方差分析的基本思想
- 格式:doc
- 大小:109.50 KB
- 文档页数:5
第九章方差分析前面介绍了两个样本均数比较的t检验,那么多个样本均数的比较应该采用什么方法?方差分析(analysis of variance, ANOV A)是20世纪20年代发展起来的一种统计方法,由英国著名统计学家R.A.Fisher提出,又称F检验,是通过对数据变异的分析来推断两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。
本章首先介绍方差分析的基本思想和应用条件,然后结合研究设计类型分别介绍各类方差分析方法。
第一节方差分析的基本思想和应用条件一、方差分析的基本思想方差分析的基本思想是把全部观察值间的变异按设计类型的不同,分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。
例9.1 为研究大豆对缺铁性贫血的恢复作用,某研究者进行了如下实验:选取已做成贫血模型的大鼠36只,随机等分为3组,每组12只,分别用三种不同的饲料喂养:不含大豆的普通饲料、含10%大豆饲料和含15%大豆饲料。
喂养一周后,测定大鼠红细胞数(×1012/L),试分析喂养三种不同饲料的大鼠贫血恢复情况是否不同?表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)普通饲料10%大豆饲料15%大豆饲料合计X 4.78 4.65 6.80 4.65 6.92 5.913.984.447.284.04 6.167.51 3.445.997.51 3.776.677.743.65 5.298.194.91 4.707.154.795.058.185.316.01 5.534.055.677.795.16 4.688.03in12 12 12 36 (n)i X ∑ 52.53 66.23 87.62 206.38(X ∑)i X4.385.52 7.30 5.73 (X ) 2i X ∑ 234.2783373.2851647.73121255.2946(2X ∑)表9.1按完全随机设计获得的36个数据(X )中包含以下三种变异: 1. 总变异 36只大鼠喂养一周后测定红细胞数X 各不相同,即X 与总均数X 不同,这种变异称为总变异(total variation)。
方差分析简介1. 引言方差分析(analysis of variance,简称ANOV A)是一种假设检验方法,即基本思想可概述为:把全部数据的总方差分解成几部分,每一部分表示某一影响因素或各影响因素之间的交互作用所产生的效应,将各部分方差与随机误差的方差相比较,依据F分布作出统计推断,从而确定各因素或交互作用的效应是否显著。
因为分析是通过计算方差的估计值进行的,所以称为方差分析。
方差分析的主要目标是检验均值间的差别是否在统计意义上显著。
如果只比较两个均值,事实上方差分析的结果和t检验完全相同。
只所以很多情况下采用方差分析,是因为它具有如下两个优点:(1)方差分析可以在一次分析中同时考察多个因素的显著性,比t检验所需的观测值少;(2)方差分析可以考察多个因素的交互作用。
方差分析的缺点是条件有些苛刻,需要满足如下条件:(1)各样本是相互独立的;(2)各样本数据来自正态总体(正态性:normality);(3)各处理组总体方差相等(方差齐性:homogeneity of variance)。
因此在作方差分析之前,要作正态性检验和方差齐性检验,如不满足上述要求,可考虑作变量变换。
常用的变量变换方法有平方根变换,平方根反正弦变换、对数变换及倒数变换等。
方差分析在医药、制造业、农业等领域有重要应用,多用于试验优化和效果分析中。
2. 单因素方差分析2.1 基本概念(1)试验指标:在一项试验中,用来衡量试验效果的特征量称为试验指标,有时简称指标,也称试验结果,通常用y表示。
它类似于数学中的因变量或目标函数。
试验指标用数量表示称为定量指标,如速度、温度、压力、重量、尺寸、寿命、硬度、强度、产量和成本等。
不能直接用数量表示的指标称为定性指标。
如颜色,人的性别等。
定性指标也可以转化为定量指标,方法是用不同的数表示不同的指标值。
