矩阵函数以及矩阵微分方程等问题时,都可以利用若尔当标准型来简化
计算。
05
二次型及其标准型
二次型定义及性质
二次型定义
对称性
线性变换下的不变性
二次型的值
二次型是n个变量的二次多项式, 其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n} a_{ij}x_ix_j$,其中$a_{ij}$为常 数,且$a_{ij} = a_{ ji}$。
若尔当标准型简介
01
若尔当标准型定义
对于任意一个n阶方阵A,都存在一个可逆矩阵P,使得$P^{-1}AP=J$
为若尔当标准型,其中J由若干个若尔当块组成。
02
若尔当块
一个若尔当块是一个上三角矩阵,它的对角线上的元素相等,且对角线
上方的元素或者是1,或者是0。
03
若尔当标准型的应用
若尔当标准型在矩阵分析中有着广泛的应用,例如在求解矩阵的高次幂、
矩阵性质总结
结合律 $(AB)C = A(BC)$。
数乘结合律 $(kA)(lB) = kl(AB)$。
分配律
$(A + B)C = AC + BC, C(A + B) = CA + CB$。
数乘分配律
$(k + l)A = kA + lA, k(A + B) = kA + kB$。
02
矩阵变换与等价类
求解过程
先求出矩阵A的特征值,然后将其代 入(A-λE)X=0,解出对应的特征向量。
特征值和特征向量在矩阵分析中的应用
判断矩阵是否可对角化
如果矩阵A有n个线性无关的特征向量,则A可对角化。