(整理)多重积分的方法总结.
- 格式:docx
- 大小:117.81 KB
- 文档页数:6
重积分的计算方法重积分是微积分中的重要概念之一,它用于求解曲线、曲面以及空间中的体积、质量、质心等物理量。
本文将围绕重积分的计算方法展开讨论,介绍定积分和二重积分的概念,并详细阐述它们的计算方法。
一、定积分的计算方法定积分是重积分中最基本的一种形式,它用于计算曲线下的面积、质量等物理量。
在计算定积分时,我们首先需要确定积分的上下限,并将被积函数表示为x的函数形式。
定积分的计算方法主要有以下几种:1. 几何意义法:通过几何图形的面积来计算定积分。
例如,计算一个曲线下的面积,可以将曲线分割成多个小矩形,然后将这些小矩形的面积相加即可得到定积分的值。
2. 面积法:将被积函数表示为x的函数形式后,可以利用面积的性质进行计算。
例如,计算一个曲线下的面积,可以将曲线分割成多个小矩形,然后将这些小矩形的面积相加即可得到定积分的值。
3. 积分基本公式法:利用积分基本公式,将被积函数进行分解后逐个求积分,最后将结果相加即可得到定积分的值。
这种方法适用于被积函数是多项式、三角函数等简单函数的情况。
二重积分是重积分中的一种形式,它用于计算曲面下的体积、质量等物理量。
在计算二重积分时,我们需要确定积分的范围,并将被积函数表示为两个变量的函数形式。
二重积分的计算方法主要有以下几种:1. 直角坐标法:将被积函数表示为两个变量的函数形式后,利用直角坐标系下的面积求解方法进行计算。
例如,计算一个曲面下的体积,可以将曲面分割成多个小长方体,然后将这些小长方体的体积相加即可得到二重积分的值。
2. 极坐标法:当被积函数的形式在直角坐标系下不易处理时,可以考虑使用极坐标系进行计算。
通过将直角坐标系下的被积函数转化为极坐标形式,可以简化计算过程。
3. 变量代换法:对于一些复杂的被积函数,可以通过变量代换将其化简为简单的形式,然后再进行计算。
变量代换法常用的代换方式有线性代换、平移代换等。
总结:重积分是微积分中的重要概念,定积分和二重积分是其中常见的两种形式。
重积分知识点的总结一、重积分的基本概念1. 多元函数在多元函数中,自变量不再是一个,而是两个或两个以上。
例如,z=f(x,y)就是一个的二元函数。
无论是一元函数,还是二元函数,其基本概念都是“输入-处理-输出”。
其中输入就是参数,也就是变量,处理就是函数规定的运算。
这一基本概念在重积分中也是适用的。
2. 多元函数的极限多元函数的极限,与一元函数的极限类似,只是在多个自变量的情况下,我们需要考察所有自变量分别趋于一定值时的极限情况。
其中一定需要掌握的是多元函数极限的存在性问题。
3. 多元函数的连续性对于多元函数的连续性,我们同样需要关注多个自变量的变化趋势。
多元函数的连续性与一元函数的连续性类似,但要求更加严格。
在重积分中,对于多元函数的连续性是一个比较重要的概念。
4. 重积分的意义重积分的最基本的意义,就是对于多变量函数在多维空间上进行积分。
而在物理学上,重积分的意义就更加明显了。
在空间当中,一定有一个虚拟的某一点,作为观察点。
而对整个空间进行积分,就是将所有的观察点都进行积分,求得整个空间的某一个物理量。
二、重积分的性质1. 线性性质重积分的线性性质是最基本的性质之一。
它影响到重积分的很多性质,例如加减性、齐次性等都是与线性性质相关的。
2. 保号性和保序性对于多元函数来说,保号性和保序性是非常重要的性质。
在重积分中,保号性和保序性也是一个非常重要的概念,它们影响到多元函数的积分值的大小。
3. 对称性对称性在重积分中同样起到了非常重要的作用。
对称性不仅在理论证明中起到了重要作用,而且在实际应用中,对称性也常常起到了非常重要的作用。
4. 交换积分次序对于多元函数的重积分来说,交换积分次序是一个很基本的性质。
但是在实际应用中,交换积分次序同样是需要一些技巧的,有时候并不是直接可行的,需要一些特殊的条件。
5. 分部积分法分部积分法在一元函数的积分中是非常重要的一种积分方法。
而对于多元函数的重积分来说,分部积分法同样是非常重要的。
精品文档第九章 重积分一、学习目的与要求1、加深理解二重积分与三重积分的概念,熟悉重积分的性质。
2、熟练掌握二重积分的计算方法(包括直角坐标与极坐标系下的计算)。
3、熟练掌握三重积分的计算方法(包括直角坐标、柱坐标以及球坐标系下的计算)。
4、能用重积分来表达一些几何量与物理量(如体积、曲面面积、质量、重心、转动惯量等)。
二、学习重点二重积分和三重积分的计算法三、内容提要1、重积分的定义⎰⎰∑=→∆=Dni iiif d y x f 1),(lim ),(σηξσλ(与D 的划分及),(i i ηξ取法无关),其中D 为平面有界闭区域,}{max ),,,2,1(),(1的直径i ni i i i n i σλσηξ∆==∆∈≤≤ 。
⎰⎰⎰∑Ω=→∆=ni i iiiV f dV z y x f 1),,(lim ),,(ζηξλ(与Ω的划分及),,(i i i ζηξ取法无关,其中Ω为空间有界闭区域,}{max ),,,2,1(),,(1的直径i ni i i i i V n i V ∆==∆∈≤≤λζηξ 。
2、重积分的几何意义当0),(≥y x f 时,⎰⎰Dd y x f σ),(表示以区域D 为底,以曲面z =f (x,y )为顶的曲顶柱体体积。
当1),(≡y x f 时,⎰⎰Dd σ表示平面区域D 的面积。
当1),,(≡z y x f 时,⎰⎰⎰ΩdV表示空间区域Ω的体积。
3、重积分的可积性若),(y x f (或),,(z y x f )在有界闭区域D (或Ω)上分块连续,则),(y x f (或),,(z y x f )在D (或Ω)上可积。
4、重积分的性质二重积分与三重积分具有类似的性质,现以二重积分为例,并假设所有被积函数都是可积的。
(Ⅰ)线性性质⎰⎰⎰⎰⎰⎰+=+DDDd y x g k d y x f k d y x g k y x f kσσσ),(),()],(),([2121,其中k 1,k 2为常数。
