如相问,一片冰心在玉壶”中作者送别友人时登上的楼名:。
2、在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是()。
3、在比例尺1:30000000的地图上,量得A地到B地的距离是3.5厘米,则A地到B地的实际距离是()。
4、一种铁丝1/2米重1/3千克,这种铁丝1米重()千克,1千克长()米。
5、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。
int Similar(BiTree p,q) //判断二叉树p和q是否相似{if(p==null && q==null) return (1);else if(!p && q || p && !q) return (0);else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild)) }//结束Similar6、如图,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设 = , = ,那么 = _________ (结果用、表示).7、一个圆柱与一个圆锥体积相等,底面积也相等。
已知圆柱的高是12厘米,圆锥的高是()。
8、 1小时15分=()小时 5.05公顷=()平方米。
2010年安徽省芜湖市中考数学试卷(教师版)一、选择题(共10小题,每小题4分,满分40分)1.(4分)﹣6的绝对值是()A.﹣6 B.6 C.±6 D.【微点】绝对值.【思路】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解析】解:根据负数的绝对值等于它的相反数,得|﹣6|=6.故选:B.【点拨】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数.2.(4分)2010年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238亿元,用科学记数法可记作()A.238×108元B.23.8×109元C.2.38×1010元D.0.238×1011元【微点】科学记数法—表示较大的数.【思路】应先把238亿元整理为用元表示的数,科学记数法的一般形式为:a×10n,在本题中a为2.38,10的指数为整数数位减1.【解析】解:238亿元=23 800 000 000元=2.38×1010元.故选C.【点拨】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n 为比整数位数少1的数.3.(4分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.【微点】由三视图判断几何体.【思路】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,即可得出答案.【解析】解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;故选:C.【点拨】本题考查了由三视图判断几何体,考查学生的空间想象能力,是一道基础题,难度不大.4.(4分)下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形【微点】命题与定理.【思路】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解析】解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,不能确定;C、正确,符合矩形的判定定理;D、错误,两边相等的平行四边形是平行四边形.故选:C.【点拨】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.(4分)要使式子有意义,a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠0 【微点】分式有意义的条件;二次根式有意义的条件;函数自变量的取值范围.【思路】分子中二次根式的被开方数是非负数,而且分母不能为0,同时满足两个条件,求a的范围.【解析】解:根据题意,得解得a≥﹣2且a≠0.故选:D.【点拨】考查二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当式子中有分母时还要考虑分母不等于零.6.(4分)下列数据:16,20,22,25,24,25的平均数和中位数分别为()A.21和22 B.22和23 C.22和24 D.21和23【微点】算术平均数;中位数.【思路】根据平均数和中位数的概念求解,再判定正确选项.【解析】解:一组数据为16,20,22,25,24,25,∴平均数=(16+20+22+25+24+25)÷6=22;把数据按从小到大的顺序排列:16,20,22,24,25,25,∴中位数=(22+24)÷2=23.故选:B.【点拨】平均数是指在一组数据中所有数据之和再除以数据的个数.找中位数的时候一定要先按大小排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7.(4分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【微点】根的判别式.【思路】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解析】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点拨】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.(4分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF ⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF等于()A.9 B.10 C.11 D.12【微点】等腰梯形的性质.【思路】作辅助线:延长BC至G,使DG∥AC,由AD∥BC,可知四边形ADGC为平行四边形,所以DG=AC,而等腰梯形中两对角线相等,所以DG=BD,而DF⊥BG,则△AEC为等腰直角三角形,从而得到FC=FG﹣AD=2,则EF=BC﹣2FC=8﹣2FC =4,所以AE+EF=6+4=10.【解析】解:过D点作AC的平行线,交BC的延长线于G点,∵AD∥BC,∴四边形ADGC为平行四边形,∴DG=AC,∵AC⊥BD,∴DG⊥BD,∵等腰梯形ABCD,∴AC=BD,∴DG=BD,∴△DBG为等腰直角三角形,∴∠G=∠ACE=45°,∴△AEC是等腰直角三角形,∴AE=CE=EF6,∴FC=6﹣4=2,∵EF=AD=4,∴AE+EF=6+4=10.故选:B.【点拨】此题的关键是作辅助线,然后利用等腰梯形的性质和等腰直角三角形求解.9.(4分)如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.20【微点】等边三角形的判定与性质;垂径定理.【思路】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解析】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE OD=2;∴BE=10;∴BC=2BE=20;故选:D.【点拨】此题主要考查了等边三角形的判定和性质、垂径定理的应用,难度适中,是一道已知条件和图形均比较特殊的中考题.解答的关键是根据已知条件的特点,作出适当的辅助线,构造出等边三角形和直角三角形.10.(4分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A.B.C.D.【微点】正比例函数的图象;反比例函数的图象;二次函数的图象.【思路】可先根据二次函数的图象与性质判断a、b、c的符号,再判断正比例函数、反比例函数的图象大致位置.【解析】解:由二次函数y=ax2+bx+c的图象开口向上可知a>0;∵x0,∴b<0;∵图象与y轴交于负半轴,∴c<0,即b+c<0,∴反比例函数y图象在一、三象限,正比例函数y=(b+c)x图象在二、四象限;故选:B.【点拨】本题考查正比例函数、反比例函数、二次函数图象与性质.二、填空题(共6小题,每小题5分,满分30分)11.(5分)一个正多边形的每个外角都是36°,这个正多边形的边数是10.【微点】多边形内角与外角.【思路】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成36°n,列方程可求解.【解析】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.【点拨】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.12.(5分)因式分解:9x2﹣y2﹣4y﹣4=(3x+y+2)(3x﹣y﹣2).【微点】因式分解﹣分组分解法.【思路】此题可用分组分解法进行分解,可以将后三项分为一组,即可写成平方差的形式,利用平方差公式分解因式.【解析】解:9x2﹣y2﹣4y﹣4,=9x2﹣(y2+4y+4),=9x2﹣(y+2)2,=(3x+y+2)(3x﹣y﹣2).【点拨】本题考查了分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.13.(5分)如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,已知AB=2m,CD=6m,点P到CD的距离是2.7m,那么AB与CD间的距离是 1.8m.【微点】相似三角形的应用;中心投影.【思路】根据AB∥CD,易得,△P AB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【解析】解:∵AB∥CD,∴△P AB∽△PCD,假设CD到AB距离为x,则,又∵AB=2,CD=6,∴∴x=1.8.故答案为:1.8m【点拨】本题考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).14.(5分)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=﹣1.【微点】一元二次方程的解;根与系数的关系.【思路】由于x1、x2是方程的两根,根据根与系数的关系可得到两根之和的值,根据方程解的定义可得到x12、x1的关系,根据上面得到的条件,对所求的代数式进行有针对性的拆分和化简,然后再代值计算.【解析】解:∵x1、x2为方程x2+3x+1=0的两实根,∴x12=﹣3x1﹣1,x1+x2=﹣3;∴x13+8x2+20=(﹣3x1﹣1)x1+8x2+20=﹣3x12﹣x1+8x2+20=﹣3(﹣3x1﹣1)﹣x1+8x2+20=9x1﹣x1+8x2+23=8(x1+x2)+23=﹣24+23=﹣1.故x13+8x2+20=﹣1.【点拨】此题是典型的代数求值问题,涉及到根与系数的关系以及方程解的定义.在解此类题时,如果所求代数式无法化简,应该从已知入手看能得到什么条件,然后根据得到的条件对所求代数式进行有针对性的化简和变形.15.(5分)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为3或17.【微点】圆与圆的位置关系.【思路】两圆相切,因为圆心距小于一圆的半径,两圆不可能外切,内切时,|10﹣R|=7.【解析】解:因为两圆相切,圆心距为7,设另一个圆的半径为R,当内切时,|R﹣10|=7,解得R=3或17,当外切时,|R+10|=7,无解.【点拨】本题相切要考虑两种情况,根据两种情况对应的数量关系,分别求解.16.(5分)芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标.则图标中阴影部分图形AFEGD的面积=.【微点】等边三角形的性质;正方形的性质;解直角三角形.【思路】根据等边三角形与正方形的性质,求出∠EBO,再在直角三角形BOF中利用角的正切求出边OF,从而得知S△BOF,S△BAF=S△BAO﹣S△BOF;同理求得S△CGD,所以图标中阴影部分图形AFEGD的面积就是:S□ABCD﹣S△CBE﹣S△BAF﹣S△CGD【解析】解:方法1:设AC与BD交于点O,∵AC、BD是正方形的对角线,∴AC⊥BD,OA=OB,在△BCE中,∠EBC=60°,∠OBC=45°,∴∠EBO=60°﹣45°,∴FO=tan(60°﹣45°)•OB,∴S△BOF OF•OB tan(60°﹣45°)•OB2,∴S△BAF=S△BAO﹣S△BOF tan(60°﹣45°)•OB2tan(60°﹣45°)•OB2OB2,同理,得S△CGD OB2,∵S△CBE sin60°sin60°AB2,∴S□ABCD﹣S△CBE﹣S△BAF﹣S△CGD=AB2AB2OB2,∵OB BD,BD2=AB2+AD2,AB=AD=1,∴S□ABCD﹣S△CBE﹣S△BAF﹣S△CGD=1((1+1),图标中阴影部分图形AFEGD的面积.