113 铁磁谐振的基本原理
- 格式:ppt
- 大小:726.00 KB
- 文档页数:11
(1)铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用续性、高幅值谐振过电压现象。
其主要特点为:1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
(2)中文词条名:铁磁谐振过电压现象和消除办法是什么?英文词条名:答:现象:三相电压不平衡,一或两相电压升高超过线电压。
消除办法:改变系统参数。
(1)断开充电断路器,改变运行方式。
(2)投入母线上的线路,改变运行方式。
(3)投入母线,改变接线方式。
(4)投入母线上的备用变压器或所用变压器。
(5)将TV开口三角侧短接。
(6)投、切电容器或电抗器。
发生铁磁谐振的防范措施中国电力网 2008年1月9日13:47 来源:点击直达中国电力社区110 kV良站10 kV系统为中性点不接地系统,在10 kV系统出现A相单相接地时,发生10 kV母线干式电压互感器烧坏的故障。
事后检查,母线电压互感器本体炸裂、内部绝缘物喷出,非接地相B、C相一次熔丝熔断,母线电压互感器的避雷器未动作,中性点所接消谐电阻正常,中性点绝缘正常,励磁特性在正常范围,二次回路绝缘正常。
现分析单相接地时,电压互感器烧坏及铁磁谐振产生的原因。
电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。
在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。
这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。
铁磁谐振,是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。
1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
铁磁谐振的常用消除办法1)PT一次的中性点加装阻尼电阻。
该方法在已广泛采用,生产定型产品的厂家比较多,在实际运用中都取得了满意的效果。
如西安电瓷厂生产的RXQ系列消谐器,该消谐器串接于PT一次绕组中性点与地之间,内部材料为大容量的非线性碳化硅电阻片及散热片等串联组装于瓷套内而成。
其工作原理为:在低压下消谐器呈高电阻值(可达几百千欧)使谐振在起始阶段不易发展,单相接地时,消谐器上出现千余伏电压,它的非线性电阻下降,使其不影响接地保护的工作。
铁磁谐振的几个特点1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种稳定的工作状态。
电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。
2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。
3)串联谐振电路来说,产生铁磁谐振过电压的的必要条件是因此铁磁谐振可在很大的范围内发生。
4)维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。
为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性且有节律的,即…1/2(1,2,3…)倍频率的谐振。
5)铁磁谐振对PT的损坏。
电磁谐振(分频)一般应具备如下三个条件。
①铁磁式电压互感器(PT)的非线性效应是产生铁磁谐振的主要原因。
铁磁谐振是指一种物理现象,主要发生在带有铁磁元件的电路中,是由铁磁元件的非线性电感和铁磁元件的电磁耦合所引起的。
铁磁谐振具体指的是:当外施正弦交流电压加到电路中时,与铁磁元件的矫顽力Hc和磁滞回线宽度Br的乘积成正比,与其他因素无关。
这个现象被称为铁磁谐振。
铁磁谐振在电力系统中,当电压互感器铁芯饱和时可能发生,此时过激和谐波谐振也属于铁磁谐振。
为了避免铁磁谐振现象,通常会采取以下措施:
1.采用不带铁芯的电感元件或采用电容、电阻元件构成无源滤波
器,或者采用同步调相机、晶闸管等元件以构成有源滤波器。
2.尽量减小电压互感器的容量,采用电容补偿的方法使回路中发
生谐振时,因电容与电压互感器电感构成并联关系,可减小电压互感器容抗,从而降低产生铁磁谐振的电压。
3.在电压互感器二次侧开口三角形绕组两端并联阻尼电阻,同时
将开口三角形绕组两端对地并联电容器,以减小正常运行时三角形绕组中的电流。
4.在电压互感器二次侧开口三角形绕组两端并联阻尼电阻,同时
将开口三角形绕组两端对地并联电容器,以减小正常运行时三角形绕组中的电流。