摘要:二重积分和三重积分的概念都有实际的几何或物理的背景,定义分为四个步骤用构造的方法给出,最终表现为“黎曼和”的极限.故多重积分具有极限的基本性质,如唯一性,线性性质等.定义给出了概念的一个准确描述方法,进而从定义出发可以从纯逻辑上考察概念具有的性质以及计算方法.关键词:二重积分三重积分英文题目Summary of multiple integral methodAbstract:The double integral and triple integral concepts are have the real geometry or physical background, definition is divided into four steps with the method of structure are given, finally shown as "Riemann and" limit. So has the limits of the integral multiple basic properties, such as uniqueness, linear properties. Definition of the concept of a given accurate description method, and from the definition from pure logic can be reviews the concept has property and calculation method. Keyword: The double integral triple integral1.引言:重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分. 2.研究问题及成果 2.1.二重积分的计算 1. 在直角坐标下: (a) X-型区域几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()y y x =和2()y y x =;被积区域的集合表示:12{(,),()()}D x y a x b y x y y x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰.(b) Y-型区域几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由左右交点位于的曲线确定两个函数1()x x x =和2()x x x =;被积区域的集合表示:12{(,),()()}D x y c y d x x x x x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)dx y cx y Df x y dxdy dx f x y dx =⎰⎰⎰⎰.2. 在极坐标下:几何直观表现:从极点出发引射线线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()r r θ=和2()r r θ=(具体如圆域,扇形域和环域等);被积区域的集合表示:1212{(,),()()}D r r r r θθθθθθ=≤≤≤≤,注意,如果极点在被积区域的内部,则有特殊形式2{(,)02,0()}D r r r θθπθ=≤≤≤≤;直角坐标下的二重积分化为极坐标下的二重积分,并表示成相应的二次积分:2211()()(,)(cos ,sin )(cos ,sin )r r DDf x y dxdy f r r rdrd d f r r rdr θθθθθθθθθθ==⎰⎰⎰⎰⎰⎰.注:具体处理题目时,首要要能够选择适当的处理方法,并能够实现不同积分次序及直角坐标和极坐标的转化.3. 二重积分的换元法:(,)z f x y =在闭区域D 上连续,设有变换(,),(,)(,)x x u v T u v D y y u v =⎧'∈⎨=⎩ 将D '一一映射到D 上,又(,),(,)x u v y u v 关于u , v 有一阶连续的偏导数,且(,)0(,)x y J u v ∂=≠∂, (,)u v D '∈ 则有(,)((,),(,))DD f x y dxdy f x u v y u v J dudv '=⎰⎰⎰⎰.二. 三重积分的计算三重积分具体的处理过程类似于二重积分,也分为三个步骤来进行处理.1. 在直角坐标下:空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个.从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =,并把区域投影到xoy 面上从而确定(,)x y 的范围,记为xy D ;被积区域的集合表示:12{(,,)(,),(,)(,)}xy V x y z x y D z x y z z x y =∈≤≤, 进一步地, xy D 可以表示成X -型区域或Y -型区域;三重积分化为三次积分:21(,)(,)(,,)(,,)xyz x y z x y VD f x y z dV dxdy f x y z dz =⎰⎰⎰⎰⎰⎰(所谓“二套一”的形式)2211()(,)()(,)(,,)by x z x y a y x z x y dx dy f x y z dz =⎰⎰⎰(xy D 为X -型)2211()(,)()(,)(,,)dx y z x y c x y z x y dy dx f x y z dz =⎰⎰⎰(xy D 为Y -型)注:类似于以上的处理方法,把空间区域投影到 yoz 面或zox 面又可把三重积分转化成不同次序的三次积分.这时区域几何直观表现,区域的集合表示,以及新的三次积分次序如何?可见,三重积分最多可以对应六种积分次序.这里还有所谓一套二的处理方法,区域的直观表现为:平行于xoy 面的截面面积容易求得.作为被积函数最好与x ,y 无关,即可表示为为()f z .则区域表示为:{(,,),(,)}z V x y z c z d x y D =≤≤∈,其中z D 表示垂直于z 轴的截面.此时,三重积分化为:(,,)()zdcVD f x y z dV dz f z dxdy =⎰⎰⎰⎰⎰⎰ (所谓“一套二”的形式)()zdD c f z S dz =⎰其中zD S 表示截面z D 的面积,它是关于z 的函数.2. 在柱坐标下:柱坐标与直角坐标的关系:cos sin ,(0,02,)x r y r r z z z θθθπ=⎧⎪=≤<∞≤≤-∞<<+∞⎨⎪=⎩空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =.空间区域在xoy 面上的投影区域易于用参数r 和θ表示范围(具体如圆域,扇形域和环域等),并且1(,)z z x y =和1(,)z z x y =也易于进一步表示z 成关于,r θ较简单的函数形式,比如22x y +可以看成一个整体(具体如上、下表面为旋转面的情形);被积区域的集合表示:121212{(,),()(),(,)(,)}V r r r r z r z z r θθθθθθθθ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:(,,)(cos ,sin ,)VVf x y z dV f r r z rdrd dzθθθ=⎰⎰⎰⎰⎰⎰222111()(,)()(,)(cos ,sin ,)r z r r z r d rdr f r r z dz θθθθθθθθθ=⎰⎰⎰.3. 