方法2:过G作GH⊥CD于H,则易得△GDH是等腰直角三角形,设DH=GH=x,∵△BEC是等边三角形,∴∠BCE=60°,∴∠ECD=90°﹣60°=30°,∴CH=GH÷tan30°=x x,∵CD=DH+CH=1,即x x=1,x(1)=1,解得x,∴S△CGD1同理S△BF A易得S△BCE∴S阴影=S正方形ABCD﹣S△BCE﹣S△BAF﹣S△CGD=1.故答案为:.【点拨】解答本题的难点是求直角三角形ABO中的三角形ABF的面积,在突破难点时,充分利用了等边三角形、正方形的性质以及直角三角形中的边角函数关系.三、解答题(共8小题,满分80分)17.(12分)(1)计算:(﹣1)2010×()﹣3+(sin58°)0+|4cos60°|;(2)求不等式组的整数解.【微点】实数的运算;一元一次不等式组的整数解.【思路】(1)本题涉及零指数幂、负整数指数幂、绝对值乘方、特殊角的三角函数值、二次根式化简六个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)按照解不等式组的步骤计算.【解析】解:(1)原式=1×8+1+||=8+1+211;(2)由①得,x>﹣2,由②得,x≤6,∴﹣2<x≤6.∴满足不等式组的整数解为﹣1、0、1、2、3、4、5、6.【点拨】此题主要考查了实数的计算,注意:(1)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算;(2)注意不等式组解集的确定:大于小,小于大,写在一起错不了.18.(8分)图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?【微点】解直角三角形的应用.【思路】根据AD和每层楼的高度,易求得AE、GH的长,关键是求出CG的值.根据三角形的外角性质,易证得△ABC是等腰△,则BC=AB=EF=16m.在Rt△CBG中,已知∠CBG的度数,通过解直角三角形求出CG的长,由此得解.【解析】解:根据题意,得DE=3.5×16=56m,AB=EF=16m.∵∠ACB=∠CBG﹣∠CAB=15°,∴∠ACB=∠CAB,∴CB=AB=16m.∴CG=BC•sin30°=8m,CH=CG+HG=CG+DE+AD=8+56+5=69(m).故塔吊的高CH为69米.【点拨】此题主要考查的是解直角三角形的应用,能够发现△ABC是等腰三角形是解答此题的关键.19.(8分)某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.【微点】用样本估计总体;条形统计图;加权平均数.【思路】(1)先求出平均每天完成作业所用时间为4小时的人数,再补全统计图;(2)求出50名学生每天完成作业所用总时间,再算1800名学生每天完成作业所用总时间.【解析】解:(1)正确补全(2)由图可知3(小时)可以估计该校全体学生每天完成作业所用总时间=3×1800=5400(小时),所以该校全体学生每天完成作业所用总时间5400小时.【点拨】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.(8分)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.【微点】二次函数的应用.【思路】由特殊等腰直角三角形,设出直角边长,再表示其它各边边长,把金属框围成的面积用未知量x表示出来,转化为求函数最值问题,从而求出金属框围成的图形的最大面积.【解析】解:根据题意可得,等腰直角三角形直角边长为m,矩形的一边长为2xm,其相邻边长为[]m,∴该金属框围成的面积S()当x时,金属围成的面积最大,此时斜边长2x=()m,相邻边长为10﹣(2)()m,S最大=100(3﹣2)=(300﹣200)m2.答:矩形的相邻两边长各为(60﹣40)m,(1010)m,金属框围成的图形的最大面积为:(300﹣200)m 2.【点拨】此题考查二次函数的性质及其应用,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.21.(8分)如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.(1)求证:△ADF∽△CAE;(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积?【微点】勾股定理;直角梯形;相似三角形的判定与性质.【思路】(1)已知∠DFC=∠AEB,则它们的补角也相等;再由梯形的平行线得出的内错角相等,即可判定两个三角形相似.(2)欲求梯形的面积,首先须求出BC的长,那么求出CE的长是解答此题的关键;可在Rt△ACD中,根据勾股定理求出AC的长,进而可求出AF的长;然后根据(1)的相似三角形得出的对应成比例线段,求出EC的长,由此得解.【解析】(1)证明:在梯形ABCD中,AD∥BC,∴∠DAF=∠ACE;∵∠DFC=∠AEB,∴∠DF A=∠AEC;∴△ADF∽△CAE;(2)解:由(1)知:△ADF∽△CAE,∴;∵AD=8,DC=6,∠ADC=90°,∴AC10;又F是AC的中点,∴AF AC=5;∴,解得CE;∵E是BC的中点,∴BC=2CE;∴直角梯形ABCD的面积(8)×6.【点拨】此题主要考查了直角梯形的性质以及相似三角形的判定和性质.22.(10分)“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)【微点】分式方程的应用;概率公式;列表法与树状图法.【思路】(1)等量关系为:原来的火腿粽子数÷原来的总粽子数;后来的火腿粽子数÷后来的总粽子数;(2)列举出所有情况,看所求的情况占所有情况的概率如何.【解析】解:(1)设第一次爸爸买了x只火腿粽子,y只豆沙粽子.则:,解得:.经检验得出:x+y≠0,x+y+6≠0,∴x=4,y=8是原方程的根,答:第一次爸爸买了4只火腿粽子,8只豆沙粽子.(2)现在有火腿粽子9只,豆沙粽子9只,送给爷爷,奶奶后,还有火腿粽子5只,豆沙粽子3只.记豆沙粽子a,b,c;火腿粽子1,2,3,4,5.恰好火腿粽子、豆沙粽子各1只的概率为.a b c 1 2 3 4 5第一次第二次a(a,b)(a,c)(a,1)(a,2)(a,3)(a,4)(a,5)b(b,a)(b,c)(b,1)(b,2)(b,3)(b,4)(b,5)c(c,a)(c,b)(c,1)(c,2)(c,3)(c,4)(c,5)1 (1,a)(1,b)(1,c)(1,2)(1,3)(1,4)(1,5)2 (2,a)(2,b)(2,c)(2,1)(2,3)(2,4)(2,5)3 (3,a)(3,b)(3,c)(3,1)(3,2)(3,4)(3,5)4 (4,a)(4,b)(4,c)(4,1)(4,2)(4,3)(4,5)5 (5,a)(5,b)(5,c)(5,1)(5,2)(5,3)(5,4)【点拨】解分式方程的关键是找到合适的等量关系;求概率的关键是列举出所有可能的情况.23.(12分)如图,BD是⊙O的直径,OA⊥OB,M 是劣弧上一点,过点M作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)若BD=4,P A AO,过点B作BC∥MP交⊙O于C点,求BC的长.【微点】垂径定理;切线的性质;相似三角形的判定与性质.【思路】(1)连接OM,MP是圆的切线,OM⊥PM,由角的等量关系可证∠DMP=∠MNP,由此得证.(2)设BC交OM于E,已知直径BD的长,即可得到半径OA、OM的长,根据P A、OA的比例关系,可求出P A、PO的长,通过证△POM∽△OBE,根据相似三角形所得比例线段即可求出BE的长,从而根据垂径定理求出BC的值.【解析】(1)证明:连接OM,∵MP是圆的切线,∴OM⊥PM,∴∠OMD+∠DMP=90°,∵OA⊥OB,∴∠OND+∠ODM=90°,∵∠MNP=∠OND,∠ODM=∠OMD,∴∠DMP=∠MNP,∴PM=PN.(2)解:设BC交OM于E,∵BD=4,OA=OB BD=2,∴P A=3,∴PO=5;∵BC∥MP,OM⊥MP,∴OM⊥BC,∴BE BC;∵∠BOM+∠MOP=90°,在直角三角形OMP中,∠MPO+∠MOP=90°,∴∠BOM=∠MPO;∵∠BEO=∠OMP=90°,∴△OMP∽△BEO,∴,即,解得:BE,∴BC.【点拨】本题主要考查切线的性质和相似三角形的有关知识,题不是很难,做题要细心.24.(14分)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(﹣3,1)、C(﹣3,0)、O(0,0).将此矩形沿着过E(,1)、F(,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B′三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.【微点】二次函数综合题.【思路】(1)根据E、F的坐标,设出直线式EF的解析式为y=kx+b,两点坐标代入,求出k和b即可;(2)过B′作B′A′⊥BA于A′,在Rt△B′EA′中,通过解直角三角形可求出A′E、A′B′的长,通过证A′E=AE,得出B′在y轴上的结论,从而得出B′坐标,进而用待定系数法求出抛物线的解析式;(3)连接B′C,由于B、B′关于EF所在直线对称,则B′C与折痕的交点即为所求的P点,可求出直线B′C的解析式,联立折痕EF的解析式即可求出P点坐标.【解析】解:(1)由于折痕所在直线EF过E(,1)、F(,0),则有:∴设直线EF的解析式为y=kx+b,∴;解得k,b=4,所以直线EF的解析式为:y x+4.(2)设矩形沿直线EF向右下方翻折后,B、C的对应点为B′(x1,y1),C′(x2,y2);过B′作B′A′⊥AE交AE所在直线于A′点;∵B′E=BE=2,∠B′EF=∠BEF=60°,∴∠B′EA′=60°,∴A′E,B′A′=3;∴A与A′重合,B′在y轴上;∴x1=0,y1=﹣2,即B′(0,﹣2);【此时需说明B′(x1,y1)在y轴上】.设二次函数解析式为:y=ax2+bx+c,抛物线过B(﹣3,1)、E(,1)、B′(0,﹣2);得到,解得∴该二次函数解析式y x2x﹣2;(3)能,可以在直线EF上找到P点;连接B′C交EF于P点,再连接BP;由于B′P=BP,此时点P与C、B′在一条直线上,故BP+PC=B′P+PC的和最小;由于BC为定长,所以满足△PBC周长最小;设直线B′C的解析式为:y=kx+b,则有:,解得;∴直线B′C的解析式为:y x﹣2;又∵P为直线B′C和直线EF的交点,∴,解得;∴点P 的坐标为(,).【点拨】此题主要考查了一次函数、二次函数解析式的确定,轴对称图形的性质、函数图象交点等知识,难度偏大.第21 页/ 共21 页。
2011年安徽中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1、(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A、﹣1B、0C、1D、2考点:有理数。
分析:正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.解答:解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.点评:理解正数和负数的概念是解答此题的关键.2、(2010•安徽)计算(2x)3÷x的结果正确的是()A、8x2B、6x2C、8x3D、6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
分析:根据积的乘方等于各因式乘方的积和单项式的除法法则解答.解答:解:(2x)3÷x=8x3÷x=8x2.故选A.点评:本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3、(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A、50°B、55°C、60°D、65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
分析:先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.解答:解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.点评:本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A、2.89×107B、2.89×106C、2.89×105D、2.89×104考点:科学记数法—表示较大的数。
