实验一 线性网络基本定理的研究
- 格式:doc
- 大小:412.50 KB
- 文档页数:8
成都信息工程大学工程实践中心实验总结报告电路与电子技术基础课程实验总结报告实验方式:线上实验名称实验一线性网络基本定理的研究指导教师赵丽娜成绩姓名代震班级数媒181 学号2018062078四、实验电路与数据记录4.1 实验电路运行结果图:4.2 实验数据记录4.2.1 基尔霍夫定律的研究电流测量:4.2.2 叠加原理的研究表1.1 基尔霍夫定律、叠加原理数据记录表U R1/V U R2/V U RL/V U S1、U S2共同作用-3.63 -0.64 2.44 U S1单独作用-4.86 1.21 1.21U S2单独作用 1.23 -1.85 1.23 U S1、U S2共同作用I1= -0.60 mA I2= -0.21 mA I L= 0.81 mA4.2.3 戴维南定理的研究①开路电压U OC= 4.07 V,短路电流I SC= 2.04 mA。
②等效电阻R o = 1.9951 KΩ。
4.2.4 测定原网络的外特性表1.2 原网络外特性数据记录表R L/Ω∞3K 2K 1K 原网络U/V 4.07 2.44 2.04 1.36 戴维南等效电路U/V 4.07 2.44 2.04 1.36对于电路中的左侧网孔,按照标出的绕行方向,根据表格中各元件的吸收或放出的电压,-3.63 -0.64得出关系:Us1-Ur1+Ur2+Us2= -6-(-3.63)+(-0.64)+3= -0.01这个误差在误差范围之内,可以用来验证KVL定律:在集总参数电路中,任一时刻,沿任一回路所有支路电压的代数和恒等于零。
∑u=05.2 叠加原理的验证:(提示:从表1.1中共同作用数据与单独作用数据关系来看,如何验证叠加原理?)由表中数据可知:-3.63 = -4.86+1.23-0.64 = 1.21+(-1.85)故:Us1、Us2共同作用导致的电压Ur1和Ur2等于仅有Us1作用时以及仅有Us2作用时的各对应电压值的代数和,验证了叠加原理。
电路基本定理研究实验报告电路基本定理研究实验报告一、实验目的本实验旨在通过实际操作,深入理解和掌握电路基本定理,包括基尔霍夫定律、欧姆定律、戴维南定理和诺顿定理。
通过实验,期望学生能将理论知识应用于实际电路中,提高实践能力和理论水平。
二、实验原理1.基尔霍夫定律:基尔霍夫定律是电路理论中最基本的定律之一,它包括两个部分,即节点电流定律和回路电压定律。
节点电流定律指出,在任意一个节点上,流入的电流总和等于流出的电流总和;回路电压定律指出,在任意一个闭合回路中,电势升高的总和等于电势降低的总和。
2.欧姆定律:欧姆定律是电路中有关电阻、电流和电压的基本定律。
它指出,在一个线性电阻器件中,电压与电流成正比,电阻保持恒定。
3.戴维南定理:戴维南定理又称为等效电源定理,它可以将一个含源电路等效为一个电压源和一个电阻串联的形式。
该定理实质上是将有源二端网络等效为一个实际电源。
4.诺顿定理:诺顿定理是戴维南定理的反定理,它可以将一个含源电路等效为一个电流源和电阻并联的形式。
该定理也是将有源二端网络等效为一个实际电源。
三、实验步骤1.准备实验器材:电源、电阻器、电感器、电容器、开关、导线等。
2.搭建实验电路:根据实验要求,设计并搭建实际电路。
3.测量数据:使用万用表等测量仪器,测量电路中的电流、电压、电阻等参数。
4.分析数据:根据测量数据,分析电路的性能和特点,验证电路基本定理的正确性。
5.整理实验结果:整理实验数据,撰写实验报告。
四、实验结果及分析实验一:基尔霍夫定律验证在实验中,我们搭建了一个简单的电路,包含一个电源、一个电阻和一个电流表。
通过测量流入和流出的电流,验证了节点电流定律。
同时,我们还搭建了一个闭合回路,包含一个电源、一个电阻和一个电压表,验证了回路电压定律。
结果表明,实验数据与理论预测相符,证明基尔霍夫定律的正确性。
实验二:欧姆定律验证在实验中,我们选取了三个不同阻值的电阻器,分别测量了它们两端的电压和流过的电流。
一、实验名称:电路基本定律及定理的验证 二、实验目的:1、 通过实验验证并加深对基尔霍夫定律、叠加原理及其适用范围的理解;2、 用实验验证并加深对戴维南定理与诺顿定理的理解;3、 掌握电压源与电流源相互转换的条件和方法;4、 灵活运用等效电源定理来简化复杂线性电路的分析。
三、实验原理基尔霍夫定律:(1)基尔霍夫电流定律: 在任一时刻,流入到电路任一节点的电流的代数和为零。