请注意,以上信息仅供参考,如出现具体问题,建议咨询相关领域专家或使用相关领域的专业设备进行解决。
铁磁谐振原理和反铁磁谐振的方法张烨李中琴(新乡学院,河南新乡453003)应甩科技睛蓟铁磁谐振是电力系统中一种内部过电压现象。
钦磁谐振过电压是电力系统中的一种非线幢共据现象发生时,系统出现明显的高于额定工作,grx而持续时间较长的电压升高和电位差升高而造成的,使电网的安全运行遭到严重破坏,人身安全受到严重威胁。
因此,研究铁磁谐振的原理和反铁磁谐强的方法至关重要。
£;c;键阕]铁磁{毒撂;铁磁谐据电压;反皴磁谐振铁磁谐振是一个长期困扰电力系统安全的复杂问题。
它产生的过电压和过电流通常可达到系统设备额定值的数倍而造成损坏,给电力系统安全带来巨大威盼。
在电力系统的振荡回路中,电压互感器是铁心电感元件,如果有某种大扰动或操作,PT(电压互感器)的非线性铁,0嘻先可能饱和,从而与线路和设备的对地电容形成特殊的单相或三相共振国路,激发起持续的、较高幅值的过电压,这就是铁磁谐振过电压。
1铁磁谐振产生的原理铁磁谐振可以是基波谐振、高次谐波谐振、还可以是分次谐波谐振,如图下图f f r-示,,是最简单的电阻R,电容C和铁心电感L的串联电路。
假设在正常运行条件下其初始感抗大于容抗(c-)L>I/06C),电路T-'-R-备线性谐振的条件,但是当铁心电感两端的电压有所升高时,电感线圈中出现涌流,这就有可能使铁,0饱和,其感抗随之减小,一直可以降到∞L=I/∞C,使之满足串联谐振的条件,在电感、电容两端形成过电压,这种现象称为铁磁谐振现象。
因为谐振回路中的电感和电容不是常数,回路没有固定的宇振频率,同样的回路中,既可以产生谐振频率等于电源频率的基波谐振,也能产生高次谐波和分次谐波,因此具有各种谐波振荡的可能性是铁磁谐振的重要特点。
jRL图1铁磁谐振有以下几个主要特点:1)对铁磁谐振电路,在相同的电源电视作用下,回路可能有不兵—种稳定的工作状态,如基波的非诣振状态和谵锈献态。
宅路到底稳定在哪种状态要看外界;中击引起过度过程的情况。
浅谈电力系统中的铁磁谐振原因及消除谐振的办法浅谈电力系统中的铁磁谐振原因及消除谐振的办法摘要:本文主要论述了电力系统中的铁磁谐振产生的主要原因、发生谐振时的现象、危害以及消除谐振的办法前言:近年由于泸州电网的快速发展、再加上今年又是电网建设年,泸州电网也进行了大量的改造和扩建工程,大到500kV、小到10kV配网都有较大的变化,使得整个网络变得更加复杂、灵活、坚强。
但就是因为电网结构的较大变化(如中低压电网的扩大,出线回路数增多、线路增长,电缆线路的逐渐增多,中低压电网对地电容电流亦大幅度增加等)以前电网中少有发生的铁磁谐振现象,现在却时有发生,由于谐振时会产生过电压,给电网安全造成了积大的威胁,如不采取有效的消除措施,可能会造成设备损坏、甚至还会诱发产生更为严重的电力系统事故。
下面就电网中的铁磁谐振谈谈我个人的认识、见解。
一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
(1)铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用续性、高幅值谐振过电压现象。
其主要特点为:1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
(2)中文词条名:铁磁谐振过电压现象和消除办法是什么?英文词条名:答:现象:三相电压不平衡,一或两相电压升高超过线电压。
消除办法:改变系统参数。
(1)断开充电断路器,改变运行方式。
(2)投入母线上的线路,改变运行方式。
(3)投入母线,改变接线方式。
(4)投入母线上的备用变压器或所用变压器。
(5)将TV开口三角侧短接。
(6)投、切电容器或电抗器。
发生铁磁谐振的防范措施中国电力网 2008年1月9日13:47 来源:点击直达中国电力社区110 kV良站10 kV系统为中性点不接地系统,在10 kV系统出现A相单相接地时,发生10 kV母线干式电压互感器烧坏的故障。
事后检查,母线电压互感器本体炸裂、内部绝缘物喷出,非接地相B、C相一次熔丝熔断,母线电压互感器的避雷器未动作,中性点所接消谐电阻正常,中性点绝缘正常,励磁特性在正常范围,二次回路绝缘正常。
现分析单相接地时,电压互感器烧坏及铁磁谐振产生的原因。
电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。
在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。
这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。