(2)试验因素:试验中,凡对试验指标可能产生影响的原因都称为因素(factor),也称因子或元,类似于数学中的自变量。
方差分析的基本思想和应用方差分析(ANOVA,Analysis of Variance)是统计学中的一种重要方法,主要用于研究多个样本之间的均值是否存在显著性差异。
方差分析将总的变异分解为几个部分,从而判断这些部分是否具有统计学意义。
本文将详细介绍方差分析的基本思想、类型及应用。
一、方差分析的基本思想方差分析的基本思想是将总的变异分为两部分:组内变异和组间变异。
组内变异是指每个样本内部的变异,组间变异是指不同样本之间的变异。
通过比较组间变异和组内变异的大小,可以判断样本之间的均值是否存在显著性差异。
二、方差分析的类型根据实验设计的不同,方差分析可分为以下几种类型:1. 单因素方差分析(One-Way ANOVA)单因素方差分析是指只有一个因素(或称自变量)影响实验结果的情况。
在这种实验设计中,将样本分为若干个组别,每组只有一种水平的因素。
单因素方差分析的目的是检验这个因素的不同水平是否会导致实验结果的显著性差异。
2. 多因素方差分析(Multi-Way ANOVA)多因素方差分析是指有两个或两个上面所述的因素同时影响实验结果的情况。
在这种实验设计中,需要考虑多个因素之间的交互作用。
多因素方差分析的目的是检验这些因素及其交互作用是否会导致实验结果的显著性差异。
3. 重复测量方差分析(Repeated Measures ANOVA)重复测量方差分析是指在同一组样本中,对同一因素进行多次测量的情况。
这种实验设计适用于研究因素对样本的影响随时间变化的情况。
重复测量方差分析的目的是检验这个因素在不同时间点上是否会导致实验结果的显著性差异。
三、方差分析的应用方差分析在实际应用中具有广泛性,以下列举几个常见领域的应用:1. 生物学领域在生物学研究中,方差分析常用于比较不同物种、品种或组织类型的生物学特性。
例如,研究不同植物品种的生长速度、不同动物种群的繁殖能力等。
2. 医学领域在医学研究中,方差分析可用于比较不同治疗方法的疗效。
方差分析方差分析是一种用于比较多个样本之间差异的统计方法。
它通过比较各个样本之间的方差大小来推断它们是否具有显著的差异。
方差分析可以应用于各种领域的研究中,比如教育、医学、经济等。
方差分析的基本思想是将总体的方差分解为不同来源的方差,通过对比它们的大小来判断不同因素(组别)对总体的影响程度。
在进行方差分析之前,需要明确研究的目的和假设,然后选择相应的方差分析模型和计算方法。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量(组别)的情况,它将数据按照不同的组别分组,然后计算各组之间的方差,并比较它们的大小。
如果各组之间的方差较大,那么可以认为它们之间存在显著差异。
多因素方差分析适用于有多个自变量(组别)的情况,它可以同时考虑多个因素对总体的影响。
方差分析的原假设是各组之间的均值相等,备择假设是各组之间的均值不等。
通过计算统计量F值,可以得到方差分析的结果。
若F值大于临界值,就能拒绝原假设,认为各组之间存在显著差异;反之,无法拒绝原假设,认为各组之间的差异不显著。
在进行方差分析时,还需要注意一些前提条件。
首先,各个样本之间应独立,互不影响;其次,各个样本应满足正态性和方差齐性的假设;最后,应确认所用的统计方法是否适用于样本数据。
方差分析的结果可以为研究者提供一些重要的信息。
比如,研究者可以通过方差分析来比较不同教学方法对学生成绩的影响;医学研究者可以通过方差分析来比较不同治疗方法对患者生存率的影响;市场营销研究者可以通过方差分析来比较不同广告策略的销售效果。
总之,方差分析是一种重要的统计方法,可以帮助我们比较多个样本之间的差异。
通过对各个样本之间方差的分析,可以判断它们是否具有显著的差异,从而得出相应的结论。
方差分析可以应用于各个领域的研究中,为我们提供有价值的信息。
当我们在进行方差分析时,应注意选择适当的方法和模型,并满足各个前提条件,以得到准确的结果。
单因素多个均数比较的方差分析(完全随机设计资料的方差分析)方差分析的基本思想是:将全部观察值的总变异按影响实验结果的诸因素分解为若干部分变异,构造出反映各部分变异作用的统计量,之后构造假设检验统计量F,实现对总体均数的判断。
