最新降低kA电解槽电压摆次数
- 格式:ppt
- 大小:737.00 KB
- 文档页数:7
浅谈306kA电解槽降低黑电压的生产实践目前铝行业面临严峻的生产经营形势,各铝厂相继采取了停槽限产、低电压技术路线的推广,其主要的核心内容是如何降低控制成本,尤其是在降低吨铝电耗上,通过努力,我国铝电解技术有了跨越式的发展,吨铝综合电耗普遍控制在14000kWh/t·Al以下,在降低吨铝电耗技术探索中,降低黑电压是降低电耗的直接有效的措施,我厂在优化指标前,长期忽视了各节点黑电压偏高现象,经过近半年时间的反复实践,总结出了一套行之有效地降低黑电压的措施,浅谈如下:通过测量发现短路口压接压降平均超过了8MV、停槽空耗压降平均达到了370MV、立柱母线“7”字形压接压降平均达到了35MV、漏槽冲断母线处的压接压降最高达到了100MV以及阳极导杆与横梁母线的压接压降平均达到了35MV等等,这些压降不参与电解,不仅如此,黑电压的升高,意味着参与电解反应的电压会减少,也就是通常所说的压极距现象,干扰电解槽热平衡的稳定,降低了电流效率。
1 短路口压接压降的降低短路口的压接压降是在停槽后短路块与立柱母线之间连接起来产生的压降。
为了降低短路口的压接压降,在电解槽停槽的过程中,用高压风管吹短路口与立柱母线的压接面,将里面的粉尘以及其他杂物清理干净,最后用铝锤击打短路块,再复紧螺栓的方式,一般停槽的短路口压接压降控制在5MV以内比较理想。
2 停槽空耗压降的降低电解槽停槽以后,槽控箱的电压表上显示一个数值就是停槽的空耗压降,这个数值一般在0.28~0.43V左右,这个压降属于无用功耗。
停槽空耗压降的影响因素主要有以下三个方面:(1)环境温度的影响。
停槽空耗压降主要记录的是母线的压降,由于母线是金属材料,受环境因素影响比较大,冬天天气寒冷,停槽空耗压降就小,反之夏天,停槽空耗压降就大,如表1所示:(2)电解槽所处于的位置不同空耗压降也不同。
一般情况下,电解槽处于通风较好的位置,空耗压降值比较低,处于槽底密闭的位置,空耗压降值比较高。
兰州铝业股份有限公司降低电解槽电压和效应系数、缩短效应时间工作实施方案根据中铝公司和我公司节能降耗工作要求,进一步提高我公司电解系列的技术经济指标,降低电解槽电耗,是当前公司生产管理的一项重要工作,而目前开展降低电解槽电压和效应系数的试验具有重要意义。
电解槽工作电压的降低不是单纯地降低极距,而是通过提高电解质的导电率、阴阳极导电性和降低各部分接触压降和降低阳极效应系数和缩短效应时间来实现的,所以这是一个全公司各个工序都应提高自己工作质量的综合工程:包括阳极的质量、导杆修复质量、钢爪修复质量、磷生铁浇铸质量、焊接质量、大修筑炉质量、阴极块的质量、阴极块和阴极棒的连接质量、氧化铝的下料量、氧化铝的质量、打击头的修复、阳极换极质量、导杆与母线的压接质量、供风质量等。
一、成立公司领导小组1、由电解二厂、生产运行部、质量监督部、机修厂、炭素厂和技术中心共同组建。
任务是:计划、实施、现场测试和现场执行。
在电解二厂建立现场测试组。
2、领导小组组长:肖伟峰副组长:杜立中组员:范爱民、郭兰江、肇玉卿、刘连会、杨保仲、马永国、陆惠国、崔亚东、李兴虎、魏世湖、杨青、李美、谷文明、张扬等工程技术人员及相关部门、分厂的操作人员二、降低阳极效应系数工作的实施依据与生产过程管理1、阳极效应发生的主要原因:氧化铝供给不足(下料量偏低);电解质溶解氧化铝能力偏差(温度低、过热度低、电解质成分不合适);电解质传质能力不足(电解质发粘)。