在球坐标下:球坐标与直角坐标的关系:sin cos sin sin ,(0,02,0)cos x r y r r z ϕθϕθθπϕπϕ=⎧⎪=≤<∞≤≤≤≤⎨⎪=⎩空间区域几何直观表现:从原点出发引射线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个球坐标函数1(,)r r r θ=和2(,)r r r θ=; (具体如球心在原点或z 轴上的球形域)被积区域的集合表示:121212{(,,),,(,)(,)}V r r r r θϕθθθϕϕϕθϕθϕ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:2(,,)(sin cos ,sin sin ,cos )sin VVf x y z dV f r r r r drd d ϕθϕθθϕθϕ=⎰⎰⎰⎰⎰⎰=212(,)20(,)(sin cos ,sin sin ,cos )sin r r d d f r r r r dr ππθϕθϕθϕϕθϕθθϕ⎰⎰⎰.如球心在原点半径为a 的球形域下:220(,,)(sin cos ,sin sin ,cos )sin aVf x y z dV d d f r r r r dr ππθϕϕθϕθθϕ=⎰⎰⎰⎰⎰⎰.4. 三重积分的换元法:(,,)u f x y z =在闭区域V 上连续,设有变换(,,):(,,),(,,)(,,)x x u v w T y y u v w u v w V z z u v w =⎧⎪'=∈⎨⎪=⎩将V '一一映射到V 上,又(,,),(,,)x u v w y u v w 和(,,)z u v w 关于u , v 和w 有一阶连续的偏导数,且(,,)0(,,)x y z J u v w ∂=≠∂, (,)u v V '∈则有(,,)((,,),(,,),(,,))VVf x y z dV f x u v w y u v w z u v w J dudvdw =⎰⎰⎰⎰⎰⎰.三.重积分的几何和物理应用 1. 几何应用a) 二重积分求平面区域面积;b) 二重积分求曲顶柱体体积;c)三重积分求空间区域的体积;d) 二重积分求空间曲面的面积.求曲面的面积A ,对应着曲面方程为直角坐标系下的二元函数形式和参数方程形式分别有以下公式:i ) 曲面方程 :(,),(,)S z f x y x y D =∈DA =ii )曲面参数方程(,):(,),(,)(,)uv x x u v S y y u v u v D z z u v =⎧⎪=∈⎨⎪=⎩()()uvuvu u u v v v u u u D D vvvi j kA x i y j z k x i y j z k dudv x y z dudv x y z =++⨯++=⎰⎰⎰⎰注:这里的公式都对函数有相应的微分条件. 2. 物理应用包括求质量、质心、转动惯量和引力等应用,积分是研究物理问题的重要工具.建立物理量对应的积分公式的一般方法是从基本的物理原理出发,找到所求量对应的微元,也就是对应积分的被积表达式了.3.结束语:以上对多重积分的计算方法做了个小结,关键要在具体的情况下要找到对应的适宜的处理方法.处理重积分计算时从几何形式出发,则易于直观把握.注意选择适当的坐标系,注意被积区域的表达,还要注意函数关于区域的对称性.这种对称性包括奇对称和偶对称,从而可以简化计算过程.参考文献1.华东师范大学数学系数学分析高等教育出版社2.陈传璋复旦第二版数学分析高等教育出版社。
重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。
正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。
而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。
2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。
3.重积分的性质:包括线性性质、保号性质、次可加性质等。
这些性质在进行重积分计算时非常重要。
二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。
在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。
2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,极坐标法可以简化计算过程。
三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。
在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。
2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,柱坐标法可以简化计算过程。
结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。
通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。
前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
多重积分的方法总结多重积分是微积分的重要内容之一,在物理、工程、经济等学科中有广泛的应用。
它是定积分的推广,主要用于计算二重积分、三重积分以及更高维度的积分。
一、二重积分的求解方法1.直角坐标求解法:根据被积函数的形式,选择适当的积分次序,将二重积分转化为两次一重积分求解。
2.换元法:将二重积分转化为在转化后的坐标系中的积分。
常见的换元法有极坐标法、参数方程法等。
3.极坐标法:对于具有圆形对称性的被积区域和被积函数,可以使用极坐标进行求解。
极坐标的变换公式为:x = r*cosθy = r*sinθ面积元素dA = r*dr*dθ4.矩形法:对于长方形区域上的二重积分,可以使用矩形法进行计算。
将整个被积区域划分为若干个小矩形,然后对每个小矩形上的被积函数进行近似计算,最后将所有小矩形的结果相加得到最终的结果。
二、三重积分的求解方法1.直角坐标求解法:根据被积函数的形式,选择适当的积分次序,将三重积分转化为三次一重积分求解。
2.柱坐标法:对于具有柱面对称性的被积区域和被积函数,可以使用柱坐标进行求解。
柱坐标的变换公式为:x = r*cosθy = r*sinθz=z体积元素dV = r*dr*dθ*dz3.球坐标法:对于具有球面对称性的被积区域和被积函数,可以使用球坐标进行求解。
球坐标的变换公式为:x = r*sinφ*cosθy = r*sinφ*sinθz = r*cosφ体积元素dV = r^2*sinφ*dφ*dθ*dr应用题解析:多重积分在物理、工程和经济学等学科中有广泛应用,常用于计算质量、体积、中心、质心、转动惯量、质量矩等物理量。
在应用题中,需要根据具体问题确定积分的次序、被积函数和被积区域,并利用常见的求解方法进行求解。
例如,计算一个半径为R的球体的体积。
由于球体具有球面对称性,我们可以使用球坐标进行求解。
将球体划分为若干个体积元素,并对每个体积元素进行积分,最后将所有体积元素的体积相加得到球体的总体积。