方差分析的应用条件:各样本相互独立,且均来自总体方差具有齐性的正态分布。
完全随机设计是一种将研究对象随机地分配到处理因素各水平组的单因素设计方法。
其研究目的是推断处理因素不同水平下的试验结果的差异有否统计学意义,即该处理因素是否对试验结果有本质影响。
下面以一个实例来说明完全随机设计方差分析的基本思想和假设检验步骤。
例:为研究烫伤后不同时期切痂对肝脏ATP(u/L)含量的影响,将30只大鼠随机分3组,每组10只,分别接受不同的处理,试根据下表资料说明大鼠烫伤后不同时期切痂对其肝脏的ATP(u/L)含量是否有影响大鼠烫伤后不同时期切痂肝脏ATP含量(u/L)烫伤对照组 24h切痂组 96h切痂组合计合计(∑X)(∑∑X ij)例数(n) 10 10 10 30(N)均数(X)平方和(∑X2) (∑∑X ij2)1.建立检验假设,确定检验水准:H0:u1=u2=u3,3个总体均数全相等,即3组大鼠肝脏的ATP含量值无差别;H 1:u 1,u 2,u 3,3个总体均数不相等.即3组大鼠肝脏的ATP 含量值有差别; a=2.计算检验统计量并列出方差分析表:①.计算离均数差平方和SS :首先计算每一组的合计、均数、平方和,再计算综合计数 (∑X ij 2),由表得: ∑∑X ij = ∑X ij 2= N=30 总的离均数差平方和SS 总=∑X ij2- (∑X ij )2 n= - 错误! =SS 组间=∑ (∑X ij )2 n i - (∑X ij )2n = 错误! + 错误! + 错误!- 错误!=SS 组内=SS 总- SS 组间 = - =②.计算均方MS : MS 组间 =SS 组间k-1(k 为组数) = 错误!= MS 组内 =SS 组内N-k(N 为总例数) = 错误!= ③.求F 值F = MS 组间MS 组内= 错误!=将上述计算结果列成方差分析表,如下:变异来源 平方和SS 自由度v 均方MS F 值 总变异 29组间变异 2 组内变异(误差) 27(注:自由度:v 总= N -1 = 30-1= 29;v 组间= k -1 = 3-1 = 2; v 组内=N -k = 30-3= 27)利用SPSS 作方差分析时,会得到类似于以下的方差分析表:DescriptivesCONTest of Homogeneity of VariancesCONANOVACON3.查表确定P 值,并作出统计推断:V 组间= 2, v 组内=27, 得界限值F α(2,27)为(2,27)= , 则F= > (2,27),则P<,按水准,拒绝H,可以认为3个总体均数不全相同,即3组大鼠肝脏的ATP含量值有差别。
第一节方差分析的基本思想
1、方差分析的意义
前述的t检验和u检验适用于两个样本均数的比较,对于k个样本均数的比较,如果仍用t检验或u检验,
需比较次,如四个样本均数需比较次。
假设每次比较所确定的
检验水准=0.05,则每次检验拒绝H0不犯第一类错误的概率为1-0.05=0.95;那么6次检验都不犯第一类错误的概率为(1-0.05)6=0.7351,而犯第一类错误的概率为0.2649,因而t检验和u检验不适用于多个样本均数的比较。
用方差分析比较多个样本均数,可有效地控制第一类错误。
方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差分析又称F检验。
2、方差分析的基本思想
下面通过表5.1资料介绍方差分析的基本思想。
例如,有4组进食高脂饮食的家兔,接受不同处理后,测定其血清肾素血管紧张素转化酶(ACE)浓度(表5.1),试比较四组家兔的血清ACE浓度。
表5.1对照组及各实验组家兔血清ACE浓度(u/ml)
对照组
实验组
A降脂药B降脂药C降脂药
61.24 82.35 26.23 25.46
58.65 56.47 46.87 38.79
46.79 61.57 24.36 13.55
37.43 48.79 38.54 19.45
66.54 62.54 42.16 34.56
59.27 60.87 30.33 10.96