2、发生阳极效应产生的不良影响:发生阳极效应时排放大量温室气体;造成电解槽温度和电解质成分的波动;降低电流效率;增加能耗和氟盐消耗。
3、当前国内阳极效应系数高的主要原因:工艺上人为等待效应;氧化铝输送及下料故障或不准确;控制模型不适应;氧化铝质量不稳定;阳极质量问题;工艺条件问题;限电或供电不足。
4、在条件许可的情况下,选用易于溶解的砂状氧化铝,并且尽量稳定控制-325目的氧化铝在一定范围内,同时提高阳极质量,对于促进氧化铝与熔盐电解质的反应效率有很大帮助,减少了阳极效应产生的几率。
240K电解槽新开槽快速降电压技术青海省投资集团百河铝业公司康炜摘要:本文论述了240KA电解槽新开槽快速降电压技术及后期管理技术,根据以往操作,电解槽经过培烧,启动,后期管理要经过三个月非正常期的才能形成规整的炉膛,新开槽在三个月非正常期间电流效率低,直流电耗高,自从利用快速降电压技术后,在1个月时间内电压降为正常,2个月炉膛形成良好,电流效率直流电耗达到正常槽,大量节省电能。
关键词:快速降电压一次性灌铝节能降耗1.前言:随着国家对电解铝行业的准入条件的逐步提高,高效节能是各电解铝厂发展的趋势,现代铝电解槽经过优化磁场,配合先进的计算机管理模式,现代铝电解槽的经济指标已有很大的提升,但是在传统生产中电解槽经过大修后,再次投入生产后,从培烧到启动,到正常期生产要经过三个月的非正常期,才能形成正常炉膛,在非正常期电流效率低,直流电耗高,青海投资集团百河铝业公司在针对该情况,经过近两年的探索和实验,实现了新开槽快速降电压,1个月电压降为正常,2个月炉膛形成良好,电流效率达到正常槽,直流电耗大幅降低。
2.新开槽的培烧,启动质量的好坏是快速降电压的基础2.1新开槽的培烧240KA电解槽的装炉采用空腔装炉,焦粒培烧,培烧过程使用分流器软连接,经过96小时的培烧,使炉膛温度达到800-900度,再进行启动。
2.2培烧中的质量控制培烧过程中的阳极电流分布是决定某区域的温度上升的主要因素,因此要注意测量阳极电流分布,对阳极电流分布较大或较小的,利用调整软连接的松紧程度,卡具的紧固程度,和阳极与母线的接触面来调节,及时调整阳极电流分布,以便达到使炉膛能够均匀预热,不至于某一区域温度过高或过低。
利用分流器把过多的电流分向其他槽,使电解槽能够有低温向高温逐步预热,不会对炉膛造成大的热冲击。
2.3湿法效应启动经过96小时的培烧,电解槽炉膛温度达到800-900度,准备10T以上的电解质液体,同时上抬阳极,引发效应,把阳极表面的冰晶石推入槽内,使之慢慢熔化,直至冰晶石完全熔化,打捞完碳渣,投入氧化铝,打开自动控制,启动结束。
306KA电解槽电压摆的原因及处理摘要指出了306kA电解槽沉淀生成的原因、探讨消除沉淀的方法。
关键词炉底沉淀;电能利用率;换极作业;堵卡打击头;技术参数匹配电解槽炉底沉淀对电解槽安全高效生产有很大的危害,一方面沉淀随着液体流动而磨损阴极,据邱竹贤研究,软沉淀的电导率是传统电解质的一半,沉淀会使周边的阴极有很大的电流密度,容易受到腐蚀,缩短槽寿命,另一方面,槽底沉淀会增加槽底电阻,使炉膛畸形,造成电解槽电压不稳定,迫使电解槽的极距降低,增加铝的再溶解量,大幅度降低电流效率,升高运行电压,降低了吨铝电能利用率,增加了吨铝成本。
某厂306KA电解槽自投产以来,技术参数和作业方式经过多次调整,逐渐总结出适宜的做法,预防并消除了炉底沉淀,稳定了电解槽况,提高了电流效率,降低了电耗。