2010年安徽省中考数学试卷(教师版)一、选择题(共10小题,每小题4分,满分40分)1.(4分)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2【微点】有理数.【思路】正数是大于0的数,负数是小于0的数,既不是正数也不是负数的是0.【解析】解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选:B.【点拨】理解正数和负数的概念是解答此题的关键.2.(4分)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x3【微点】幂的乘方与积的乘方;同底数幂的除法;整式的除法.【思路】根据积的乘方等于各因式乘方的积和单项式的除法法则解答.【解析】解:(2x)3÷x=8x3÷x=8x2.故选:A.【点拨】本题主要考查积的乘方的性质,单项式的除法,熟练掌握运算性质是解题的关键.3.(4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【微点】对顶角、邻补角;平行线的性质;三角形内角和定理.【思路】先根据平行线的性质及对顶角相等求出∠3所在三角形其余两角的度数,再根据三角形内角和定理即可求出∠3的度数.【解析】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选:C.【点拨】本题重点考查了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4.(4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107B.2.89×106C.2.89×105D.2.89×104【微点】科学记数法—表示较大的数.【思路】应先把289万整理为用个表示的数,科学记数法的一般形式为:a×10n,在本题中a为2.89,10的指数为整数数位减1.【解析】解:289万=2 890 000=2.89×106.故选B.【点拨】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n 为比整数位数少1的数.5.(4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.【微点】简单几何体的三视图.【思路】如图,图中有正方体、球体、直三棱柱以及圆柱体,根据三视图易得出答案.【解析】解:正方体和球体的主视图、左视图以及俯视图都是相同的,排除A、B;直三棱柱的正视图是一个矩形,左视图是一个三角形,俯视图也是一个矩形,但与正视图的矩形不相同,排除C;圆柱的正视图以及俯视图是相同的,都是矩形,因为直径相同,左视图是个圆,故选:D.【点拨】本题只要了解清楚各个几何体的三视图即可得解,难度一般.6.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元【微点】折线统计图;中位数;众数;极差.【思路】解决本题需要从统计图获取信息,再对选项一一分析,选择正确结果.【解析】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选:C.【点拨】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.7.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,1【微点】二次函数的三种形式.【思路】可将y=(x﹣2)2+k的右边运用完全平方公式展开,再与y=x2+bx+5比较,即可得出b、k的值.【解析】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选:D.【点拨】本题实际上考查了两个多项式相等的条件:它们同类项的系数对应相等.8.(4分)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.B.2C.3D.【微点】勾股定理;垂径定理.【思路】根据等腰三角形三线合一的性质知:若过A作BC的垂线,设垂足为D,则AD 必垂直平分BC;由垂径定理可知,AD必过圆心O;根据等腰直角三角形的性质,易求出BD、AD的长,进而可求出OD的值;连接OB根据勾股定理即可求出⊙O的半径.【解析】解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB.故选:D.【点拨】此题主要考查了等腰直角三角形的性质,以及垂径定理、勾股定理的应用.9.(4分)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.503【微点】规律型:数字的变化类.【思路】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘2的8,将8写在第4位上,将第4位数字8乘2得16,将16的个位数字6写在第5位上,将第5位数字6乘2得12,将12的个位数字2写在第6位上,再将第6位数字2乘2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【解析】解:当第1位数字是3时,按如上操作得到一个多位数36 2486 2486 2486 2486 ….仔细观察36 2486 2486 2486 2486 …中的规律,这个多位数前100位中前两个为36,接着出现2486 2486 2486…,所以36 2486 2486 2486 2486 …的前100位是36 2486 2486 2486…2486 2486 1486 24(因为98÷4=24余2,所以,这个多位数开头两个36中间有24个2486,最后两个24),因此,这个多位数前100位的所有数字之和=(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.故选:A.【点拨】本题,一个“数字游戏”而已,主要考查考生的阅读能力和观察能力,其解题的关键是:读懂题目,理解题意.这是安徽省2010年中考数学第9题,在本卷中的10道选择题中属于难度偏大.而产生“难”的原因就是没有“读懂”题目.10.(4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.【微点】函数的图象.【思路】甲在乙前面,而乙的速度大于甲,则此过程为乙先追上甲后再超过甲,全程时间以乙跑的时间计算,算出相遇时间判断图象.【解析】解:此过程可看作追及过程,由相遇到越来越远,按照等量关系“甲在相遇前跑的路程+100=乙在相遇前跑的路程”列出等式v乙t=v甲t+100,根据甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,则乙要追上甲,所需时间为t=50,全程乙跑完后计时结束t总200,则计时结束后甲乙的距离△s=(v乙﹣v甲)×(t总﹣t)=300m由上述分析可看出,C选项函数图象符合故选:C.【点拨】本题考查的是函数图象与实际结合的问题,需注意相遇的时间、全程时间以及最后甲乙的距离这几个点.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算:2.【微点】二次根式的混合运算.【思路】先做乘法,再化简,最后合并.【解析】解:原式=32.故答案为:2.【点拨】二次根式的混合运算,仿照实数的运算顺序进行,先乘除,再加减.12.(5分)不等式组的解集是2<x≤4.【微点】解一元一次不等式组.【思路】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【解析】解:由①得x>2,由②得x≤4,∴不等式组的解集为2<x≤4.故填空答案:2<x≤4.【点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(5分)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是上一点,则∠D=40度.【微点】圆周角定理.【思路】欲求∠D的度数,需先求出同弧所对的∠A的度数;Rt△ABC中,已知∠ACB 的度数,即可求得∠A,由此得解.【解析】解:∵AC是⊙O的直径,∴∠ABC=90°;∴∠A=180°﹣90°﹣50°=40°,∴∠D=∠A=40°.【点拨】此题主要考查圆周角定理的应用.14.(5分)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【微点】等腰三角形的判定与性质.【思路】可根据等腰三角形三线合一的性质来判断①②是否正确;③④要通过作等腰三角形来判断其结论是否成立.【解析】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.【点拨】此题主要考查的是等腰三角形的判定和性质;本题的难点是结论③的证明,能够正确的构建出等腰三角形是解答③题的关键.三、解答题(共9小题,满分90分)15.(8分)先化简,再求值:(1),其中a=﹣1.【微点】分式的化简求值.【思路】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解析】解:原式•,当a=﹣1时,原式.【点拨】考查分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.16.(8分)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸(参的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.考数据: 1.7)【微点】解直角三角形的应用﹣方向角问题.【思路】解决此题的关键是求出AB的长,可过B作河对岸的垂线,在构建的直角三角形中,根据河岸的宽度即AB与河岸的夹角,通过解直角三角形求出AB的长,进而根据时间=路程÷速度得出结果.【解析】解:如图,过点B作BC垂直于河岸,垂足为C.在Rt△ACB中,有:AB600.∴t2 3.4(分).即船从A处到B处约需3.4分.【点拨】应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.17.(8分)点P(1,a)在反比例函数y的图象上,它关于y轴的对称点在一次函数y =2x+4的图象上,求此反比例函数的解析式.【微点】一次函数图象上点的坐标特征;待定系数法求反比例函数解析式;关于x轴、y 轴对称的点的坐标.【思路】先求出点P(1,a)关于y轴的对称点,代入y=2x+4,求出a的值,再把P点坐标代入y即可求出k的值.【解析】解:点P(1,a)关于y轴的对称点是(﹣1,a),∵点(﹣1,a)在一次函数y=2x+4的图象上,∴a=2×(﹣1)+4=2,∵点P(1,2)在反比例函数y的图象上,∴k=2,∴反比例函数的解析式为y.【点拨】此题结合对称,考查了用待定系数法求函数解析式,将坐标代入解析式即可求出k的值.18.(8分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.【微点】作图﹣平移变换;作图﹣旋转变换.【思路】(1)D不变,以D为旋转中心,顺时针旋转90°得到关键点A,C,B的对应点即可;(2)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几个单位.【解析】解:(1)旋转后得到的图形A1B1C1D1如图所示;(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.答案不唯一.【点拨】本题考查旋转和平移作图,掌握画图的方法和图形的特点是解题关键.19.(10分)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【微点】一元二次方程的应用.【思路】(1)设4、5两月平均每月降价的百分率是x,那么4月份的房价为14000(1﹣x),5月份的房价为14000(1﹣x)2,然后根据5月份的12600元/m2即可列出方程解决问题;(2)根据(1)的结果可以计算出7月份商品房成交均价,然后和10000元/m2进行比较即可作出判断.【解析】解:(1)设4、5两月平均每月降价的百分率是x,则4月份的成交价是14000﹣14000x=14000(1﹣x),5月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)不会跌破10000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5>10000.由此可知7月份该市的商品房成交均价不会跌破10000元/m2.【点拨】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20.(10分)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.【微点】全等三角形的判定;菱形的判定.【思路】(1)根据∠1=∠2,AD∥FE,可得∠1=∠FEB,则BF=EF;又BF=BC,所以EF=BC.根据有一组邻边相等的平行四边形是菱形得证;(2)根据已知条件易得四边形ABEF、CDEF都是平行四边形,所以对边相等.运用SSS 判定:△ACF≌△BDE.【解析】证明:(1)∵AD∥FE,∴FE∥BC∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴四边形BCEF是菱形.(2)∵EF=BC,AB=BC=CD,AD∥EF,∴四边形ABEF、CDEF均为平行四边形.∴AF=BE,FC=ED.又∵AC=BD,∴△ACF≌△BDE.【点拨】此题考查了菱形的判定方法及三角形全等的判定等知识点.