金属载体强相互作用
- 格式:ppt
- 大小:1016.50 KB
- 文档页数:13
肉桂醇是香料、药物及其他精细化工产品生产过程中的重要原料和反应中间体,目前工业上生产肉桂醇的方法多局限在均相计量还原法上,但其反应条件苛刻、还原剂用量大、反应后产物分离繁琐、产生大量废弃物,不符合可持续经济发展的要求,而采用多相催化加氢的方法具有反应条件温和、还原剂(氢气)绿色无污染、催化剂易于分离、可循环使用等特点,因此研制经济高效的肉桂醛选择加氢催化剂具有重要的学术意义和经济价值。
【2】599肉桂醇可作为医药原料,常用于心脑血管药物的合成,如脑益嗦等,对病毒引起的肺瘤能有效抑制;临床用于血癌、子宫癌、卵巢肿瘤、食管癌等多种肿瘤。
【8】Chambers A, Jaekson S D, Stirling D,Webb G Selective Hydroge natio n of Cinn amaldehyde over Supported Copper Catalysts[J].J Catal,1997,168(2):301 —314.载体1. Fe离子沉积增加了催化剂有效比表面积,减小了Au颗粒尺寸.[5]K.M. Parida et al. Low temperature CO oxidation over gold supported mesoporous Fe-TiQ. J. Mol. Catal. A319 (2010) 92- 972. 具有大比表面积的载体是金颗粒高度分散的前提,而载体的浸润性决定了金催化剂在焙烧过程中是否会团聚成大的金颗粒,若团聚其催化活性降低。
[6]8983. 载体与纳米金颗粒之间的相互作用强度也是影响催化活性的关键因素。
(几何效应)当金颗粒以半球状附着在载体表面时与载体表面的相互作用较强,由于半球状附着在载体表面上的金的自由能要比球状附着在载体表面上的自由能大,所以半球状的金颗粒更容易吸附反应介质以降低其自由能,因此,其催化活性一般较高;而以球状附着在载体表面时金颗粒难吸附反应介质,使得其催化活性较低。
肉桂醇是香料、药物及其他精细化工产品生产过程中的重要原料和反应中间体,目前工业上生产肉桂醇的方法多局限在均相计量还原法上,但其反应条件苛刻、还原剂用量大、反应后产物分离繁琐、产生大量废弃物, 不符合可持续经济发展的要求, 而采用多相催化加氢的方法具有反应条件温和、还原剂(氢气)绿色无污染、催化剂易于分离、可循环使用等特点,因此研制经济高效的肉桂醛选择加氢催化剂具有重要的学术意义和经济价值。
【2】599肉桂醇可作为医药原料,常用于心脑血管药物的合成, 如脑益嗦等, 对病毒引起的肺瘤能有效抑制; 临床用于血癌、子宫癌、卵巢肿瘤、食管癌等多种肿瘤。
【8】Chambers A, Jaekson S D, Stirling D,Webb G. Selective Hydrogenation of Cinnamaldehyde over Supported Copper Catalysts[J].J Catal,1997,168(2):301一314.载体载体本身的比表面积、浸润性及载体与纳米金粒子间的相互作用1.Fe离子沉积增加了催化剂有效比表面积, 减小了Au颗粒尺寸. [5]K.M. Parida et al. Low temperature CO oxidation over gold supported mesoporous Fe-TiO2. J. Mol. Catal. A319 (2010) 92–972.具有大比表面积的载体是金颗粒高度分散的前提,而载体的浸润性决定了金催化剂在焙烧过程中是否会团聚成大的金颗粒, 若团聚其催化活性降低。
[6]8983.载体与纳米金颗粒之间的相互作用强度也是影响催化活性的关键因素。
(几何效应)当金颗粒以半球状附着在载体表面时与载体表面的相互作用较强,由于半球状附着在载体表面上的金的自由能要比球状附着在载体表面上的自由能大, 所以半球状的金颗粒更容易吸附反应介质以降低其自由能, 因此, 其催化活性一般较高;而以球状附着在载体表面时金颗粒难吸附反应介质,使得其催化活性较低。