高等数学重积分总结重积分是高等数学中的一个重要章节,包括了二重积分和三重积分。
本文将对重积分的相关概念、性质、计算方法等进行总结。
一、重积分的定义和性质重积分可以看作是对多元函数在一个区域内的积分,其中二重积分和三重积分分别对应了二元函数和三元函数。
对于一个区域D,其可以用极限值对角线的方法划分成n个微小的小区域Di,其中i的取值范围为1到n。
设函数f(x,y)在小区域Di上的面积为S,且S趋近于0,则重积分可以表示为:$$\iint_D f(x,y)dxdy=\lim_{\substack{n,m\to \infty}} \sum_{i=1}^n\sum_{j=1}^m f(x_{ij},y_{ij})\Delta S$$其中$\Delta S$为小区域Di的面积,$(x_{ij},y_{ij})$为小区域Di的任意一点。
与一元函数的积分类似,重积分也具有线性性、可加性、区间可减性和保号性等数学特征。
同时,由于重积分的定义,其也满足如下性质:1.积分与被积函数与积分区域的连续性,即对于在区域D上连续的函数f(x,y),有:2.积分与区域的可加性,即对于一个区域D可以分割成两个没有公共点的子区间,则:同时还有极坐标和柱面坐标下的重积分公式:对于极坐标,有:$$\iint_D f(x,y)dxdy=\iint_D f(rcos\theta,rsin\theta)rdrd\theta$$$$\iiint_W f(x,y,z)dxdydz=\int_a^b\int_{\varphi_1}^{\varphi_2}\int_{\rho_1}^{\rho_2} f(\rho cos\varphi,\rho sin\varphi, z)\rho d\rho d\varphi dz$$其中W为三维区域,$(\rho,\varphi,z)$为柱面坐标系。
三、重积分的计算方法对于重积分的具体计算,常用的有以下几种方法:1.累次积分法累次积分法就是将多重积分化为多个一元积分,以二重积分为例,若:$$\iint_D f(x,y)dxdy$$其中D为一个平面区域,那么可以先将y作为常数,对x进行积分,再将x作为常数,对y积分,即可得到:其中a、b、c、d为D中x、y坐标的极值。
二重积分与多重积分及其应用总结知识要点。
(1) 二重积分(2) 三重积分(3) 多重积分的应用。
(4) 三重积分的总结。
一、二重积分(1) 直角坐标系下的二重积分。
(重点)直角坐标系下的二重积分,积分区域为二维平面。
⎰⎰=Ddxdy y x f I ),(。
这种形式的积分要让x 、y 取遍所有D 上的点(Ω为积分区域)。
所以要先让x 为常量,取遍y ,然后在上面的基础上再取遍x 。
或者先让y 为常量,取遍x ,然后在上面的基础上再取遍y 。
(点动成线,线动成面。
与这类似。
)针对不同的题目选择不同的方式。
而这其中的关键就是要找对积分区域D 和正确的目标函数表达式),(y x f 。
(2) 极坐标系下的二重积分。
(理解,计算是重点)极坐标系下的二重积分,积分区域同样为二维平面。
⎰⎰=Dd d f I θθ ),(。
这种形式的积分要先取长度 的线,然后变角度,就像是扫地一样。
或者是角度确定,变长度 一样就像是水波的扩散一样。
两种不同的方式一样可以取遍积分区域D 上的所有点。
但是单独拿出来的很少理解即可。
(3)直角坐标系下的二重积分与极坐标系下的二重积分之间的转换(重点)。
积分区域D 为圆或圆的一部分是,直角坐标下的积分有时候很难计算,但是化为极坐标会很简单。
这就需要极坐标与直角坐标的相互转换。
转换公式如下:ϑcos =x ϑsin =y ⎰⎰⎰⎰=DD d d f dxdy y x f ϑϑϑ )sin ,cos (),(额略长。
不过这是省掉积分上下限的。
如果在圆域内(尤其是那种圆的一部分),在直角坐标下积分的上下限异常麻烦,而且计算量相当之大。
但在极坐标系下将很容易。
3/16.二、三重积分(1) 直角坐标系下的三重积分。
(重点)。
直角坐标系下的三重积分,积分区域为三维立体。
⎰⎰⎰=Ddxdydz z y x f I ),,( 。
计算方式与二重积分无异。
就是先固定两个动一个。
再固定原先固定的一个,动另一个。
多重积分方法总结多重积分是微积分的一个重要分支,用于研究二维、三维或更高维空间中的函数性质。
它在实际问题的建模与求解中起到了重要作用。
多重积分方法主要包括定积分、累次积分、面积分和体积分的相关方法。
一、定积分方法定积分是多重积分的基础,可将曲线下方形成的面积看作是一个函数与对应的线段长度之间的关系。
定积分可用于求函数的面积、弧长、几何体积、质量、质心等问题。
利用定积分方法可将区域分割为无穷多的小矩形,通过求和得到区域的总面积。
定积分的计算可以应用牛顿-莱布尼茨公式、变限积分法和微积分基本定理。
二、累次积分方法累次积分是多重积分的另一种重要方法,主要用于求解二重积分和三重积分。
通过不断降维,将多重积分问题转化为单重积分问题。
对于二重积分,可以将区域划分为无穷多的小矩形,求和得到总面积;对于三重积分,可以将区域划分为无穷多的小立方体,求和得到总体积。
累次积分通过反复积分的方式,对于不同变量进行积分,使得积分操作变得相对简单。
三、面积分方法面积分主要用于计算曲面的面积和一些向量场沿曲面的通量。
面积分可以分为第一类和第二类,分别对应于标量场和向量场。
对于第一类面积分,可以通过将曲面分割为无数小小面积片,用累次积分的方法将其进行求和,得到总面积。
对于第二类面积分,需要考虑向量场在曲面上的法向量,通过点乘计算通量。
四、体积分方法体积分主要用于计算三维空间中定义的函数体所围成的体积。
通过将空间划分为无穷多的小体积元,用累次积分的方法对其进行求和,得到总体积。
体积分的计算需要确定积分变量的积分区间,同时还需要确定积分函数在每个小体积元上的取值。
除了上述基本的多重积分方法外,还有一些常见的变量替换方法,如极坐标、球坐标、柱坐标等,可以简化积分计算,并且有时能够使积分过程更加简洁。
此外,对于一些特殊的区域和函数,还可以利用对称性、奇偶性等性质,选择合适的积分区域和变量替换,从而简化多重积分的计算过程。
综上所述,多重积分方法是微积分的重要工具之一,对于求解曲线面积、体积、通量等问题有着广泛的应用。
高中数学解多重积分问题的技巧与步骤总结在高中数学中,多重积分是一个重要的概念和工具,用于解决一些与空间、曲线、曲面相关的问题。
掌握解多重积分的技巧和步骤对于学生来说是非常重要的。
本文将总结一些解多重积分的技巧和步骤,并通过具体的例题来说明。
一、确定积分的次序和范围在解多重积分问题时,首先要确定积分的次序和范围。
对于二重积分来说,可以选择先对 x 进行积分,再对 y 进行积分,也可以选择先对 y 进行积分,再对 x 进行积分。
在选择积分次序时,可以根据题目的要求和问题的特点来决定。
例如,考虑计算二重积分∬D f(x,y) dxdy,其中 D 是一个有界闭区域。