1 306KA电解槽沉淀产生的原因现代电解铝工艺普遍采用中间点式下料的方法向电解槽内添加氧化铝粉,正常情况下,不会产生沉淀,但是在实际生产中,会出现短时间内进入大量的氧化铝粉和电解质块的情况,物料无法被全部溶解,便沉积槽底,形成在铝水下的沉淀,经久不化,则变成结壳。
产生沉淀的主要原因有:1)換极作业操作不合理性是沉淀的重要原因之一。
初期換极存在以下三种问题,是制造沉淀的主要原因:(1)是換极前不扒出极上浮料,提极后残极四周浮料全部进入槽内;(2)是更换阳极时壳面开口不合理,造成进入过多物料;(3)是管理制措施不完善,提极时掉入电解槽的块料捞不干净;2)堵击头现象造成的沉淀,也是投生成沉淀的重要原因之一,306KA电解槽中缝设计阳极间距为200mm,由于电解槽不稳定,加之使用的打壳气缸是小气缸,高压风在0.45mp左右,所以电解槽下料点堵打击头现象十分严重,经常出现在下料口堆积大量氧化铝粉,此时一旦下料口被打开,堆积的氧化铝粉迅速进入电解槽中,在下料点处的槽底形成大量沉淀,长时间堆积变成槽底结壳;3)下料方式落后造成的电解槽炉底沉淀增加,306KA电解槽在设计时采用中间下料点五点同时进料,但在经几年的运行实践表明,五点同时下料一次性对电解槽供料量过大,下料经常出现沉淀,严重时变成结壳,也有悖于现代电解槽低氧化铝浓度稳定运行的理念,不利于氧化铝粉的充分溶解,易形成沉淀;4)技术参数匹配不合理,GeaD等人对电解槽槽底沉淀的研究得出,槽底沉淀的组成主要是Al2O3和冰晶石的成分,沉淀物中的电解质成分非常接近于Na3AlF6槽内沉淀与氧化铝粉的共晶点温度为955℃z左右,因此,当电解槽使用低分子比,电解温度很低时,槽底沉淀就不容易溶化和消失,现代电解槽普遍采用低分子比和低温来提高电流效率,306KA建厂设计主要技术参数如下:铝水19cm~21cm 电解18cm~21cm,温度940℃~950℃,分子比2.40,并且在电解质添加了2%~3%的氟化镁,在此组参数下,电解槽无法稳定,电解槽电压摆严重,炉底沉淀、结壳严重,散热孔出现发红现象,电解槽侧部、底部漏槽时有发生。
降低铝电解槽停槽电压的生产实践发布时间:2022-06-07T07:23:01.612Z 来源:《中国电业》2021年第25期作者:闫智勇[导读] 铝电解生产中,电解槽采用直流串联导电的方式连接闫智勇河南中孚铝业有限公司河南郑州451200摘要:铝电解生产中,电解槽采用直流串联导电的方式连接。
生产过程中,通常因产业调整或其它原因,可能需把部分电解槽进行停槽处理,当电解槽停槽时,电流由进电母线导入阳极立柱母线,在阳极立柱母线上设有短接路线,直接将电流导入该电解槽的阴极母线,再通过阴极母线将电流导入下一台电解槽的阳极立柱母线上……。
电流在上述各导电母线中流通时会产生母线电压降,这个电压降属无用电压降,易造成电能损耗,降低铝电解槽停槽电压也就成为了电解铝企业关注的重点。
关键词:铝电解;槽停;槽电压;生产实践;引言随着电解铝工业的发展,铝电解过程的智能控制和专家控制系统成为研究热点。
电解槽电压是唯一能在线实时测量并反映槽状态的参数,因此,对电解槽电压尽可能快速进行滤波跟踪分析至关重要。
对槽电压信号进行分析应尽可能即时获取电解槽运行的状态信息,这有利于及时预防和处理电解槽的不正常工作状态(如电解槽阳极效应),估计电解质中氧化铝浓度变化,从而为调控进料量提供参考依据,提高电解铝效率和节约能源。