20.68 48.23
329.92 372.59 229.17 191.00 1122.68 () 6 6 7 7 26 (N )54.99 62.10 32.74 27.29 43.18 ()18720.97 23758.12 8088.59 6355.43 56923.11 ()
由表5.1可见,26只家兔的血清ACE浓度各不相同,称为总变异;四组家兔的血清ACE浓度均数也各不相同,称为组间变异;即使同一组内部的家兔血清ACE 浓度相互间也不相同,称为组内变异。
该例的总变异包括组间变异和组内变异两部分,或者说可把总变异分解为组间变异和组内变异。
组内变异是由于家兔间的个体差异所致。
组间变异可能由两种原因所致,一是抽样误差;二是由于各组家兔所接受的处理不同。
正如第四章所述,在抽样研究中抽样误差是不可避免的,故导致组间变异的第一种原因肯定存在;第二种原因是否存在,需通过假设检验作出推断。
假设检验的方法很多,由于该例为多个样本均数的比较,应选用方差分析。
方差分析的检验假设H0为各样本来自均数相等的总体,H1为各总体均数不等或不全相等。
若不拒绝H0时,可认为各样本均数间的差异是由于抽样误差所致,而不是由于处理因素的作用所致。
理论上,此时的组间变异与组内变异应相等,两者的比值即统计量F为1;由于存在抽样误差,两者往往不恰好相等,但相差不会太大,统计量F应接近于1。
若拒绝H0,接受H1时,可认为各样本均数间的差异,不仅是由抽样误差所致,还有处理因素的作用。
此时的组间变异远大于组内变异,两者的比值即统计量F明显大于1。
在实际应用中,当统计量F值远大于1且大于某界值时,拒绝H0,接受H1,即意味着各样本均数间的差异,不仅是由抽样误差所致,还有处理因素的作用。
(5.1)
方差分析的基本思想是根据研究目的和设计类型,将总变异中的离均差平方和SS及其自由度分别分解成相应的若干部分,然后求各相应部分的变异;再用各部分的变异与组内(或误差)变异进行比较,得出统计量F值;最后根据F值的大小确定P值,作出统计推断。
例如,完全随机设计的方差分析,是将总变异中的离均差平方和SS及其自由度
分别分解成组间和组内两部分,SS组间/组间和SS组内/组内分别为组间变异(MS组间)和组内变异(MS组内),两者之比即为统计量F(MS组间/MS组内)。
又如,随机区组设计的方差分析,是将总变异中的离均差平方和SS及其自由度
分别分解成处理间、区组间和误差3部分,然后分别求得以上各部分的变异(MS 处理、MS
区组和MS误差),进而得出统计量F值(MS处理/MS误差、MS区组/MS误差)。
3、方差分析的计算方法
下面以完全随机设计资料为例,说明各部分变异的计算方法。
将N个受试对象随机分为k组,分别接受不同的处理。
归纳整理数据的格式、符号见下表:
处理组(i)
1 2 3 …k
…
…
……………
…
合计…
…
1)总离均差平方和(sum of squares,SS)及自由度(freedom,ν)
总变异的离均差平方和为各变量值与总均数()差值的平方和,离均差平方和和自由度分别为:
(5.2)
=N-1(5.3)2)组间离均差平方和、自由度和均方
组间离均差平方和为各组样本均数()与总均数()差值的平方和
(5.4)
(5.5)
(5.6)
3)组内离均差平方和、自由度和均方
组内离均差平方和为各处理组内部观察值与其均数()差值的平方和之和,。
数理统计证明,总离均差平方和等于各部分离均差平方和之和,因此,(5.7)
(5.8)
(5.9)4)三种变异的关系:
= N-1= (k-1)+(N-k) =
可见,完全随机设计的单因素方差分析时,总的离均差平方和(SS总)可分解为组间离均差平方和(SS组间)与组内离均差平方和(SS组内)两部分;相应的总自由度()也分解为组间自由度()和组内自由度()两部分。
5)方差分析的统计量:
(5.10)
4、方差分析的应用条件与用途
方差分析的应用条件为①各样本须是相互独立的随机样本;②各样本来自正态分布总体;③各总体方差相等,即方差齐。
方差分析的用途①两个或多个样本均数间的比较;②分析两个或多个因素间的交互作用;③回归方程的线性假设检验;④多元线性回归分析中偏回归系数的假设检验;⑤两样本的方差齐性检验等。