铁磁谐振发生后常常引起电压互感器(PT)烧毁、爆炸等恶性事故。
原因是电力系统中有大量的储能元件,如电压互感器、变压器、电抗器等电感元件,电容器、线路对地电容、断路器的断口电容等电容元件。
这些元件组成了许多串联或并联的振荡回路。
在正常的稳定状态下运行时,不可能产生严重的的振荡。
但当系统发生故障或由于某种原因电网参数发生了变化,就很可能发生谐振。
例如在中性点非有效接地系统,其中一相断线接地,受电变压器和相间电容;电压互感器和线路对地电容;空载变压器和空载长架空线路电容所形成的振荡回路,都有可能发生谐振。
谐振常常引起持续时间很长的过电压。
电压互感器一类的电感元件在正常工作电压下,通常铁芯磁通密度不高,铁芯并不饱和,如在过电压下铁芯饱和了,电感会迅速降低,从而与电容产生谐振,也就是常说的铁磁谐振。
铁磁谐振不仅可在基频( 50HZ )下发生,也可在高频(170HZ) 、低频(17HZ,25HZ) 下发生。
正常运行时,电压互感器开口三角的电压(3U0)理论上是0V,在实际运行中一般也不会超过10V。
当系统发生单相接地时,3U0将迅速升高,达到30到120V,形成过电压。
当系统上电时,由于三相不同期等原因,会在电压互感器中产生很大的谐波电流,导致互感器内部铁芯饱和了,造成二次侧的波形发生畸变,当畸变足够大时,就形成了铁磁谐振。
铁磁谐振产生的条件一般有:1、中性点非有效接地系统;2、非线性电感元件和电容元件组成振荡回路。
回路线性状态时的自振频率小于某此低频谐振频率,当铁芯饱和而电感减小时,回路自振频率增加,恰好等于某此低频谐振频率;3、振荡回路中的损耗足够小,所以谐振实际发生在系统空载或轻载时;4、电感的非线性要相当大;5、有激发作用时,即系统有某种过电压、电流的扰动,如跳、合闸,瞬间接地、瞬间短路等。
二次消谐原理:1、利用消谐装置实时监测PT 开口三角电压,运用DFT算法计算出零序电压四种频率的电压分量。
利用装置中压敏元件的电抗随谐波电压而变化,从而破坏PT铁磁谐振的产生条件。
电磁式电压互感器铁磁谐振的原理及其消除措施白瑞雪,高红杰,李亚峰(西安供电局,陕西西安,710032)摘要:电磁式电压互感器的铁磁谐振是非有效接地系统中常见的一种现象。
HAROLD A.PETERSON建立了铁磁谐振的经典研究模型。
本文阐述了谐振产生的机理,应用PETERSON铁磁谐振经典模型对电压互感器的各种防铁磁谐振措施的原理和其优缺点进行了分析,并对指出在设计中应注意的问题。
关键词铁磁谐振;消谐措施;消谐器;设计;Principle of Electromagnetism Type V oltage Transformer’s Ferro-resonance and VariousTreatments to Eliminate Ferro-resonanceBAI Ruixue, GAO Hongjie, LI Yafeng(Xi’an Power supply Bureau, Xi’an 710032, China)Abstract:E lectromagnetism Type V oltage Transformer’s ferro-resonance is common in non-effective earthing system. HAROLD A. PETERSON builds the classic model for researching ferro-resonance. This paper discusses the mechanism of resonance, and by using HAROLD’ model, analyses the merit and the fault of the various treatments of eliminating ferro-resonance, points out the key factors in design of eliminating ferro-resonance.Key words: Ferro-resonance; Treatments to eliminate ferro-resonance;Resonance eliminator; Design0引言在电力系统中引起电网过电压的原因很多,其中谐振过电压出现频繁,其危害性较大。
浅析铁磁谐振现象产生的原因和消除措施摘要:高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器励磁特性饱和,在特定的运行条件下激发铁磁谐振,从而电力设备和系统安全运行带来危害。
文章从故障实例入手,分析了铁磁谐振产生的机理、类型以及铁磁谐振的特性,并提出多种消除谐振的措施。