如果 D 是一个简单的几何图形,如矩形、三角形或圆形等,可以根据题目的要求来选择积分次序。
如果 D 是由两个或多个简单几何图形组成的复杂区域,可以考虑将其分割成简单的几何图形,然后分别计算积分。
二、确定积分的限制条件在确定积分的次序和范围后,接下来要确定积分的限制条件。
这些限制条件可以是直接给出的,也可以是通过题目中的条件推导得到的。
例如,考虑计算二重积分∬D f(x,y) dxdy,其中 D 是一个有界闭区域。
如果题目中给出了 D 的边界方程或者其他条件,可以利用这些条件来确定积分的限制条件。
如果没有给出这些条件,可以通过观察和分析题目中的信息来推导得到。
三、确定积分的积分区域在确定积分的限制条件后,接下来要确定积分的积分区域。
积分区域可以通过画图或者利用题目中给出的条件来确定。
例如,考虑计算二重积分∬D f(x,y) dxdy,其中 D 是一个有界闭区域。
可以根据题目中给出的条件画出 D 的示意图,然后确定积分区域。
在确定积分区域时,要注意边界的方程和交点的坐标。
四、确定积分的积分元在确定积分的积分区域后,接下来要确定积分的积分元。
积分元可以根据积分的次序和范围来确定。
例如,考虑计算二重积分∬D f(x,y) dxdy,其中 D 是一个有界闭区域。
多重积分计算方法小结多重积分是微积分中的一个重要概念,它是对具有多个自变量的函数进行求积的方法。
在实际问题中,往往需要对多个变量间的关系进行综合考虑,多重积分就提供了一个有效的工具。
多重积分可以分为二重积分和三重积分两种情况,分别对应于二维平面和三维空间中的函数求积。
在计算多重积分时,我们常常需要利用几何图形、物理问题以及正交曲线坐标系等概念和方法。
下面我将对多重积分的计算方法进行小结。
首先,我们来看二重积分的计算方法。
二重积分可以看作是对一个平面区域上的函数进行求积。
二重积分的计算可以分为直角坐标系和极坐标系两种情况。
在直角坐标系下,我们常常利用矩形分割和极限的思想来进行计算。
具体而言,我们将整个积分区域分成若干个小矩形,然后计算每个小矩形上函数值的积累,最后将所有小矩形的积累相加,得到整个区域上函数的积分值。
这种方法又称为“矩形分割法”或“Darboux和”方法。
在极坐标系下,我们常常利用极坐标的性质来简化计算。
具体而言,我们将整个积分区域表示成极坐标下的简单几何形状,如直线段、圆、扇形等,然后利用极坐标变换和对称性来计算积分值。
这种方法又称为“极坐标变换法”。
除了这两种基本方法外,还可以利用换元积分法、对偶积分法和奇偶性等方法来简化计算。
换元积分法是通过坐标变换将积分区域变换成更简单的形式,然后进行计算。
对偶积分法是通过对倒数进行积分变换,将二重积分转化为两个单变量积分,更便于计算。
奇偶性是指若被积函数在积分区域上的对称性,利用奇偶性可以简化计算过程。
接下来我们来看三重积分的计算方法。
三重积分可以看作是对一个空间区域上的函数进行求积。
三重积分的计算可以分为直角坐标系和柱面坐标系两种情况。
在直角坐标系下,我们常常利用分割和极限的思想来进行计算。
具体而言,我们将整个积分区域分成若干个小立方体,然后计算每个小立方体上函数值的积累,最后将所有小立方体的积累相加,得到整个区域上函数的积分值。
这种方法又称为“立方体分割法”。
重积分的知识点总结一、多重积分的概念1. 多元函数多元函数是指自变量不止一个的函数,通常表示为$z=f(x,y)$,其中$x$、$y$是自变量,$z$是因变量。
2. 二重积分二重积分是对二元函数在平面区域上的积分,其定义如下:$\iint_Df(x,y)\,d\sigma=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i)\Delta\sig ma_i$其中$D$为平面区域,$f(x,y)$为在$D$上的连续函数,$\Delta\sigma_i$为区域$D$上第$i$个小面积,$\xi_i$、$\eta_i$为$(x,y)$的取值点。
$\lambda$是面积的划分趋于0时的极限。
3. 三重积分三重积分是对三元函数在空间区域上的积分,其定义如下:$\iiint_{\Omega}f(x,y,z)\,dV=\lim_{\lambda\rightarrow0}\sum_{i=1}^nf(\xi_i,\eta_i,\zeta_ i)\Delta V_i$其中$\Omega$为空间区域,$f(x,y,z)$为在$\Omega$上的连续函数,$\Delta V_i$为区域$\Omega$上第$i$个小体积,$\xi_i$、$\eta_i$、$\zeta_i$为$(x,y,z)$的取值点。
$\lambda$是体积的划分趋于0时的极限。
4. 一般情况下的重积分对于$n$元函数在$n$维空间上的积分通常可以表示为:$\int...\int_Df(x_1,x_2,...,x_n)dV$其中$D$为空间区域,$f(x_1,x_2,...,x_n)$为在$D$上的连续函数,积分区域为$D$,$dV$为该区域上的$n$维体积元。
二、多重积分的性质1. 多重积分的可加性重积分在可加性方面与定积分类似,即若函数$f(x,y)$在区域$D$上连续,则有:$\iint_Df(x,y)\,d\sigma=\iint_{D_1}f(x,y)\,d\sigma+\iint_{D_2}f(x,y)\,d\sigma$其中$D=D_1\cup D_2$,$D_1$、$D_2$为$D$的互不相交子区域。
多元函数积分学总结引言多元函数积分学是微积分的重要分支,研究具有多个变量的函数的积分。
它在物理、工程、经济学等领域都有广泛的应用。
本文旨在总结多元函数积分学的基本概念、技巧和应用。
一、多重积分1.二重积分二重积分即对二元函数在一个有界区域上的积分。
它可以通过将区域分割成小的矩形,并在每个矩形中求函数值乘以该矩形的面积,再将所有矩形的面积相加而得到。
二重积分的计算可以使用极坐标、换元法等方法来简化计算过程。
2.三重积分三重积分即对三元函数在一个有界区域上的积分。
类似于二重积分,三重积分可以通过对区域进行分割,并在每个小的立体元中求函数值乘以立体元的体积,再将所有立体元的体积相加而得到。
三重积分的计算可以使用柱坐标、球坐标等方法来简化计算过程。
3.多重积分的性质–可加性:多重积分具有可加性,即对于函数的积分,可以将区域分割成多个子区域,分别在每个子区域上计算积分,再将这些积分相加。
–定积分的值与路径无关:对于连续函数,在一个闭合曲线上的积分与路径无关,只与路径所围成的区域有关。
二、重要定理1.Fubini定理Fubini定理是二重积分和三重积分的重要定理,它可以将多重积分转换为一重积分的形式,简化积分计算的过程。
2.Green公式和Stokes定理Green公式和Stokes定理是两个重要的向量积分定理。
它们描述了曲线积分和曲面积分与散度、旋度之间的关系。
3.Gauss公式Gauss公式是一个重要的体积积分定理,它表明了三维空间中的散度与体积分之间的关系。
这个定理在电磁学和流体力学中有广泛的应用。