1目前国内低电压运行铝电解槽存在的问题我国电解铝工业发展迅速,技术装备和技术水平有了很大提高。
随着电解铝技术的发展和完善,低压运行技术得到了广泛应用。
近年来,国内许多铝厂推广的低电压运行技术,在工业实践中确实达到了降低电耗的目的。
在实际生产中,电解槽运行的平均电压已降至3.8V,吨铝DC电耗达到约12500kWh/t-al。
然而,在实施低电压操作技术的过程中,仍有相当一部分厂家存在电流效率低、电解槽寿命短、无法保持电解槽最佳热平衡、电压波动普遍等问题。
尤其是保护墙的上侧壁和铝液下方的支腿延伸部较薄,电解质分子比越低问题越严重,节电效果不明显。
一、冷槽处理〔一〕现象:1、电解质水平明显下降,粘度增大,流淌性差,顔色发红,火苗淡蓝紫色,脆弱无力。
2、阳极效应提前发生,交次数频繁,效应电压高,效应灯光明。
3、槽底有大量沉淀,炉膛不规整,炉膛缩小、铝水平上升、极距缩小、槽电压有自动下降现象。
4、冷槽初期,氧化铝壳面厚而硬,后期,电解质酸性化,结壳变厚而完整。
〔二〕处理1、加强保温,作业时速度加快,准时加足保温料,盖板盖好,削减热量损失。
2、适当降低铝水平,削减热损失,但要防止降铝水寻常发生压槽。
3、适当提高槽电压、增加槽内热量收入。
4、拉长加工间隔时间,尽量削减槽内热量的损失,以利于槽底沉淀及结壳的熔化。
5、适当缩短效应间隔,利用效应提高槽温,处理槽底沉淀。
二、热槽处理〔一〕现象:1、电解质颜色发亮,挥发厉害,火苗黄而无力,电解质与碳碴分别不清,从火眼中喷出气体中含有细小的炭黑。
2、电解质水平及分子比上升,铝水平下降。
3、测两水寻常,电解质与铝液之间的界限分不清,铁钉子尖端烧成白热。
4、槽电压有自动增高现象,效应时效应灯暗淡而滞后,且不易熄灭。
〔二〕处理1、由电压表误差所引起极距变化产生的热槽,可调整极距至正常,并降低电解温度。
2、当槽内铝水平低时,可铝量或压铝,也可向槽内添加固体铝。
3、当阳极底掌不平而引起的热槽,可提出此极人工打掉不平位置,装极时可比原位置高,并降低槽温。
4、热槽应避开效应,保证供料、下料正常。
5、电解质过热时,可向槽内添加冰晶石,假设电解质照旧过热,其水平过高,可实行倒换电解质的方法降低槽温。
三、压槽处理〔一〕现象1、火苗黄而脆弱无力,时冒时回,电压摇摆,有时会自动上升。
2、阳极四周的电解质有局部沸腾微弱或不沸腾。
3、电解质温度高而发粘,碳渣分别不清向外冒白条状物,阳极气体排出困难。
〔二〕处理1、消灭压槽,可抬高阳极,使电解质均匀沸腾,假设槽温过高,可按一般热槽处理。
2、假设阳极与沉淀和结壳接触而产生的压槽,首先必需抬起该阳极,使之脱离接触,并处理好该极底掌,电解质低时可向槽内灌电解质,电压稳定时可处理沉淀,规整炉膛,后按一般热槽处理。
电解铝系列降低电解槽停槽压降的解析与实践作者:文胜毅来源:《中国科技纵横》2015年第16期【摘要】通过对电解铝系列电解槽停槽压降构成的分析,使用短接母线前后电阻理论计算对比,以及对停槽压降降低分析,找到主要原因是停槽后过电流的槽周母线路径过长,对过长的过电流槽周母线进行临时短接,实现降低系列停槽短路口压降的分摊,并最终实现企业电能空耗损失的降低。
该方法大大的降低了企业的成本,提高了企业的利润空间,可以复制值得推广。
【关键词】电解槽停槽压降槽周母线临时短接短接母线随着铝价的持续低迷和南方电价的依旧处于高位,南方许多电解铝企业生存困难、举步维艰。