贵金属催化剂中的金属-载体强相互作用2016-05-15 12:58来源:内江洛伯尔材料科技有限公司作者:研发部金属载体的相互作用示意图1978年,Tauster等发现过渡金属钌、铑、钯、锇、铱、铂负载于二氧化钛上经高温(773K以上)还原后,CO和H2的化学吸附几乎近于零;同一催化剂,低温(473K)还原却对CO和H2有正常的化学吸附能力。
电子显微镜和X-射线衍射结果均证明,高温还原的催化剂化学吸附能力的丧失不是由于金属的熔结。
Tauster等将这一不寻常现象归于贵金属与载体间的化学相互作用,并定义为“金属一载体强相互作用”(StrongMetal-Support Interaction, SMSI)。
后来还发现,这种金属一载体强相互作用不仅具有抑制H2和CO化学吸附能力的特征,而且对这些催化剂的反应活性、选择性有极大影响,如可使CO/H2反应活性比常规载体(SiO2/Al2O3等)担载的催化荆增高1-2个数量级。
选择性向C2以上烷烃方向移动。
对烷烃脱氢和乙烷氢解反应活性却比常规催化剂低几个数量级。
另外,这些处于SMSI态的催化剂,经氧化处理,然后再低温还原,能够恢复其正常的化学吸附能力。
SMSI的不寻常现象引起各国学术界和工业界催化学者及表面科学研究者的极大兴趣。
1982年,国际催化界在法国里昂召开了关于“催化作用中,金属一载体、金属一添加剂效应”的专题讨论会。
1984年,在西柏林召开的第八届国际催化会议对这一领域的研究也给予高度重视。
到目前为止,人们已经用量化计算、电镜、X光电子能谱、X射线粉末衍射、俄歇电子能谱、同步辐射、电子顺磁共振、程序升温脱附等多种工具对金属-载体强相互作用产生的机理进行了大量研究,但不同于催化剂体系发生强相互作用的机理不同,因此,还没有定论。
在诸多研究中主要是从四个方面来解释这种现象的,金属间成键、特殊的形貌结构、电子效应、载体对金属的包覆。
近年来,越来越多的研究者倾向认为载体对金属的包覆是产生金属-载体强相互用的主要原因,并且同时伴随着金属与载体间电荷转移的重要作用。
负载型催化剂中贵金属与载体的强相互作用学生:彭家喜导师:王树东研究员4/10/2007Seminar Ⅱ目录前言强相互作用的表现发生强相互作用的催化剂举例 强相互作用的表征形成强相互作用可能的机理实验中涉及的现象结论前言对金属-载体相互作用的认识最初来源于对金属-载体界面接触角的研究M. Humenik et al., J. Am. Ceram. Soc., 37 (1954) 18 界面上的行为被看成金属-半导体的接触而按传统的空间-电荷理论处理G. M. Schwab, Surf. Sci., 13 (1969) 198前言“氢溢流”用来解释当掺入η-Al2O3时Pt/SiO2催化剂催化乙烯加氢活性增大J. H. Sinfelt et al., J. Am. Chem. Soc., 85 (1963) 3365 1977-1978年S. J. Tauster等人首先提出金属-载体强相互作用的概念S. J. Tauster et al., J. Am. Chem. Soc. 100 (1978) 170前言所谓金属-载体的强相互作用就是负载于特定载体上的金属催化剂经高温氢还原后,在排除了烧结,包藏和还原不完全等因素后,金属对氢和一氧化碳化学吸附能力大大下降的状态,常简称之为SMSI(Strong-Metal-Support-Interaction)-化学吸附性能4345464346BET 45BET 00.0300.050.88001.191.600.110.020.050.020.010.110.060.640.23Ru CO 吸附/M H 吸附/M CO 吸附/M H 吸附/M 500℃还原200℃还原金属2%(质量)and CO adsorption at 25℃on TiO 2-supported metalsS. J. Tauster et al., J. Am. Chem. Soc., 100 (1) (1978), 170-金属组分形貌学XRD 研究表明:TiO 2在150℃H 