菱形的判别方法是:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.21.(12分)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.【微点】列表法与树状图法.【思路】(1)根据每种至少买一张和1300元全部用来购买指定日普通票和平日优惠票,来列举出所有情况;(2)看恰好选到11张门票的情况占总情况数的多少即可.【解析】解:列表得:购票方案指定日普通票平日优惠票一 1 11二 2 9三 3 7四 4 5五 5 3六 6 1(2)由(1)得共有6种情况,恰好选到11张门票的情况有1种,所以概率是.【点拨】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A).22.(12分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【微点】二次函数的应用.【思路】(1)由图表中的数据可知该养殖场每天的捕捞量比前一天减少10kg;(2)根据收入=捕捞量×单价﹣捕捞成本,列出函数表达式;(3)将实际转化为求函数最值问题,从而求得最大值.【解析】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.【点拨】此题考查二次函数的性质及其应用,要运用图表中的信息,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.23.(14分)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.【微点】三角形三边关系;相似三角形的性质.【思路】(1)已知了两个三角形的相似比为k,则对应边a=ka1,将所给的条件等量代换即可得到所求的结论;(2)此题是开放题,可先选取△ABC的三边长,然后以c的长作为a1的值,再根据相似比得到△A1B1C1的另外两边的长,只要符合两个三角形的三边及相似比都是整数即可;(3)首先根据已知条件求出a、b与c的关系,然后根据三角形三边关系定理来判断题目所给出的情况是否成立.【解析】(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.【点拨】此题主要考查的是相似三角形的性质及三角形三边关系定理的应用.。
2010年安徽省中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.22.(4分)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x33.(4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°4.(4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×1045.(4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.6.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.(4分)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,18.(4分)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2C.3D.9.(4分)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.50310.(4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)计算:×﹣=.12.(5分)不等式组的解集是.13.(5分)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是上一点,则∠D=度.14.(5分)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.三、解答题(共9小题,满分90分)15.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.16.(8分)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)17.(8分)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.18.(8分)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.(10分)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.20.(10分)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.(12分)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.22.(12分)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.(14分)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2010•安徽)在﹣1,0,1,2这四个数中,既不是正数也不是负数的是()A.﹣1 B.0 C.1 D.2【解答】解:A、﹣1<0,是负数,故A错误;B、既不是正数也不是负数的是0,正确;C、1>0,是正数,故C错误;D、2>0,是正数,故D错误.故选B.2.(4分)(2010•安徽)计算(2x)3÷x的结果正确的是()A.8x2B.6x2C.8x3D.6x3【解答】解:(2x)3÷x=8x3÷x=8x2.故选A.3.(4分)(2014•河池)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°【解答】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.故选C.4.(4分)(2010•安徽)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A.2.89×107 B.2.89×106 C.2.89×105 D.2.89×104【解答】解:289万=2 890 000=2.89×106.故选B.5.(4分)(2010•安徽)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是()A.B.C.D.【解答】解:正方体和球体的主视图、左视图以及俯视图都是相同的,排除A、B;直三棱柱的正视图是一个矩形,左视图是一个三角形,俯视图也是一个矩形,但与正视图的矩形不相同,排除C;圆柱的正视图以及俯视图是相同的,都是矩形,因为直径相同,左视图是个圆,故选:D.6.(4分)(2010•安徽)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元【解答】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选C.7.(4分)(2010•安徽)若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b、k的值分别为()A.0,5 B.0,1 C.﹣4,5 D.﹣4,1【解答】解:∵y=(x﹣2)2+k=x2﹣4x+4+k=x2﹣4x+(4+k),又∵y=x2+bx+5,∴x2﹣4x+(4+k)=x2+bx+5,∴b=﹣4,k=1.故选D.8.(4分)(2010•安徽)如图,⊙O过点B、C.圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2C.3D.【解答】解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB==.故选D.9.(4分)(2010•安徽)下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495 B.497 C.501 D.503【解答】解:当第1位数字是3时,按如上操作得到一个多位数36 2486 2486 2486 2486 ....仔细观察36 2486 2486 2486 2486 ...中的规律,这个多位数前100位中前两个为36,接着出现2486 2486 2486...,所以36 2486 2486 2486 2486 ...的前100位是36 2486 2486 2486 (2486)2486 1486 24(因为98÷4=24余2,所以,这个多位数开头两个36中间有24个2486,最后两个24),因此,这个多位数前100位的所有数字之和=(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.故选A.10.(4分)(2010•安徽)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A.B.C.D.【解答】解:此过程可看作追及过程,由相遇到越来越远,按照等量关系“甲在相遇前跑的路程+100=乙在相遇前跑的路程”列出等式v乙t=v甲t+100,根据甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,则乙要追上甲,所需时间为t=50,全程乙跑完后计时结束t总==200,则计时结束后甲乙的距离△s=(v乙﹣v甲)×(t总﹣t)=300m由上述分析可看出,C选项函数图象符合故选:C.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2010•安徽)计算:×﹣=2.【解答】解:原式=﹣=3﹣=2.故答案为:2.12.(5分)(2010•安徽)不等式组的解集是2<x≤4.【解答】解:由①得x>2,由②得x≤4,∴不等式组的解集为2<x≤4.故填空答案:2<x≤4.13.(5分)(2010•安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D 是上一点,则∠D=40度.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°;∴∠A=180°﹣90°﹣50°=40°,∴∠D=∠A=40°.14.(5分)(2010•安徽)如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC是等腰三角形的是②③④.①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB﹣BD=AC﹣CD.【解答】解:应添加的条件是②③④;证明:②当∠BAD=∠CAD时,∵AD是∠BAC的平分线,且AD是BC边上的高;则△ABD≌△ACD,∴△BAC是等腰三角形;③延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC;∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,即AB=AC,△ABC是等腰三角形;④△ABC中,AD⊥BC,根据勾股定理,得:AB2﹣BD2=AC2﹣CD2,即(AB+BD)(AB﹣BD)=(AC+CD)(AC﹣CD);∵AB﹣BD=AC﹣CD①,∴AB+BD=AC+CD②;∴①+②得:,2AB=2AC;∴AB=AC,∴△ABC是等腰三角形故答案为:②③④.三、解答题(共9小题,满分90分)15.(8分)(2010•安徽)先化简,再求值:(1﹣)÷,其中a=﹣1.【解答】解:原式=•=,当a=﹣1时,原式==.16.(8分)(2010•安徽)若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分.(参考数据:≈1.7)【解答】解:如图,过点B作BC垂直于河岸,垂足为C.在Rt△ACB中,有:AB===600.∴t==2≈3.4(分).即船从A处到B处约需3.4分.17.(8分)(2010•安徽)点P(1,a)在反比例函数y=的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.【解答】解:点P(1,a)关于y轴的对称点是(﹣1,a),∵点(﹣1,a)在一次函数y=2x+4的图象上,∴a=2×(﹣1)+4=2,∵点P(1,2)在反比例函数y=的图象上,∴k=2,∴反比例函数的解析式为y=.18.(8分)(2010•安徽)在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1,(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.【解答】解:(1)旋转后得到的图形A1B1C1D1如图所示;(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.答案不唯一.19.(10分)(2010•安徽)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2(1)问4、5两月平均每月降价的百分率是多少?