关键词:铁磁谐振;过电压;产生条件;影响因素;消除措施高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器(以下简称TV)励磁特性饱和,在特定的运行条件下激发铁磁谐振。
由于谐振时会产生很高的过电压,危及电力设备和系统安全运行,因此必须采取有效的消除和防护措施。
电力系统的铁磁谐振可分两大类:一类是在66 kV及以下中性点不接地系统中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220 kV(或110 kV)变电站空载母线上,当用220 kV、110 kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电,或切除带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象。
1故障实例佛子岭水电站地处山区,高压线路架设于崇山峻岭之中,雷雨季节遭受雷击几率较高,铁磁谐振过电压现象时有发生。
2007年7月某日,雷击后,该站发生35 kVⅡ段母线电压一相降低,另两相升高(超过线电压)现象,发“单相接地”信号并熔断2TV高压保险。
35 kV系统接线图如图1所示。
其时,35 kVⅠ、Ⅱ段母线并列运行,两回出线空载。
1TV 与2TV的型号分别为:YDJJ-35、JDJJ2-35。
2008年某日,110 kV母线停电操作过程中,当拉开最后一台高压开关时,母线电压瞬时升高,二次保护回路电压继电器线圈烧毁,如图2所示。
TV型号是JCC6-110,高压开关型号是SW4-110Ⅱ,双断口带有均压电容器。
电力系统谐振产生原理及消除措施分析摘要:本文介绍了电力系统铁磁谐振产生的原理,分析了磁谐振的若干特点,我们指出将互感器高压侧中性点经高阻抗接地,并接一个电阻 R消耗能量限制谐振,将电源变压器中性点经过消弧线圈接地等电力系统谐振消除策略。
关键词:电力系统;谐振产生;原理;消除措施1前言众所周知,电力系统内部的网络结构是很复杂的,系统内有许多电感与电容等电子元器件,使用时间长,不断会产生过电压现象。
产生这过电压原因有好多方面,比如谐振过电压,使用过程中若操作不注意就会产生故障。
尤其到了雨雪等天气或者是雷雨季会导致电力系统出现过电压情况。
据统计,电力系统谐振过电压发生的概率较大,这类问题会影响电气设备与电网安全,还会提高维修成本,一不小心会影响着大面积的停电,极大地影响百姓的生活与工业企业的经营,极大地阻碍着电力系统的未来发展。
因此,电力系统中的谐振影响非常大,作为电力工作者我们要积极关注这一课题。
2 电力系统铁磁谐振产生的原理图1 铁磁谐振产生的原理示意图如上图所示,电源变压器中性点是不接地设置,要达到监视绝缘之目的,电压互感器设备的一次绕组中性点需要设计成直接接地。
我们把励磁电感计为:La、Lb、Lc,和它相关意义的电容C0则表示的是母线以及相导线引起的对地电容。
励磁电感跟前文所述的C0并联,会有导纳,我们标示为:Ea、Eb、EC。
一般条件下,励磁电感La=Lb=Lc,Ea=Eb=Ec,可以计算出三相对地负载为平衡状态,变压器中性点电位是0。
如果电网内有冲击的波动发生,比如电源合闸到空母线时,影响着互感器一相、两相形成了一定的涌流情况,要么是线路瞬间单相弧光接地,或者是熄弧发生了,则健全相,或者说是故障相的电压就会一下子升高起来,这样的情况也会出现特别大的涌流,会导致这相互感器磁路的饱和,这样会影响励磁电感L 的减小,时间过去了,会影响三相对地负荷的平衡状态,导致中性点有位移电压出现。
经研究,我们可以发现:为母线电容三相励磁电感和发生并联形成的导纳;为三相电源电压;为中性点位移(对地)电压。
电力系统铁磁谐振的产生及消除措施【摘要】铁磁谐振过电压是一种常见的内部过电压,多发生在中性点不直接接地的配电网中,在中性点直接接地的电网中也时有发生,谐振时的过电压和过电流,严重影响了系统安全运行。
本文就其原理、检测方法以及消除措施作了简单的探究。
【关键词】电力系统铁磁谐振产生消除中图分类号:f407.61 文献标识码:a 文章编号:一、电力系统铁磁谐振原理电磁式电压互感器正常工作时,低压侧的负荷很小,接近空载,高压侧具有很高的励磁阻抗,在受到某些大的冲击或扰动干扰时,如中性点不接地系统非同期合闸,或者在接地故障消失之后,电磁式电压互感器因瞬间过电压而发生铁芯饱和,电压互感器电感的非线性效应使励磁电流的波形发生畸变,将工频电源能量转化为谐波能量,由此产生的谐波会成为引发谐振的谐波源,电压互感与导线对地电容或其它设备的杂散电容间形成了单相或三相谐振回路,并激发起谐波的铁磁谐振过电压。
由于回路参数及外界激发条件的不同,可能造成分频、工频或高频铁磁谐振过电压。