三、应用实例1.质量和质心多重积分在质量和质心的计算中有广泛的应用。
通过将物体划分为无穷小的微元,可以通过多重积分计算物体的总质量和质心的位置。
2.引力和电场的计算在物理学中,多重积分可以用于计算引力和电场的作用。
通过计算物体上的质量或电荷在空间中的分布,可以使用多重积分来求解引力或电场的强度。
3.概率密度函数和统计分析在概率论和统计学中,概率密度函数描述了随机变量的概率分布。
多重积分知识点总结
1. 多重积分的基本概念
多重积分是对多元函数在多维空间中的积分。
它是单重积分的推广,通过对多元函数在区域上的积分,可以得到该区域上的各种性质和信息,包括质心、面积、体积等。
在二维空间中,多重积分称为二重积分;在三维空间中,多重积分称为三重积分。
2. 多重积分的性质
多重积分具有许多与单重积分相似的性质,如线性性、界定的变量、积分次序的可交换性等。
此外,多重积分还具有一些特有的性质,如积分区域的可加性、积分变量的变换等。
3. 多重积分的计算方法
在计算多重积分时,可以使用不同的方法,如直角坐标系下的积分、极坐标系下的积分、柱坐标系下的积分、球坐标系下的积分等。
针对不同的积分区域和被积函数形式,选择合适的计算方法可以简化计算过程。
4. 多重积分的应用
多重积分在物理学、工程学、经济学等领域有着广泛的应用。
在物理学中,多重积分可以用来计算物体的质心、惯性矩、质量等物理量;在工程学中,多重积分可以用来计算曲面的面积、立体的体积等几何量;在经济学中,多重积分可以用来计算市场需求曲线下的总需求量等经济指标。
总之,多重积分是数学中一个重要的概念,它在各个领域都有着广泛的应用。
掌握多重积分的基本概念、性质、计算方法和应用,对于深入理解和应用数学知识具有重要的意义。
多重积分的求解方法和应用积分是微积分的一项基本概念,其本质是求函数的面积、体积、长度等。
而多重积分则是针对多元函数而言的,它所求的是多元函数在某个区域内的体积、质量、质心等物理量。
本文将介绍多重积分的求解方法和应用。
一、二重积分的求解方法先来回顾一下二重积分的定义。
设函数$f(x,y)$在区域$D$内有界,则其在$D$内的二重积分为:$$\iint_D f(x,y)dxdy$$二重积分通常有两种求解方法,一种是通过极坐标系转换为一重积分,另一种是直接使用二重积分的定义式。
1. 极坐标系下的二重积分当我们需要求平面上极轴为$x$轴的部分时,考虑到$r\geq 0$,$\theta_1\leq \theta\leq \theta_2$,得到了积分区域$D$,然后根据极坐标系下的公式,有$x=r\cos\theta$,$y=r\sin\theta$,所以:$$\left\{\begin{aligned}x&=r\cos\theta\\y&=r\sin\theta\end{aligned }\right.$$将$x,y$分别用$r,\theta$表示即可得到:$$\iint_Df(x,y)dxdy=\int_{\theta_1}^{\theta_2}\int_{0}^{R(\theta)}f(r\cos\theta ,r\sin\theta)rdrd\theta$$其中,$R(\theta)$代表了积分区域边界与$x$轴交点的极径方程。
2. 直接使用二重积分的定义式对于一般的积分区域,可以将其分割为若干个小区域,然后对每个小区域进行计算,最后将结果加和即可。
设小区域为$E_{ij}$,面积为$\Delta\sigma_{ij}$,则二重积分的结果为:$$\iint_D f(x,y)dxdy=\lim_{\max_{\Delta\sigma_{ij}\to0}}\sum_{i,j}f(x_{ij},y_{ij})\Delta\sigma_{ij}$$其中,$x_{ij},y_{ij}$为小区域中任一点的坐标。
摘要多重积分的形式是各种各样的,掌握其计算方法及技巧是解答问题的关键。
本文主要从直角坐标、坐标变换、对称性、分部积分法、转化成曲线积分或曲面积分等方面讨论了二重积分及三重积分的几种计算方法和技巧,并分别举例说明。
此篇论文较为全面地总结了多重积分的计算方法,而且剖析了各种方法在运用中的常见错误,希望能够给初学者提供一定的借鉴作用。
关键词:二重积分;三重积分;计算方法AbstractThe form of multiple integral is various. Mastering calculation methods is the key to solve problems. This paper mainly discusses several calculation methods of double integral and triple integral, from every aspects such as rectangular coordinates, coordinate transformation, symmetry,integration by parts, converting curvilinear integral or surface integral and so on, meanwhile giving some examples respectively. This paper more comprehensively summarizes the calculation methods of multiple integral, and analyzes the common errors in the use of various methods, hoping to provide certain reference for beginners.Keywords:double integral; triple integral; calculation methods目录摘要 (I)ABSTRACT ................................................... I I1. 引言 (1)2. 二重积分的计算方法 (1)2.1直角坐标系下二重积分的计算 (1)2.2用变量变换法计算二重积分 (6)2.3用极坐标计算二重积分 (8)2.4对称性在二重积分计算中的应用 (13)2.5用分部积分法计算二重积分 (15)2.6曲线积分在二重积分计算中的应用 (16)3. 三重积分的计算方法 (17)3.1直角坐标系下三重积分的计算 (17)3.2用变量变换法计算三重积分 (22)3.3用柱面坐标计算三重积分 (22)3.4用球坐标计算三重积分 (23)3.5用广义球坐标计算三重积分 (25)3.6对称性在三重积分计算中的应用 (26)3.7用分部积分法计算三重积分 (28)3.8曲面积分在三重积分计算中的应用 (30)4. 结束语 (31)参考文献 (32)致谢 (33)多重积分计算方法小结1. 引言积分学在古希腊时期初步出现,是微积分学的一个分支,它的发展经历了一个漫长的时期。