(参考数据:≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.【解答】解:(1)设4、5两月平均每月降价的百分率是x,则4月份的成交价是14000﹣14000x=14000(1﹣x),5月份的成交价是14000(1﹣x)﹣14000(1﹣x)x=14000(1﹣x)(1﹣x)=14000(1﹣x)2∴14000(1﹣x)2=12600,∴(1﹣x)2=0.9,∴x1≈0.05=5%,x2≈1.95(不合题意,舍去).答:4、5两月平均每月降价的百分率是5%;(2)不会跌破10000元/m2.如果按此降价的百分率继续回落,估计7月份该市的商品房成交均价为:12600(1﹣x)2=12600×0.952=11371.5>10000.由此可知7月份该市的商品房成交均价不会跌破10000元/m2.20.(10分)(2010•安徽)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.【解答】证明:(1)∵AD∥FE,∴FE∥BC∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴四边形BCEF是菱形.(2)∵EF=BC,AB=BC=CD,AD∥EF,∴四边形ABEF、CDEF均为平行四边形.∴AF=BE,FC=ED.又∵AC=BD,∴△ACF≌△BDE.21.(12分)(2010•安徽)上海世博会门票价格如表所示:门票价格一览表指定日普通票200元平日优惠票100元……某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种至少买一张.(1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率.【解答】解:列表得:购票方案指定日普通票平日优惠票一 1 11二 2 9三 3 7四 4 5五 5 3六 6 1(2)由(1)得共有6种情况,恰好选到11张门票的情况有1种,所以概率是.22.(12分)(2010•安徽)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:鲜鱼销售单价(元/kg)20单位捕捞成本(元/kg)5﹣捕捞量(kg)950﹣10x(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额﹣日捕捞成本)(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?【解答】解:(1)根据捕捞量与天数x的关系:950﹣10x可知:该养殖场每天的捕捞量与前一天减少10kg;(2)由题意,得y=20×(950﹣10x)﹣(5﹣)×(950﹣10x)=﹣2x2+40x+14250;(3)∵﹣2<0,y=﹣2x2+40x+14250=﹣2(x﹣10)2+14450,又∵1≤x≤20且x为整数,∴当1≤x≤10时,y随x的增大而增大;当10≤x≤20时,y随x的增大而减小;当x=10时即在第10天,y取得最大值,最大值为14450.23.(14分)(2010•安徽)如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC 的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.【解答】(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.参与本试卷答题和审题的老师有:zhxl;MMCH;星期八;CJX;lanchong;csiya;py168;HLing;蓝月梦;张超。
2010年安徽省初中毕业学业考试数学试题分析2010年安徽省中考数学试题,全卷较好地体现了新课标中“人人学有价值的数学,人人能获得必要的数学,不同的学生在数学上得到不同的发展”的理念,既注重了初中数学教育的基础性、普及性和发展性,同时也考察了学生的综合素质以及应用数学知识解决实际问题的能力,试题生动地体现了数学教育的新走向:注重了基础,注重了应用,注重了数学的自身内在的规律性。
试题注意了面向全体学生,与去年相比,难度明显有所降低。
试题重点考察了初中数学知识体系的基础知识与基本技能,注意了能力考察,注重了与现实生活的联系,现结合自己阅卷经历,从以下几个方面对2010年中考数学试题拟作评析:一、题型比例2010年的中考数学试题仍继承了近几年安徽中考试题,它包括选择题、填二、考点分布2010年的中考数学试题,所考察的知识点是从(1)数与式(2)方程与不等式(组)(3)函数(4)图形的认识与证明(5)图形与变换(6)统计与概率,三、试卷的形式与试卷结构和去年相比,考试形式和试卷结构基本相同,但在试题的难度上明显降低,1、关注核心知识试题所考查的重点内容是学生学习数学和应用数学解决问题过程中必须掌握的核心观点、思想方法、基本知识和常用技能。
试卷第10题(4分):甲、乙两人准备在一段长为1200m的笔直公路上进行跑步,甲、乙跑步的速度分别为4和6,起跑前乙在起点,甲在乙前面100m处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图像是···············································【】评析:本题是行程中追击问题,渗透函数知识、数形结合思想,综合性较强。
2010年安徽省芜湖市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2010•芜湖)﹣6的绝对值是()A.﹣6 B.6 C.±6 D.2.(2010•芜湖)2010年芜湖市承接产业转移示范区建设成效明显,一季度完成固定资产投资238亿元,用科学记数法可记作()A.238×108元B.23.8×109元C.2.38×1010元D.0.238×1011元3.(2010•芜湖)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.4.(2010•芜湖)下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形 B.有两边和一角对应相等的两个三角形全等 C.两条对角线相等的平行四边形是矩形D.两边相等的平行四边形是菱形5.(2010•芜湖)要使式子有意义,a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠06.(2010•芜湖)下列数据:16,20,22,25,24,25的平均数和中位数分别为()A.21和22 B.22和23 C.22和24 D.21和237.(2010•芜湖)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.(2010•芜湖)如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF等于()A.9 B.10 C.11 D.129.(2010•芜湖)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.2010.(2010•芜湖)二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(共6小题,每小题5分,满分30分)11.(2010•芜湖)一个正多边形的每个外角都是36°,这个正多边形的边数是_________.12.(2010•芜湖)因式分解:9x2﹣y2﹣4y﹣4=_________.13.如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,已知AB=2m,CD=6m,点P到CD的距离是2.7m,那么AB与CD间的距离是_________.14.(2010•芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=_________.15.(2010•芜湖)若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为_________.16.(2010•芜湖)芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD 内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标.则图标中阴影部分图形AFEGD的面积=_________.三、解答题(共8小题,满分80分)17.(2010•芜湖)(1)计算:(﹣1)2010×()﹣3+(sin58°﹣)0+|﹣4cos60°|;(2)求不等式组的整数解.18.(2010•芜湖)图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A 点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?19.(2010•芜湖)某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生每天完成作业所用总时间.20.(2010•芜湖)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.21.(2010•芜湖)如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.(1)求证:△ADF∽△CAE;(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积?22.(2010•芜湖)“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)23.(2010•芜湖)如图,BD是⊙O的直径,OA⊥OB,M是劣弧上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)若BD=4,PA=AO,过点B作BC∥MP交⊙O于C点,求BC的长.24.(2010•芜湖)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(﹣3,1)、C(﹣3,0)、O(0,0).将此矩形沿着过E(﹣,1)、F(﹣,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B′三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.2010年安徽省芜湖市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(2010•芜湖)﹣6的绝对值是()A.﹣6 B.6 C.±6 D.考点:绝对值。
2010年安徽省中考数学试卷解读报告丁浩勇(无为县刘渡中心学校 238341)摘要:共分三个部分——试题解读与点评,试卷综合解读与评析,中考数学复习中存在的问题与建议.第一部分:试题解读与点评一.选择题:(本大题10小题,每小题4分,满分40分)1. 在2101,,,-这四个数中,既不是正数也不是负数的是………………( ) A.1- B.0 C.1 D.2 答案:B【考查目的】考查学生对正、负数概念的理解.【思路分析】解答本题,一要弄清正数和负数的概念,二要掌握0既不是正数也不是负数,它是正数与负数的分界.【规范解题】-1是负数,1和2是正数,0既不是正数也不是负数.【误区剖析】对负数概念不理解,认为前面加上负号“-”的数是负数,没有的就是正数,这样误以为0也是正数.【点评】每年的中考题都会出现一些考查学生有理数概念方面的基础题,如正数与负数、数轴、相反数、倒数、绝对值等,达到引导注重“双基”教学的目的.2. 计算x x ÷3)2(的结果正确的是………( ) A.28x B.26x C.38x D.36x 答案:A【考查目的】考查整式的乘除运算.【思路分析】按照整式的乘除运算规律和运算顺序进行运算. 【规范解题】2333388)2()2(x x x x x x x =÷=÷⋅=÷.【误区剖析】本题导致错误的原因有:①积的乘方运算时出错,即333632)2(x x x =⋅⨯=;②除法运算时出错,即3133x xx x ==÷÷.【点评】涉及整式的加、减、乘、除等运算时,一定要掌握它们的运算法则和运算顺序.3. 如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( ) A.500. B.550 C.600 D.650 答案:C【考查目的】考查对顶角性质、平行线性质、三角形内角和定理.【思路分析】根据对顶角性质和平行线性质把已知角与未知角转化到一个三角形中,再利用三角形内角和定理来求∠3.【规范解题】∵1l ∥2l ,︒=∠652,∴︒=∠=∠6524.又∵︒=∠+∠+∠︒=∠=∠180345,5515,∴︒=︒-︒-︒=∠6065551803.【误区剖析】本题致错的原因在于对三角形内角和定理及对顶角性质掌握不牢,或对平行线性54第3题图1 32 l 1l 2质应用混乱,或不会把未知与已知转化到一个三角形中.