2还原后为无定形,经550℃H 2还原后为具有氧缺陷的锐钛矿晶体;当铂存在时550℃H 2还原使TiO 2变成Ti 4O 7TEM 考察结果表明:正常状态的Pt/TiO 2上铂颗粒呈半球状,经600℃H 2还原后,铂呈地堡式的扁平的立方体状,高度不超过几个原子层厚,类似于二维筏状结构;用氧或水蒸气处理后,铂又恢复成半球状三维颗粒Baker et al., J. Catal., 56 (1979) 390-催化性能SMSI体系催化剂对烷烃加氢、脱氢和氢解反应的活性受到抑制P. Meriaudeau et al., 7th I.C.C., 1980 (E2) 1464 SMSI体系催化剂对CO+H2反应的活性、选择性和抗失活性能均有很大改善M. A. Vannice et al., J. Catal. 56, (1979) 236SMSI 的广泛性+-1.1 (NbO 2)+-3.9 (Ti 3O 5)+(微弱)---14.0 (Hf )HfO --18.0 (Y)Y 2O 3--18.1 (Sc)Sc 2O 3SMSI 活性X 1000*金属氧化物1000=log (P H2O /P H2), P H2O 和P H2为1000K 时在氧化物与括号中的物相之间达到平衡时的水和氢的分压具有SMSI 性质的催化剂举例54.189.560.54500.075% Pd/TiO 2(A)52.772.472.655.386.469.521.734.762.62000.075% Pd/TiO 2(R)15.330.250.52000.075%Pd/Al 2O 3Yield %Selectivity %Conversion %Temperature of reduction by H 2(℃)catalystActivity and selectivity of catalysts at 100℃,14 atm, 8.33 ml/g.cat.h and H 2/alkadienes (molar ratio)=1.28Yuanzhi Li et al., Chem. Phy. Lett.,372 (2003) 160具有SMSI 性质的催化剂举例591.640.0131.5773271.510.2694.750.019153.040.8117.05730.82%Pt/TiO 2SelectivityActivity (μmol/s /g.catH/MH2 uptake (μmol /g )T red (K )catalystCrotonaldehyde hydrogenation over Pt/TiO 2and Ni/TiO 2,P croald .=35 Torr, Balance H 2, T RXN =333KAjit Dandekar et al., J. Catal., 183 (1999) 344具有SMSI性质的催化剂表征Yuanzhi Li et al., Chem. Phy. Lett.,372 (2003) 160形成SMSI 可能的机理机理---还原载体向金属颗粒顶端的迁移---包覆HREM image of a Rh/TiO2 catalystreduced at 473K HREM image of a Rh/TiO2 catalyst reduced at 773KS. Bernal et al., J. Chem. Soc., Faraday Trans, 92(1996), 2799形成SMSI 可能的机理HREM image of a Rh/TiO2 catalystreduced at 773K and further re-oxidised at 673KS. Bernal et al., Catal. Today, 77 (2003) 385HREM image of a Rh/TiO2 catalystreduced at 873K形成SMSI可能的机理催化剂上的1H-NMR结果,金根据Rh/TiO2属钝化的起始温度比催化剂产生化学修饰的温度要低,作者的研究结果认为该种催化剂上电子效应和几何修饰协同作用产生SMSI.J. Sanz, et