多重积分与物理问题解决的方法探讨物理问题通常涉及一些复杂的方程和模型,解决这些问题需要运用数学方法。
在物理中,通过应用多重积分,可以有效地求解许多复杂的物理问题。
本文将探讨多重积分在物理问题解决中的应用方法,并提供一些具体的例子。
首先,我们来了解一下多重积分的基本概念。
多重积分是对多元函数进行积分运算的方法,与一元函数的积分类似,但需要考虑多个变量。
多重积分可以应用于解决几何、物理和工程等领域中的问题。
在物理问题中,多重积分经常用于计算质量、体积、质心、惯性矩等物理量。
例如,计算一个立方体的体积可以使用三重积分来完成。
设立方体边长为a,它的体积可以表示为∭dV,其中dV=dxdydz,表示立方体内每个无穷小的体积元。
通过限定积分变量的范围,可以将立方体划分为无数个小立方体,然后求和得到整个立方体的体积。
这个过程可以使用三重积分来描述。
另一个常见的应用是求解物体的质心。
质心是物体的平衡点,可以通过多重积分来计算。
对于一个均匀密度的平面薄片,其质心可以通过对坐标x和y的双重积分来计算。
质心的位置可以用坐标(X,Y)表示,其中X=∬xdAx/∬dA,Y=∬ydAy/∬dA,dA表示面积元素。
在电磁学中,多重积分也被广泛应用。
例如,用于计算电荷密度和电场强度之间的关系。
根据库仑定律,电场强度可以表示为E=k∫(ρ/r^2)dV,其中ρ是电荷密度,r是距离,dV表示体积元素。
通过对整个空间进行三重积分,可以求解出电场强度分布。
多重积分还可以应用于解决动力学问题中的路径积分。
在经典力学中,路径积分可以用于求解质点在给定的势能场中的运动路径。
路径积分是对质点运动路径上的位移进行积分,通过求解作用量原理来找到最优的路径。
这个过程可以通过变量分割,将路径积分转化为多重积分问题来求解。
此外,多重积分也可以应用于热传导方程、流体力学、量子力学等领域的问题求解。
例如,在热传导方程中,通过对温度分布进行多重积分,可以获得热量的传递情况。
多重变限积分求导摘要:一、多重变限积分的概述二、多重变限积分的求导方法三、多重变限积分求导的实例解析四、总结与展望正文:一、多重变限积分的概述多重变限积分求导是数学中的一个重要概念,主要应用于数学分析、物理学等领域。
多重变限积分指的是对一个多元函数在多个变量的限制条件下进行积分。
例如,对一个二元函数在两个变量的限制条件下进行积分,就构成了一个二重变限积分。
求导则是求解该积分的导数,以便进一步研究其性质。
二、多重变限积分的求导方法求解多重变限积分的导数,通常采用以下几种方法:1.利用偏导数的性质:若函数f(x,y) 对x、y 偏导数存在,则有f_x(x,y)dx + f_y(x,y)dy = f(x,y)d(x,y)。
2.利用重积分的性质:若函数f(x,y) 在区间[a,b] 和[c,d] 上可积,则有f(x,y) |[a,b] × [c,d] = ∫∫f(x,y)dxdy。
3.利用线性微分方程:若函数f(x,y) 满足线性微分方程,例如f_x(x,y) + 2f_y(x,y) = 0,则可求得f(x,y) 的解析式,进而求导。
三、多重变限积分求导的实例解析假设函数f(x,y) = x^2 + y^2,在区间[0,1] × [0,1] 上求解该函数的多重变限积分的导数。
根据偏导数的性质,可得f_x(x,y) = 2x,f_y(x,y) = 2y。
因此,f(x,y)dxdy = (2xdx + 2ydy) |[0,1] × [0,1] = 2∫∫(xdx + ydy) |[0,1] × [0,1]。
根据重积分的性质,可得∫∫(xdx + ydy) |[0,1] × [0,1] = (∫xdx |[0,1] + ∫ydy |[0,1]) = (x^2/2 |[0,1] + y^2/2 |[0,1])。
因此,f(x,y)dxdy = 2(x^2/2 + y^2/2) |[0,1] × [0,1] = (x^2 + y^2)|[0,1] × [0,1]。
多重积分的方法总结专业:水文与水资源工程姓名:***学号:*********任课教师:***多重积分的方法总结二重积分和三重积分的概念都有实际的几何或物理的背景,定义分为四个步骤用构造的方法给出,最终表现为“黎曼和”的极限.故多重积分具有极限的基本性质,如唯一性,线性性质等.定义给出了概念的一个准确描述方法,进而从定义出发可以从纯逻辑上考察概念具有的性质以及计算方法.和定积分的概念对应,多重积分和定积分的定义及性质一致,其定义和性质都不难理解.把握这里的概念,需要大家从这几个角度来理解:1. 几何和物理背景;2. 定义形式;3.概念的性质;4.计算方法;5.应用.计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出.一.二重积分的计算重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分.1. 在直角坐标下: (a) X-型区域几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()y y x =和2()y y x =;被积区域的集合表示:12{(,),()()}D x y a x b y x y y x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰.(b) Y-型区域几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两个.从而可以由左右交点位于的曲线确定两个函数1()x x x =和2()x x x =;被积区域的集合表示:12{(,),()()}D x y c y d x x x x x =≤≤≤≤; 二重积分化为二次积分:21()()(,)(,)dx y cx y Df x y dxdy dx f x y dx =⎰⎰⎰⎰.2. 在极坐标下:几何直观表现:从极点出发引射线线穿过区域内部,与边界的交点最多两个.从而可以由下面和上面交点位于的曲线确定两个函数1()r r θ=和2()r r θ=(具体如圆域,扇形域和环域等);被积区域的集合表示:1212{(,),()()}D r r r r θθθθθθ=≤≤≤≤,注意,如果极点在被积区域的内部,则有特殊形式2{(,)02,0()}D r r r θθπθ=≤≤≤≤;直角坐标下的二重积分化为极坐标下的二重积分,并表示成相应的二次积分:2211()()(,)(cos ,sin )(cos ,sin )r r DDf x y dxdy f r r rdrd d f r r rdr θθθθθθθθθθ==⎰⎰⎰⎰⎰⎰.注:具体处理题目时,首要要能够选择适当的处理方法,并能够实现不同积分次序及直角坐标和极坐标的转化.3. 