【点评】本题主要考查学生对图形的基础知识、基本技能和基本方法的掌握情况,解答此类问题一定要注意化归思想的重要作用.4. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………( )A.2.89×107. B.2.89×106. C.2.89×105. D.2.89×104. 答案:B【考查目的】考查科学记数法.【思路分析】先把289万转化为2890000,然后用科学记数法来表示它. 【规范解题】由于289万等于2890000,那么61089.22890000⨯=.【误区剖析】本题有两点易错之处:一是转化289万时出错;二是用科学记数法表示时出错. 【点评】科学记数法是一种很重要的记数方法,在当今社会里,“大数”与“小数”与我们的关系越来越密切.近年来取材于现实生活中的数据来考查科学记数法的问题在中考中屡见不鲜.5. 如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )答案:D【考查目的】考查视图知识及对几何体的简单了解.【思路分析】分析观察各几何体,然后比较它们的视图得出结论.【规范解题】各几何体的主视图、左视图、俯视图分别是:正方体(三个正方形);球(三个圆);直三棱柱(长方形、三角形、两个并列的长方形);圆柱(长方形、圆、长方形).只有圆柱符合要求.【误区剖析】缺乏空间想象能力误认为直三棱柱的俯视图也是一个长方形.【点评】本题除了要理解视图的知识外,还要求有一定的空间想象能力.空间观念是新课标提出的一个新的要求,平时的教学中要注意对学生观察能力和空间观念的培养.6. 某企业1~5月分利润的变化情况如图所示,以下说法与图中反映的信息相符的是………………( )A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份份利润的的中位数为120万元 答案:C【考查目的】考查极差、众数、中位数概念以及从统计图中获取信息的能力.A.正方体B.球C.直三棱柱D.圆柱第6题图110 140 130 115 120 100利润/万元月份 5 4 3 2 1【思路分析】从折线统计图中获取数据对4个备选结果逐一进行验证.【规范解题】观察折线统计图:①1~2月份、2~3月份利润增长分别为10万元、20万元;②1~4月份、1~5月份利润的极差都是20万元;③1~5月份利润的众数是130万元;④1~5月份利润的中位数115万元.比较选择支得出C 正确.【误区剖析】本题需要识图,如不能从折线图中获取正确信息,导致错误在所难免.另外,对极差、众数、中位数概念的理解产生歧义也会导致计算出错.【点评】从统计图表中获取信息、整理信息、分析信息和描述信息是新课标的基本要求,也是中考的必考内容.7. 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为……( ) A.0,5 B.0,1 C.—4,5 D.—4,1 答案:D【考查目的】考查配方法和化归思想.【思路分析】化k x y +-=2)2(为一般形式后与52++=bx x y 比较系数得出b 、k 的值. 【规范解题】∵k x y +-=2)2(,∴442++-=k x x y .又∵52++=bx x y ,∴1,4=-=k b .【误区剖析】本题求解时,如果对配方法掌握不够熟练可导致运算方法错误,或是运算粗心,出现符号错误.【点评】配方法是一种重要的数学方法,它在一元二次方程和二次函数等领域都有重要应用.8. 如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,︒=∠90BAC ,OA =1,BC =6,则⊙O 的半径为………( )A.10B.32C.23D.13 答案:C【考查目的】考查等腰三角形性质、勾股定理、垂径定理等相关知识. 【思路分析】由等腰三角形“三线合一”及垂径定理知ABC ∆底边上的垂直平行线经过圆心,结合勾股定理可求出圆的半径.【规范解题】如图,过O 点作BC OD ⊥,垂足为D .由垂径定理得OD 是BC 的垂直平分线.在等腰直角ABC ∆中,∵点D 是底边BC 的中点,∴AD 是BC 的垂直平分线.∴O 点在AD 上.连接OB ,由勾股定理,得13232222=+=+=ODBDOB .【误区剖析】不能综合运用不同图形的相关性质,导致思路受阻,从而找不到转化途径和解题思路.【点评】本题涉及到圆、等腰三角形、勾股定理等内容的图形综合题,解题的关键是通过作辅助线将已知条件转化到一个直角三角形中来求解.9. 下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和O B A 第8题D C是…………………………………………( )A.495B.497C.501D.503 答案:A【考查目的】考查学生经历探索发现规律的能力.【思路分析】找出这个多位数各位上数字出现的规律后计算结果.【规范解题】当第1位数字是3时,按如上操作得到的多位数是362486248…,那么它的前100位所有数字之和为49542624)8426(3=+++⨯++++.【误区剖析】解决本题的关键是要发现这个多位数各位上数字的排列规律,找不出规律而无从下手.【点评】鼓励学生独立思考,引导学生自主探索,发现规律,能很好地培养学生的创新能力,这类找规律题是新课改之后的中考热点这一.10. 甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4s m /和6s m /,起跑前乙在起点,甲在乙前面100m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离)(m y 与时间)(s t 的函数图象是……………………………………………………………………………( ) 答案:C【考查目的】考查函数的图象及将实际问题转化为数学问题的能力.【思路分析】解决本题首先要弄清甲、乙两人的运动情况.由于乙的速度比甲快,所以乙一段时间后追上甲,并先到达目的地.【规范解题】乙追上甲的时间为50)46(100=-÷(秒),乙从起点到达目的地的时间是20061200=÷(秒),对照选择支,只有C 符合要求.【误区剖析】没有看懂题意,找不出两个变量之间的关系,或对函数图象在每一区段所表达的意义不理解,从而不能将实际问题与函数图象联系起来分析.【点评】创设问题情境得出分段函数的图象,学生平时在这方面的训练较少,但在中考题中却常见.因此,在教学中要加强这方面内容的教学.二、填空题(本大题4小题,每小题5分,满分20分) 11. 计算=-⨯263_______________.答案:22【考查目的】考查二次根式的运算技能.【思路分析】利用二次根式的运算法则进行运算,并化为最简结果. 【规范解题】22223263263=-=-⨯=-⨯.【误区剖析】没有掌握二次根式的运算法则导致计算错误,或是没有化简为最简结果.AO t/s 300 100200 100 y/mB O t/s300 100275 100 y/mC O t/s 300 100 200 50y/mDO t/s300 100 275 50y/m【点评】通过二次根式的乘法与减法运算来考查学生对二次根式的基础知识的掌握情况,引导教师要注重“三基”教学.12. 不等式组⎩⎨⎧≤-<+-843,24x x 的解集是_____________.答案:2<x≤4【考查目的】考查一元一次不等式组的解法.【思路分析】先分别求出不等式组中每个不等式的解集,利用数轴得出这些解集的公共部分,这个公共部分就是不等式组的解集.【规范解题】解不等式-x+4<2,得x>2;解不等式3x-4≤8,得x≤4.所以原不等式组的解集是2<x≤4.【误区剖析】对不等式的性质掌握不牢导致解不等式错误,或不理解不等式组解集的含义导致求公共部分的范围出错.【点评】利用数轴求不等式组的解集既直观,又快捷,教学中注意渗透这种数形结合的思想.13. 如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是弧BAC 上一点,则∠D =______________.答案:︒40【考查目的】考查圆周角定理及其推论.【思路分析】根据圆周角定理得出A D ∠=∠,再由圆周角定理的推论得出︒=∠90ABC ,从而可以求出A ∠.【规范解题】∵AC 是⊙O 的直径,︒=∠90ABC .∴︒=∠50ACB ,∴︒=∠40A .又∵A ∠和C ∠是同弧所对的圆周角,∴︒=∠=∠40A D .【误区剖析】没有发现A ∠和C ∠是同弧所对的圆周角,或没有意识到直径所对的圆周角)(ABC ∠是直角,而使思维受阻,得不到问题的解决.【点评】本题是一道关于圆的基础题,我们在教学中要切实做到把基础知识和基本技能教学到位,做到点子上,落实在根本上.14. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是__________________.(把所有正确答案的序号都填写在横线上)①∠BAD =∠ACD ②∠BAD =∠CAD ③CD AC BD AB +=+ ④CD AC BD AB -=- 答案: ② ③ ④【考查目的】考查三角形全等、勾股定理及线段垂直平分线的性质.【思路分析】①由ACD BAC ∠=∠不能得出等腰三角形;②由CAD BAD ∠=∠可以得出ACD ABD ∆≅∆;③把CD AC BD AB +=+两边平方,利用勾股定理可以得出结论;④与③同理.【规范解题】①由ACD BAC ∠=∠不能得出ACD ABD ∆≅∆,所以此条件不能得出.ADCB第14题图第13题图BAD C50OO②∵在△ABD 和△ACD 中,CAD BAD ∠=∠,︒=∠=∠=90,ADC ADB AD AD , ∴ACD ABD ∆≅∆.∴AC AB =.③∵CD AC BD AB +=+,∴22)()(CD AC BD AB +=+. ∴CD AC CDACBD AB BD AB ⋅++=⋅++222222.又∵222222,CD ADACBD AD AB+=+=,∴)(2)(2CD AC CD BD AB BD +=+.∴CD BD =.∴AC AB =. ④与③同理可得AC AB =.【误区剖析】这类多选题学生出错率较高,或是多选,或是漏选,都会导致结果错误. 【点评】多选题对学生的要求较高,具有很好的区分度,体现了中考的选拔功能. 三,(本大题共2小题,每小题8分,满分16分) 15. 先化简,再求值: aa a a a -+-÷--2244)111(,其中1-=a【考查目的】考查分式的化简与求值问题.【思路分析】先根据分式的混合运算顺序对分式进行化简,再把a 的值代入求值. 【规范解题】2)2()1(1244)111(222-=--⋅--=-+-÷--a a a a a a a a a a a a .当1-=a 时,原式312112=---=-a a .【误区剖析】在进行化简时,分式的运算法则使用不当导致运算错误,或没有化简直接代入求值使计算繁琐出错.【点评】代数式的化简与求值是考查基础知识与基本技能的重要内容,是中考的常见题型之一.因此,一定要掌握它的一般方法与步骤.16. 若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是600,船的速度为5米/秒,求船从A 到B 处约需时间几分.(参考数据:7.13≈)【考查目的】考查用锐角三角函数解决简单的实际问题.【思路分析】添加辅助线构造直角三角形,利用特殊角的三角函数值求解.【规范解题】如图,过点B 作BC 垂直河岸,垂足为C .在ACB Rt ∆中,有360060sin 900sin =︒=∠=BACBC AB ,所以时间4.3326053600≈=⨯=t (分),即船从A处到B 处约需3.4分.【误区剖析】错误的原因有:①难以将实际问题转化为数学问题,构造不出直角三角形,而使解答搁浅;②没有把时间单位秒、分互化,导致计算结果错误.C第16题图BA 60O【点评】三角函数知识是解决实际问题的强有力工具,中考题中常常会出现这类问题.平时应该加强这方面内容的教学,引导学生从实际问题中感悟数学原理和方法,建立数学模型,发展学生的数学应用意识和解决问题的能力.四.(本大题共2小题,每小题8分,满分16分) 17. 点P(1,a )在反比例函数xk y =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式.【考查目的】考查轴对称变换点的坐标变化规律、解方程、一次函数及反比例函数的相关知识. 【思路分析】把点P 关于y 轴的对称点坐标代入一次函数的表达式求出a 的值,得出P 点坐标,再把P 点坐标代入反比例函数表达式,求出k 的值.【规范解题】点P(1,a )关于y 轴的对称点是(-1,a ).∵点(-1,a )在一次函数42+=x y 的图象上,∴24)1(2=+-⨯=a .∵P(1,2)在反比例函数xk y =的图象上,∴2=k .∴反比例函数的解析式为xy 2=.【误区剖析】本题求解的误区是:①关于y 轴的对称点坐标规律掌握不牢固,导致求对称点坐标出错;②不能将函数图象上的点的坐标与函数表达式进行有效对接.【点评】根据已知条件确定函数的表达式是考查函数这部分内容的主要考点之一.18.