为了企业能在未来的机会中保留一丝希望,在降低总产量减少亏损面的前提下保持整个电解铝生产线的经济运行显得尤为重要,而停掉槽龄过长、生产运行状况不好的电解槽的措施是大多企业采取的当然手段,而穿插停槽导致不易采取保留距离供电整流较近的区域电解槽进行生产,造成正常生产指标中停槽压降分摊值大幅增加,导致吨铝综合电耗的上升亏损增加。
针对此情况采取了对停槽压降的构成进行分析,并通过采取缩短停槽后槽周母线通过电流路径实现了停槽短路口压降的大幅降低,实现了降低系列产量实现减亏而不至于大幅增加吨铝电耗的生产运行目标。
1 可行性分析某企业240KA母线结构构成如图1所示。
该电解槽为大面四端进电,为左右对称结构,总共有阴极炭块18块,阴极钢棒头共A、B面各18组,共36组,分别按A1、A2、……、A18,B1、B2、……、B18表示标示。
立柱母线四根,按第1根、第2根、第3根和第4根标示。
槽底穿槽母线左右对称各2根,共4根,弯折穿槽平衡母线各1根,共2根。
1.1 电解槽正常运行时候电流路径电解槽正常生产时候A1—A7接第1根立柱短路块经出铝端槽周母线、A8出来经过弯折穿槽母线至出铝端槽周母线与B1接到下台槽第一根立柱;A9经平行母线至第二根立柱母线左侧短路块和第1根直穿槽母线同时连接与第二根立柱右侧短路块接第2根穿槽母线同时连接至B2—B9汇合形成的B面槽周母线连下一台槽第二根立柱;另外第三、第四根与第二、第一根一致。
200KA电解槽降负荷期间综合管理措施作者:董鹏任联生费征王云强宋明栋来源:《中国新技术新产品》2012年第08期摘要:铝电解行业是我国重点耗能行业,受制于电力供应缺口,为保障民生用电,铝电解行业周期性降负荷特征明显,本文讨论了在降负荷期间通过运用综合管理手段,力争将电解槽受到的干扰因素降至最低,并实现良好的经济指标。
关键词:200KA电解槽;降负荷;综合管理中图分类号:TF82 文献标识码:A稳定的电力供应是电解铝正常生产的基本条件之一,此条件一旦遭到破坏,对电解铝企业是致命的。
但随着我国经济的长足发展,电力供应紧张局面日趋显现,限电降负荷正演变成电解铝企业的“常规工作”。
限电前期我公司200kA系列电解槽电流已强化至211kA。
受电力紧张影响,2010年底我公司开始限电降负荷。
电流强度降幅最大时降至175kA,最大降幅达到17%,并持续一个多月,给生产系统的正常运行带来不利影响。
此次限电具有时间长、幅度大、周期性强的特点。
公司通过采取各项措施,在各单位的通力合作下,将限电损失对正常生产带来的不利因素降至最低。
本文就限电降负荷期间如何最大限度降低电解铝企业的损失进行探讨,以期对同行有所帮助。
1 准备阶段1.1协调沟通外部供电环境接到限电通知后及时组织专人专职与外围供电部门保持实时沟通,落实限电起始时间及限电幅度,同时了解负荷变化情况,以便根据实际状况及时采取相应措施,确保各项准备工作有序开展。
1.2负荷分配根据限电情况了解负荷供应规律,根据负荷变化的周期性,合理安排附属车间的作业时间,错峰作业,以确保电解车间的供电稳定。
1.3工艺技术条件的调整1.3.1、为减少限电期间电解槽的热损失,在接到限电通知至限电开始,组织对极下铝水进行撤铝作业,撤铝量最小应为单槽一日产量。
铝水平过高槽散热增大,槽温不易保持,且铝水平高易在电流低时进一步促进槽底形成沉淀结壳,甚至导致电解质水平不足,所以在限电初期,铝水平就要及时降低。