三相电网各相导线之间及各相对地之间,沿导线全长都分布有电容。
当中性点不接地电网发生单相接地故障时,故障相的对地电容为零,另外两相的对地电压升高到1.732倍。
相电压升高若未超过安全电压设计的绝缘强度,但是会导致其对地电容的增加,单相接地时电容电流为正常运行时一相对地电容电流的3倍。
当该电容电流较大时,较易引起间歇电弧,对电网的电感和电容的震荡回路产生过电压,其值可达2.5到3倍的相电压。
电网电压越高,由其引起的过电压危险越大。
相关研究表明,电磁式电压互感器饱和引起铁磁谐振过电压的有如下几个必要条件:(1)电源变压器中性点不接地,包括经消弧线圈接地时消弧线圈脱离运行的情况,电压互感器中性点接地,电压互感器伏安特性较差。
(2)电网参数和互感器参数的不利组合。
(3)有强烈的冲击扰动发生,如断路器合闸;雷击线路引起单相瞬间接地;持续性单相接地故障的切除以及来自另一高压绕组的传递过电压等。
(1)铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用续性、高幅值谐振过电压现象。
其主要特点为:1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
(2)中文词条名:铁磁谐振过电压现象和消除办法是什么?英文词条名:答:现象:三相电压不平衡,一或两相电压升高超过线电压。
消除办法:改变系统参数。
(1)断开充电断路器,改变运行方式。
(2)投入母线上的线路,改变运行方式。
(3)投入母线,改变接线方式。
(4)投入母线上的备用变压器或所用变压器。
(5)将TV开口三角侧短接。
(6)投、切电容器或电抗器。
发生铁磁谐振的防范措施中国电力网 2008年1月9日13:47 来源:点击直达中国电力社区110 kV良站10 kV系统为中性点不接地系统,在10 kV系统出现A相单相接地时,发生10 kV母线干式电压互感器烧坏的故障。
事后检查,母线电压互感器本体炸裂、内部绝缘物喷出,非接地相B、C相一次熔丝熔断,母线电压互感器的避雷器未动作,中性点所接消谐电阻正常,中性点绝缘正常,励磁特性在正常范围,二次回路绝缘正常。
现分析单相接地时,电压互感器烧坏及铁磁谐振产生的原因。
电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。
在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。
这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。
铁磁谐振定义:设备的电容与邻接设备磁饱和电感之间的振荡。
铁磁谐振是电力系统自激振荡的一种形式,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。
其主要特点为:1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳;2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
如电源电压暂时升高、系统受到较强烈的电流冲击等;3、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
铁磁谐振系统的中性点不接地系统,当系统遭到一定程度的冲击扰动,从而激发起铁磁共振现象。
由于对地电容和互感器的参数不同,可能产生三种频率的共振:基波共振、高次谐波共振和分频谐波共振。
各种共振的表现形式如下:基波共振。
系统二相对地电压升高,一相对地电压降低。
中性点对地电压(可由互感器辅助绕组测得电压)略高于相电压,类似单相接地,或者是二相对地电压降低,一相对地电压升高,中性点有电压,以前者为常见。
分频谐波共振。
三相电压同时升高,中性点有电压,这时电压互感器一次电流可达正常额定电流的30~50倍以致更高。
中性点电压频率大多数低于1/2工频。
高次谐波共振。
三相电压同时升高,中性点有较高电压,频率主要是三次谐波。
在正常运行条件下,励磁电感L1=L2=L3=L0,故各相对地导纳Y1=Y2=Y3=Y0,三相对地负荷是平衡的,电网的中性点处于零电位,即不发生位移现象。
但是,当电网发生冲击扰动时,如开关突然合闸,或线路中发生瞬间弧光接地现象等,都可能使一相或两相对地电压瞬间升高。
如果由于扰动导致A相对地电压瞬间升高,这使得A相互感器的励磁电流突然增大而发生饱和,其等值励磁电感L1相应减小,以致Y1≠Y0,这样,三相对地负荷变成不平衡了,中性点就发生位移电压。
如果有关参数配合得当,对地三相回路中的自振频率接近于电源频率,这就产生了严重的串联谐振现象,中性点的位移电压(零序电压)急剧上升。