在小正方形组成的15×15的网络中,四边形ABCD 和四边形D C B A ''''的位置如图所示. ⑴现把四边形ABCD 绕D 点按顺时针方向旋转900,画出相应的图形1111D C B A ;⑵若四边形ABCD 平移后,与四边形D C B A ''''成轴对称,写出满足要求的一种平移方法,并画出平移后的图形2222D C B A .【考查目的】考查图形的旋转、平移和轴对称,以及发散思维能力和探索能力.【思路分析】(1)根据旋转变换的规律画出图形.(2)本小题是开放型问题,答案不唯一,只要画出符合条件的一个图形即可.【规范解题】(1)旋转后得到的图形1111D C B A 如图如示.(2)将四边形ABCD 先向右平移4个单位,再向下平移6个单位.四边形2222D C B A 如图如AB CD D ' A ' C ' B ' 第18题图第18题图 D 1ACA22C2D 'A ' C 'B 'D2B2 BB1C2 A1D1示.【误区剖析】(1)由于审题不清画图时未以点D 为旋转中心,或旋转方向与角度不符. (2)画出的图形不是四边形ABCD 经过平移得到的,或不与四边形1111D C B A 成轴对称. 【点评】这类图案设计题,不同于传统的尺规作图题,要求我们利用图形的平移、对称、旋转、位似等变换知识来设计图形.这类试题综合性较强,题型以作图题为主,具有一定的开放性和灵活性,此类问题近年来倍受中考命题者的青睐.五.(本大题共2小题,每小题10分,满分20分)19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14000元/2m 下降到5月份的12600元/2m .⑴问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)⑵如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破10000元/2m ?请说明理由.【考查目的】考查一元二次方程的解法和利用方程模型解决实际问题的能力. 【思路分析】(1)根据题意,设未知数列方程求解.(2)根据前面得出的降价百分率计算出7月份的均价,与10000元/2m 比较得出结论. 【规范解题】(1)解:设4、5两月平均每月降价的百分率为x ,根据题意,得12600)1(140002=-x .化简,得9.0)1(2=-x .解得05.01≈x ,95.12≈x (不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(2)解:如果按此降价的百分率继续回落,估计7月份的商品房成交均价为113409.012600)1(126002=⨯=-x >10000.由此可知,7月份该市的商品房成交均价不会跌破10000元/2m .【误区剖析】(1)不能正确找出题中的相等关系,得出错误的方程; (2)一元二次方程的解法掌握不牢,解方程过程中出现运算错误.【点评】 利用方程模型,考查学生解决实际问题的能力,是中考命题的重点之一.近来年,命题者与时俱进,设计的此类问题紧跟时代节拍,具有较强的实用价值.20.如图,AD ∥FE ,点B 、C 在AD 上,∠1=∠2,BF =BC . (1)求证:四边形BCEF 是菱形(2)若AB =BC =CD ,求证:△ACF ≌△BDE【考查目的】考查平行线、平行四边形、三角形全等的相关知识.【思路分析】(1)由于四边形BCEF 的邻边相等,证得它是平行四边形就可得出是菱形.(2)设法找到满足两个三角形全等的三组条件即可.【规范解题】(1)证明:∵AD ∥FE ,∴2∠=∠FEB .∵21∠=∠,∴1∠=∠FEB .∴EF BF =.∵BC BF =,∴EF BC =.∴四边形BCEF 是平行四边形.∵FC BF =,∴四边形BCEF 是菱形.B2 第20题图2 DF ECBA 1(2)证明:∵BC EF =,CD BC AB ==,AD ∥FE ,∴四边形ABEF 、四边形CDEF 均为平行四边形,∴BE AF =,ED FC =.又∵BD BC AC ==2,∴BDE ACF ∆≅∆.【误区剖析】①证明的过程不能做到步步有据;②证明的格式书写不规范,不符合逻辑推理的要求.【点评】本题是一道几何证明题,难度不大,那些要求过高的几何证明题在中考中已经不见踪影,这对我们教学有很好的指导作用.六、(本题满分12分)21.上海世博会门票价格如下表所示:门票价格一览表指 定 日 普 通 票 200元 平 日 优 惠 票100元 …………某旅行社准备了1300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张. ⑴有多少种购票方案?列举所有可能结果;⑵如果从上述方案中任意选中一种方案购票,求恰好选到11张门票的概率. 【考查目的】考查简单概率问题和分类讨论思想.【思路分析】(1)从某一种票的张数手,从小到大依次列举. (2)在(1)的结果中找出选到11张门票的次数.【规范解题】(1)解:共有6种购票方案,指定日普通票张数和平日优惠票张数分别是1和11、2和9、3和7、4和5、5和3、6和1.(2)解:由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是61.【误区剖析】(1)审题不严,忽略“每种票至少买一张”这个条件,导致列举结果增多; (2)概率的意义模糊不清,导致从无下手.【点评】本题以上海世博会门票问题为背景,考查简单概率问题,引导数学教学要与生活和社会中热点问题紧密相联,培养学生运用数学知识、方法和思想去解决实际问题.七、(本题满分12分)22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x 天(201≤≤x 且x 为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg ) 20 单位捕捞成本(元/kg )55x -捕捞量(kg )x 10950-(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式?(当天收入=日销售额—日捕捞成本)(3)试说明⑵中的函数y 随x 的变化情况,并指出在第几天y 取得最大值,最大值是多少? 【考查目的】考查二次函数的知识和分析问题的能力.【思路分析】建构当天收入y (元)与x (天)之间的函数关系式的关键是理解“日销售额=日捕捞量×单价”和“日捕捞成本=日捕捞量×单位捕捞成本”这两个等量关系;理解二次函数增减性的实际意义是解决最值问题的关键.【规范解题】(1)解:该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg . 解:由题意,得14250402)10950)(55()10950(202++-=----=x x x x x y .解:∵-2<0,14450)10(21425040222+--=++-=x x x y ,x 是1≤x ≤20的整数,∴当1≤x ≤10时,y 随x 的增大而增大;当10≤x ≤20时,y 随x 的增大而减小;当10=x 时即在第10天,y 取得最大值,最大值为14450元.【误区剖析】不明白日销售额、日捕捞成本的计算方法,导致函数关系式出错;不会转化函数关系式,或利用函数的图象求函数的最值.【点评】本题以现实生活为背景,要求学生结合具体情境用函数观点解决实际问题.近年来这类题所占的比例呈上升趋势,试题形式越来越灵活,试题背景越来越新颖.八、(本题满分14分)23.如图,已知△ABC ∽△111C B A ,相似比为k (1>k ),且△ABC 的三边长分别为a 、b 、c (c b a >>),△111C B A 的三边长分别为1a 、1b 、1c .⑴若1a c =,求证:kc a =;⑵若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k ?请说明理由.【考查目的】考查相似三角形知识及推理论证能力和探究能力.【思路分析】(1)根据相似三角形相似比的定义结合已知条件推出结论; (2)本小题是开放型的,写出符合条件的一对三角形即可;(3)先假设存在这样的△ABC 和111C B A ∆,使得2=k ,然后从假设出发看看是否有矛盾. 【规范解题】(1)证明:∵△ABC ∽△111C B A ,且相似比为k (k >1),∴k a a =1,∴1ka a =.又∵1a c =,∴kc a =.(2)解:取4,6,8===c b a ,同时取2,3,4111===c b a .此时2111===c c b b a a ,∴△ABC ∽△111C B A ,且1a c =.第23题图CBAA 1b 1c 1a 1C 1B 1(3)解:不存在.理由如下:若2=k ,则1112,2,2c c b b a a ===.又11,b c a b ==,∴c b b a a 442211====.∴c b 2=.∴c c c b +=+2<a c =4.而c b +>a ,故不存在这样的△ABC 和△A 1B 1C 1,使得2=k .【误区剖析】(1)不理解相似比的含义,导致推理受阻;(2)开放题虽然思路开阔,但没有固定的解题模式,思维不够敏捷就无从下手;(3)不习惯逆向思维导致判断错误.【点评】本题具有一定的综合性和开放性,对能力要求较高,需要综合分析条件与结论,推理论证和逆向思维等多种能力来完成,体现了中考的选拔功能.第二部分:试卷综合解读与评析纵观2010年安徽省中考数学试卷,我们欣喜地看到试题既注重“三基”,又突出能力;既源于课本,又改革创新;既联系实际,又背景新颖.它是一份很好的诠释新课程理念的中考试卷,充分体现了义务阶段教育的基础性、普及性和发展性.一、命题的指导思想试卷以《数学课程标准》及《2010年安徽初中毕业学业考试纲要》为依据,其指导思想是:准确把握基础教育课程改革的方向,体现义务教育的性质,面向全体学生,切实减轻学生过重的课业负担,全面推进素质教育的实施.同时,充分发挥中考的选拔功能,坚持有利于促进高中阶段教育事业的发展和学生数学成绩的整体提高.二、命题原则命题注重在全面检查学生基础知识和基本技能的基础上,重视对学生运用所学知识分析、解决实际问题的能力的考查,能反映课标对学生知识与技能、过程与方法、情感态度与价值观方面的基本要求;试题力求灵活开放,有助于学生拓宽思维空间,便于学生创造性地发挥;注意结合社会热点问题、焦点问题,引导学生关注国家、人类和世界的命运.三、卷面分析1.试卷结构试卷满分150分,共八大题,23小题.试题分选择题、填空题和解答题三种类型,其中选择题共10个小题,满分40分,约占总分的27%;填空题共4个小题,满分20分,约占总分的13%;解答题包括计算题、证明题、应用题以及探索、开放性试题,共9个小题,满分90分,占总分的60%.与去年相比,试卷结构上没有变化.2.考查内容分布试题的考点覆盖了课标所列的基础知识和核心内容,其中考查“数与代数”领域的问题是第1、2、4、7、9、10、11、12、15、17、19、22题,共12个小题(6个选择题,2全填空题,4个解答题),合计72分,占总分的48%;考查“空间与图形”领域的问题是第3、5、8、13、14、16、18、20、23题,共9个小题(3个选择题,2个填空题,4个解答题),合计62分,约占总分的41%;考查“统计与概率”领域的问题是第6、21题(1个选择题和1个解答题),共16分,占总分的11%;“实践与综合应用”领域的考查渗透在前面三个领域内容的考查之中,它出现在第18、19、22、23题中.四、试题特点分析1.试题源于教材,突出“三基”的考查本套试题着眼于基础知识、基本技能和基本思想方法的考查,突出了义务教育的基础性和普及性.如选择题的第1~8题,填空题的第11~13题,解答题的第15、16、17、18、19、21题,考查都是最基本的概念,最基本的计算,淡化了对几何证明技巧的考查,取而代之的是考查学生对图形变换等基础知识的理解和对图形的直观感受.整份试卷考查“三基”的有101分,约占分值的67%.同时,试题立足课本,更加注重课本中例、习题的作用,如第13题、第19题就是根据课本例题改编的,第1、2、3、5、11、12题就是由课本习题变形引申而来.学生解答这类源于课本的题目,会感到亲切自然.2.联系生活实际,注重用数学意识的考查数学是人们生活、劳动和学习必不可少的工具,学习数学的根本目的在于运用数学知识去解决实际问题.今年的试卷更加注重对学生应用意识的考查,整卷有第4、6、10、16、19、21、22共7道应用题,分值54分,占总分的36%.应用题的背景有城镇就业问题、企业利润问题、优育竞技问题、船舶航行问题、商品房交易问题、上海世博会购票问题、水库养殖问题等,这些学生熟悉的背景,有利于学生考试水平的发挥.同时,也能促使学生更加关注社会、关注生活,学会用数学的眼光看世界.3.设计探索型问题,突出创新意识的考查探索是创新的基石,培养学生创新意识是义务教育的课程目标之一.让学生在探究、操作中研究数学,是今年安徽省试题的又一特色.如第9题探究一个多位数前100位的所有数字之和,第14题探究等腰三角相似的条件,第18题让学生在开放的情景下操作图形设计图案,第23题探究三角形相似的条件等,这些问题有的题型新颖,有的结论开放,非常有利于学生综合所学知识,结合生活经验,开展探索,解决问题.第三部分:中考数学复习中存在的问题与建议问题1 偏离课本,忽视基础近年来的中考数学题,多数取材于课本,由课本中的例、习题加工改造而成.而我们在中考复习时,却脱离课本,过份追求那些难度偏大的试题,从而导致学生对课本概念、公式、性质、定理等基础知识理解不透,掌握不牢,因小失大,得不偿实.建议:回归课本,夯实基础课本素材是命题的基本依据,是编拟中考试题的蓝本.因此,在中考复习时,一定要回归课本,认真钻研教材,帮助学生理清知识体系,弄清课本例题的解题思路,领会其解题技能与思想方法,做到举一反三,重视课本习题的变式教学,引导学生从“变”的现象中发现“不变”本质,从“不变”的本质中探究“变”的规律.问题2 训练份量过重,分析讲评不足组织复习时,让学生盲目地做大量的机械的试题,耗费学生宝贵的时间和精力.轻视习题讲评课的教学,讲评时就题论题核对答案,没有分析学生出错的原因,同一个问题,学生会多次犯同样的错误,严重影响学生的学习信心.建议:强调训练质量,讲评有的放矢在梳理课本知识点,形成知识网络的基础上,进行一定量的强化训练是完全有必要的,但并不是提倡题海战术,训练要有针对性,目的是帮助学生查漏补诎,纠正学生答题时“会而不对,对而不全”的问题.试卷讲评时要给学生提供这一类问题(而不仅仅是这一题)的解题思路与方法,做到触类旁通.对于错解,要帮学生找出“错因”,开出“处方”.问题3 复习就是做题,丧失应用能力学数学就是做题,没有引导学生把所学的数学知识应用到现实中去,偏离了学数学在于用数学这个根本目标.这样,学生不能形成良好的数学思维习惯和应用意识,面对那些联系实际的中考题,。