二重积分的换元法:(,)z f x y =在闭区域D 上连续,设有变换(,),(,)(,)x x u v T u v D y y u v =⎧'∈⎨=⎩将D '一一映射到D 上,又(,),(,)x u v y u v 关于u , v 有一阶连续的偏导数,且(,)0(,)x y J u v ∂=≠∂, (,)u v D '∈ 则有(,)((,),(,))DD f x y dxdy f x u v y u v J dudv '=⎰⎰⎰⎰.二.三重积分的计算三重积分具体的处理过程类似于二重积分,也分为三个步骤来进行处理. 1. 在直角坐标下:空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个.从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =,并把区域投影到xoy 面上从而确定(,)x y 的范围,记为xy D ;被积区域的集合表示:12{(,,)(,),(,)(,)}xy V x y z x y D z x y z z x y =∈≤≤, 进一步地, xy D 可以表示成X -型区域或Y -型区域;三重积分化为三次积分:21(,)(,)(,,)(,,)xyz x y z x y VD f x y z dV dxdy f x y z dz =⎰⎰⎰⎰⎰⎰(所谓“二套一”的形式)2211()(,)()(,)(,,)by x z x y a y x z x y dx dy f x y z dz =⎰⎰⎰(xy D 为X -型)2211()(,)()(,)(,,)dx y z x y cx y z x y dy dx f x y z dz =⎰⎰⎰(xy D 为Y -型)注:类似于以上的处理方法,把空间区域投影到 yoz 面或zox 面又可把三重积分转化成不同次序的三次积分.这时区域几何直观表现,区域的集合表示,以及新的三次积分次序如何?可见,三重积分最多可以对应六种积分次序.这里还有所谓一套二的处理方法,区域的直观表现为:平行于xoy 面的截面面积容易求得.作为被积函数最好与x ,y 无关,即可表示为为()f z .则区域表示为:{(,,),(,)}z V x y z c z d x y D =≤≤∈,其中z D 表示垂直于z 轴的截面.此时,三重积分化为:(,,)()zdcVD f x y z dV dz f z dxdy =⎰⎰⎰⎰⎰⎰ (所谓“一套二”的形式)()z dD cf z S dz =⎰其中z D S 表示截面z D 的面积,它是关于z 的函数.2. 在柱坐标下:柱坐标与直角坐标的关系:cos sin ,(0,02,)x r y r r z z z θθθπ=⎧⎪=≤<∞≤≤-∞<<+∞⎨⎪=⎩空间区域几何直观表现:用平行于z 轴的直线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个函数1(,)z z x y =和1(,)z z x y =.空间区域在xoy 面上的投影区域易于用参数r 和θ表示范围(具体如圆域,扇形域和环域等),并且1(,)z z x y =和1(,)z z x y =也易于进一步表示z 成关于,r θ较简单的函数形式,比如22x y +可以看成一个整体(具体如上、下表面为旋转面的情形);被积区域的集合表示:121212{(,),()(),(,)(,)}V r r r r z r z z r θθθθθθθθ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:(,,)(cos ,sin ,)VVf x y z dV f r r z rdrd dzθθθ=⎰⎰⎰⎰⎰⎰222111()(,)()(,)(cos ,sin ,)r z r r z r d rdr f r r z dz θθθθθθθθθ=⎰⎰⎰.3. 在球坐标下:球坐标与直角坐标的关系:sin cos sin sin ,(0,02,0)cos x r y r r z ϕθϕθθπϕπϕ=⎧⎪=≤<∞≤≤≤≤⎨⎪=⎩空间区域几何直观表现:从原点出发引射线穿过区域内部,与边界曲面的交点最多两个,从而可以由下面和上面交点位于的曲面确定两个球坐标函数1(,)r r r θ=和2(,)r r r θ=; (具体如球心在原点或z 轴上的球形域)被积区域的集合表示:121212{(,,),,(,)(,)}V r r r r θϕθθθϕϕϕθϕθϕ=≤≤≤≤≤≤;直角坐标下的三重积分化为极坐标下的三重积分,并表示成相应的三次积分:2(,,)(sin cos ,sin sin ,cos )sin VVf x y z dV f r r r r drd d ϕθϕθθϕθϕ=⎰⎰⎰⎰⎰⎰=212(,)200(,)(sin cos ,sin sin ,cos )sin r r d d f r r r r dr ππθϕθϕθϕϕθϕθθϕ⎰⎰⎰.如球心在原点半径为a 的球形域下:220(,,)(sin cos ,sin sin ,cos )sin aVf x y z dV d d f r r r r dr ππθϕϕθϕθθϕ=⎰⎰⎰⎰⎰⎰.4. 三重积分的换元法:(,,)u f x y z =在闭区域V 上连续,设有变换(,,):(,,),(,,)(,,)x x u v w T y y u v w u v w V z z u v w =⎧⎪'=∈⎨⎪=⎩将V '一一映射到V 上,又(,,),(,,)x u v w y u v w 和(,,)z u v w 关于u , v 和w 有一阶连续的偏导数,且(,,)0(,,)x y z J u v w ∂=≠∂, (,)u v V '∈则有(,,)((,,),(,,),(,,))VVf x y z dV f x u v w y u v w z u v w J dudvdw =⎰⎰⎰⎰⎰⎰.三.重积分的几何和物理应用 1. 几何应用a) 二重积分求平面区域面积;b) 二重积分求曲顶柱体体积;c)三重积分求空间区域的体积;d) 二重积分求空间曲面的面积.求曲面的面积A ,对应着曲面方程为直角坐标系下的二元函数形式和参数方程形式分别有以下公式:i ) 曲面方程 :(,),(,)S z f x y x y D =∈DA =ii )曲面参数方程(,):(,),(,)(,)uv x x u v S y y u v u v D z z u v =⎧⎪=∈⎨⎪=⎩()()uvuvu u u v v v u u u D D vvvi j kA x i y j z k x i y j z k dudv x y z dudv x y z =++⨯++=⎰⎰⎰⎰注:这里的公式都对函数有相应的微分条件. 2.3. 物理应用包括求质量、质心、转动惯量和引力等应用,积分是研究物理问题的重要工具.建立物理量对应的积分公式的一般方法是从基本的物理原理出发,找到所求量对应的微元,也就是对应积分的被积表达式了.以上对多重积分的计算方法做了个小结,关键要在具体的情况下要找到对应的适宜的处理方法.处理重积分计算时从几何形式出发,则易于直观把握.注意选择适当的坐标系,注意被积区域的表达,还要注意函数关于区域的对称性.这种对称性包括奇对称和偶对称,从而可以简化计算过程.。