al. J. Am. Chem. Soc. 114 (1992) 6749实验中涉及的现象0.6Pt/TiO2 300C reduction0.0050.010.0150.020.0250.0350607060.56%1.87nm30405060704.68nm0.6Pt/TiO2 900C reduction-0.00500.0050.010.0150.020.0250.030.0350102030405060702.21%51.20nm催化剂对H 2的吸附结论可还原氧化物载体(TiO2、CeO2、Nb2O5、V 2O3)担载的贵金属催化剂在一定还原条件下可以形成SMSI状态;并且这种状态是可逆的.不同载体催化剂形成SMSI状态的机理不同:La 2O3---溶入载体的金属逐渐析出并聚集;SiO 2---Pt与Si形成合金或硅化铂TiO2、CeO2---被还原的载体逐渐包覆金属颗粒。
工业催化原理知识要点金属催化剂及其催化作用1、金属催化剂的应用及其特性1 )金属催化剂的应用金属催化剂:指催化剂的活性组分是纯金属或者合金纯金属催化剂:指活性组分只由一种金属原子组成,这种催化剂可单独使用,也可负载在载体上合金催化剂:指活性组分由两种或者两种以上金属原子组成2 )金属催化剂的特性常用的金属催化剂的元素是 d 区元素,即过渡元素( ⅠB、ⅥB、ⅦB、Ⅷ族元素)金属催化剂可提供的各种各样的高密度吸附反应中心2、金属催化剂的化学吸附1 )金属的电子组态与气体吸附能力间的关系( 1 )金属催化剂化学吸附能力取决于金属温和体份子的化学性质,结构及吸附条件( 2 )具有未结合 d 电子的金属催化剂容易产生化学吸附( 3 )价键理论:不同过渡金属元素的未结合 d 电子数不同,他们产生化学吸附的能力不同,其催化性能也不同( 4 )配位场理论:金属表面原子核体相原子不同,裸露的表面原子与周围配位的原子数比体相中少,表面原子处于配位价键不饱和状态,他可以利用配位不饱和的杂化轨道与被吸附份子产生化学吸附。
( 5 )吸附条件对进水催化剂的吸附的影响:低温有利于物理吸附,高温有利于化学吸附高压有利于物理吸附,也有利于化学吸附2 )金属催化剂的化学吸附与催化性能的关系( 1 )金属催化剂的电子逸出功(脱出功)定义:将电子从金属催化剂汇中移到外界(通常是真空环境中)所需做的最小功,或者说电子脱离金属表面所需要的最低能量符号:Φ,在金属能带图中表现为最高空能级与能带中最高填充电子能级的能量差意义:其大小代表金属失去电子的难易程度或者说电子脱离金属表面的难易( 2 )反应物份子的电离势定义:指反应物份子将电子从反应物中移到外界所需的最小功,用 I 表示。
意义:其大小代表反应物份子失去电子的难易程度。
电离能:激发时所需的最小能量( 3 )化学吸附键和吸附状态①当ΦI时,电子将从反应物份子向金属催化剂表面专业,反应物分子变成吸附在金属催化剂表面上的正离子。
金属载体强相互作用电催化
金属载体强相互作用(Strong Metal-Support Interactions,SMSI)是一种重要的电催化现象。
在这种相互作用中,金属负载于可还原的金属氧化物载体(如TiO2),在高温下还原时,载体被还原(如TiC),将部分电子传递给金属(如使Pt的非占有电子轨道被充满),导致降低金属(主要是Pt、'd'、Fth等贵金属)对H2的化学吸附和反应能力。
这种载体对金属相互作用所作的电荷修饰作用,使金属粒子在载体表面的形貌发生较大变化(如R成为六角形的单原子层筏结构),诱发特有的催化活性和化学吸附性能。
环境科学与工程学院盛闻超团队在《自然·通讯》上发表了碱性氢气氧化反应非贵金属电催化剂稳定性新突破的研究论文。
他们发现,Ni基非贵金属和TiO2载体之间也存在金属载体相互作用(MSI),这种相互作用显著提高了碱性氢气氧化反应(HOR)的稳定性。
例如,Ni2W/TiO2在 V仍然具有HOR活性,且极限电流密度只有轻微衰减,在 V过电位下同样具有较好的电化学稳定性。
以上内容仅供参考,建议查阅关于金属载体强相互作用的文献资料,获取更全面准确的信息。