2010安徽中考数学试题及答案一、选择题1. 若 6x = 7 - 9y,则 x 的值等于:A) -1 B) -3 C) 1/2 D) 2/3答案: B) -32. 在数轴上,点 A 的坐标是 -5,点 B 的坐标是 3,那么 AB 的距离是:A) 8 B) -8 C) 2 D) -2答案: A) 83. 一个矩形的长是 10,宽是 x,若其周长为 32,则 x 的值等于:A) 2 B) 3 C) 4 D) 5答案: D) 54. 若√x - 3 = 2,则 x 的值等于:A) 1 B) 25 C) 4 D) 9答案: B) 255. 若 x = 2 ,则 3x + 4 的值等于:A) 2 B) 7 C) 10 D) 14答案: C) 101. 在一个正方形 ABCD 中,角 D 的补角是:答案: 90°2. 若 3x = 2 ,则 x*5 的值是:答案: 103. 如图所示,若 x+y = 180°,则 y 的值是:答案: 90°三、解答题1. 已知一个等腰直角三角形,直角边长为 3cm,求其斜边长。
解:根据勾股定理,已知直角边长 a = 3cm,斜边长 c 等于:c = √(a^2 + a^2) = √(9 + 9) = √18 cm2. 三个数字的和是12,就个数字之间的比例是 2:3:5,求这三个数字。
解:设三个数字分别为 2x,3x,5x,则有:2x + 3x + 5x = 1210x = 12x = 1.2因此,三个数字分别为 2x = 2.4, 3x = 3.6, 5x = 61. 若小明去操场骑自行车,每分钟骑行 300 米,骑行 20 分钟后停下来休息,然后以每分钟400 米的速度继续骑行,问他骑行 10 分钟后总路程是多少米?解:假设小明停下来休息后,已经骑行了 20 * 300 = 6000 米。
再以每分钟 400 米的速度骑行 10 分钟,则总路程为:6000 + 400 * 10 = 6000 + 4000 = 10000 米五、解析题小明、小华和小李一起比赛谁先爬到山顶。
2010年安徽省中考试题数 学一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2010安徽,1,4分)在-1,0,1,2这四个数中,既不是正数也不是负数的是………………( )A .1-B .0C .1D .2【分析】大于0的数是正数,小于0的数是负数. 【答案】B【涉及知识点】正、负数的概念【点评】本题考查有理数的概念,考查知识点单一,属于基础题. 【推荐指数】★ 2.(2010安徽,2,4分)计算x x ÷3)2(的结果正确的是…………………………( ) A .28x B .26x C .38x D .36x【分析】先将系数相除得2,再将字母及其指数相除得2x 【答案】A【涉及知识点】单项式除法【点评】熟悉单项式除法法则即可解决,属于简单题. 【推荐指数】★3.(2010安徽,3,4分)如图,直线1l ∥2l ,∠1=550,∠2=650,则∠3为…………………………( )A .500.B .550C .600D .650【分析】可将∠3看成三角形的一个内角,利用两直线平行,同位角相等和对顶角相等可求出三角形的其他两个内角,再用三角形内角和即可求出∠3.【答案】C【涉及知识点】平行线的性质,三角形的内角和【点评】本题考查综合运用平行线的性质和三角形的内角和两个知识点,属于简单题. 【推荐指数】★★4.(2010安徽,4,4分)2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是…………………………()A.2.89×107. B.2.89×106 .C.2.89×105. D.2.89×104.【分析】289万=2890000【答案】B【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10n的形式(其中1≤a<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★5.(2010安徽,5,4分)如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是【分析】正方体的三视图都是正方形;球的三视图都是圆;直三棱柱的主视图是矩形,两边长分别是棱长、底面上的高,俯视图是矩形,两边长分别是棱长、底面的边长,左视图是正三角形;圆柱的主视图、俯视图都是矩形且这两个矩形全等;左视图是圆,符合题意.【答案】D【涉及知识点】视图与投影【点评】本题主要考查已知物体画三视图的能力,属于简单题.【推荐指数】★★★★6.(2010安徽,6,4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是………………()A.1~2月份利润的增长快于2~3月分利润的增长B.1~4月份利润的极差于1~5月分利润的极差不同C.1~5月份利润的的众数是130万元D.1~5月份利润的的中位数为120万元【分析】1~2月份利润增长10万元,2~3月份利润增长20万元;1~4月份利润的极差与1~5月份利润的极差都是30万元;1~5月份利润的的中位数为115万元【答案】C【涉及知识点】折线统计图、极差、众数、中位数【点评】折线统计图是统计图之一,极差、众数、中位数等都是统计学中的重要概念,准确理解概念的内涵是解决此类问题的“法宝”,属于中档题.【推荐指数】★★★★7.(2010安徽,7,4分)若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( )A .0,5B .0,1C .—4,5D .—4,1【分析】可将配方后的式子展开,比较两个解析式的系数,二次项系数都是1,一次项系数相等,常数项相等【答案】D【涉及知识点】配方法、待定系数法【点评】配方法是数学中一种重要思想方法,在二次项系数是1的情况下,一般是配上一次项系数一半的平方,本题将顶点式化简成一般式,再由待定系数法即可写出b 、k 的值,属于中档题.【推荐指数】★★★ 8.(2010安徽,8,4分)如图,⊙O 过点B 、C .圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为………………( ) A .10 B .32 C .13 D .23【分析】因为等腰直角三角形和圆都是轴对称图形,延长AO 交BC 于D ,连接OB ,则AD=BD=DC=21BC=3,所以OD=A D -OA=2,由勾股定理,得:OB=13 【答案】C【涉及知识点】垂径定理,勾股定理【点评】求圆的半径是圆中常见的计算题,基本方法是构造以半径为斜边,半弦长、弦心距为直角边的直角三角形,利用勾股定理求出,属于中档题.【推荐指数】★★★【典型错误】选D ,将AB 当成圆的半径;选B ,仍将AB 当成圆的半径,但以为:AB=33BC ;选A 的同学还是将AB 当成圆的半径了,用:101322=+。
9.(2010安徽,9,4分)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是……………( ) A .495 B .497 C .501 D .503【分析】按上述规律,以3开头的多位数是:362486248……,前100位数字中第一个数字是3,依次为62486248…,共24个6248,最后三位数字是624,所以前100位数字之和是3+24×20+12=495A BCO DBA CO【答案】A【涉及知识点】规律探究、自主学习【点评】规律探究题是近几年中考的热点,本题还带有自主学习的成分,培养学生的自主学习能力应成为今后教学的重点,属于中档题.【推荐指数】★★★【典型错误】选其他答案比较多,如选D 10.(2010安徽,10,4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4s m /和6s m /,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离)(m y 与时间)(s t 的函数图象是……( )【分析】甲、乙跑步的速度差是2s m /,乙追上甲需50s ,之后甲、乙两人相距300米需150s ,即经过200s 两个相距300m 。
【答案】C【涉及知识点】一次函数、分段函数【点评】判断实际问题中两个变量的函数图像,可以先找出这两个变量之间的关系式,再画出其图像,本题还可以采用排除法,属于中档题.【推荐指数】★★★★【典型错误】本题错误亦较多。
二、填空题(本大题4小题,每小题5分,满分20分)11.(2010安徽,11,5分)计算:=-⨯263_______________.【分析】231863==⨯,22223=- 【答案】22【涉及知识点】二次根式的运算【点评】熟悉二次根式运算法则,是解题的关键,属于简单题. 【推荐指数】★12.(2010安徽,12,5分)不等式组⎩⎨⎧≤-<+-843,24x x 的解集是_______________.【分析】解不等式①,得:x >2;解不等式②,得:x ≤4,所以不等式组的解集为42≤<x .【答案】42≤<x【涉及知识点】一元一次不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分,属于中档题.【推荐指数】★ 13.(2010安徽,13,5分)如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =50°,点D 是BAC 上一点,则∠D =_______________【分析】由圆周角定理,得∠D =∠A ,∵AC 是⊙O 的直径,∴∠ABC =90°,∠D =50°,故∠A =40°【答案】40°【涉及知识点】圆周角定理及其推论【点评】求圆中角的度数也是圆中的常见计算题,可考虑圆周角定理,属于简单题. 【推荐指数】★★ 14.(2010安徽,14,5分)如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是__________________.(把所有正确答案的序号都填写在横线上)①∠BAD =∠ACD ②∠BAD =∠CAD ③A B +BD =A C +CD ④A B -BD =A C -CD【分析】②由ASA 公理,得△ABD ≌△ACD ,故AB=AC ;∵AD ⊥BC ,∴A B 2-BD 2=AC 2-CD 2,可知③与④等价,即其中一个成立,另一个也成立,由:⎩⎨⎧-=-+=+CD AC BD AB CDAC BD AB ,两式相加,即得:AB=AC .【答案】②③④【涉及知识点】勾股定理,等腰三角形的判定,三角形全等【点评】本题是一道条件探索题,执果索因,条件富于变化,尤其是条件③、④别具一格,联系题目条件,根据勾股定理,易知:条件③、④等价,可以相互推导,本题还可以采用反证法或全等法证明,属于较难题.【推荐指数】★★★★★ 三,(本大题共2小题,每小题8分,共16分) 15.(2010安徽,15,8分)先化简,再求值:ABCDaa a a a -+-÷--2244)111(,其中1-=a【分析】先将小括号中的两个式子通分,为便于约分,再将÷前后的两个分式分解因式【答案】解:a a a a a -+-÷--2244)111(=2)2()1(12--⋅--a a a a a …………(3分)=2-a a, …………(5分)当1-=a 时,原式=2-a a =211---=31 …………(8分) 【涉及知识点】分式的运算【点评】分式的运算主要是通分、约分,其中因式分解是关键,本题属于基本题. 【推荐指数】★★16. (2010安徽,16,8分)若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是600,船的速度为5米/秒,求船从A 到B处约需时间几分.(参考数据:7.13≈)【分析】时间=路程÷速度,实际上求AB 的长度即可,过点B 作BC 垂直河岸,垂足为C ,得Rt △ACB ,将AB 看作是Rt △ACB 的斜边,解这个直角三角形。