5个电流的参考方向如图中所示,根据基尔霍夫定律就可写出I 1+I 2+I 3+I 4+I 5=0(2)基尔霍夫电压定律: 在任一时刻,沿闭合回路电压降的代数和总等于零。
把这一定律写成一般形式即为∑U=0。
叠加原理: 几个电压源在某线性网络中共同作用时,也可以是几个电流源共同作用于线性网络,或电压源和电流源混合共同作用。
它们在电路中任一支路产生的电流或在任意两点间所产生的电压降,等于这些电压源或电流源分别单独作用时,在该部分所产生的电流或电压降的代数和。
戴维南定理:对外电路来说,一个线性有源二端网络可以用一个电压源和一个电阻串联的电路来等效代替。
该电压源的电压等于此有源二端网络的开路电压U oc ,串联电阻等于此有源二端网络除去独立电源后(电压源短接,电流源断开)在其端口处的等效电阻R o ,这个电压源和电阻串联的电路称为戴维南等效电路。
四、实验步骤及任务(1):KCL 及KVL 的验证 实验线路图:NI 1I 2 I 3 I 4I 5KCL 定律示意图A B CDE FI 1 I 3I 2510Ω330Ω 510Ω510Ω 1k ΩU 1=10V_+KCL 及KVL 实验数据记录项目支路电流端点电压节点电流回路电压I 1(mA)I 2(mA) I 3(mA) U AC (V) U CD (V) U DA (V) I 1+ I 2- I 3 U AC +U CD + U DA计算值 7.201 -1.996 5.205 -1.996 -0.659 2.655 0 0 测量值7.201-1.9965.205-1.996-0.65872.655-0.0003(2):叠加原理的验证根据实验预习和实验过程预先用叠加原理计算出表中电压、电流计算值,最后通过电路测量验证。
实验一网络定理一、目的(1)通过实验加深对参考方向、基尔霍夫定理、叠加定理、戴维南定理的理解;(2)初步熟悉、掌握Multisim软件建立电路,辅助分析电路的方法。
二、原理1.基尔霍夫定理基尔霍夫定理是电路中最基本,也是最主要的定理之一,它概括了电路中电流和电压分别应遵循的基本规律。
基尔霍夫定理包括基尔霍夫电流定理和基尔霍夫电压定理。
基尔霍夫电流定理(KCL):任意时刻,流进和流出电路中节点的电流的代数和等于零,即。
基尔霍夫电压定理(KVL):在任何一个闭合回路中,所有的电压降之和等于零,即。
2.叠加定理在线性电路中,任一支路的电流或电压等于电路中每一个独立源单独(令其他独立源为零值)时,在该支路所产生的电流或电压的代数和。
3.戴维南定理对外电路来讲,任何复杂的线性有源一端口网络都可以用一个电压源和一个等效电阻的串联俩等效。
此电压源的电压等于一端口的开路电压U oc,而电阻等于一端口的全部独立电源置零后的输入电阻R o。
实验中往往采用电压表测开路电压U oc,用电流表测端口短路电流I sc,等效电阻R o等于开路电压U oc除以断流电流I sc,即R o=U oc/I sc。
三、内容1.基尔霍夫定理、叠加定理的验证(1)双击Multisim图标,启动Multisim,看到其主窗口如下图所示图1. Multisim主界面(2)按下图创建电路图2.基尔霍夫定理、戴维南定理验证①选择元器件单击元器件库栏的信号源库(Place Source),弹出相应对话框如下图所示,将直流电源DC_POWER、接地GROUND放至电路工作区。
图3. 信号源库单击元器件库栏的基本器件库,选取电阻(Resistor)至电路工作区,如下图所示。
图中电阻的旋转方法为鼠标指向该元器件,然后点击鼠标右键,在弹出的菜单栏上选择Rotate 90° clockwise(顺时针旋转90°)图4. 元器件旋转方法②元器件参数的设置双击一直流电压源图标,在弹出的对话框中,单击Value标签,将标识(Lable)设置为V1,数值(Value)设置为10V。
一、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。
2. 掌握测量有源二端网络等效参数的一般方法。
3. 学习电路分析的基本原理和实验技能。
二、实验原理1. 戴维南定理:任何一个线性含源一端口网络,对外部电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电压等于原一端口的开路电压Uoc,其电阻等于网络中所有独立源置零时的入端等效电阻Req。
2. 诺顿定理:任何一个线性含源一端口网络,对外部电路而言,总可以用一个理想电流源和电阻的并联形式来代替,理想电流源的电流等于原一端口的短路电流Isc,其电阻等于网络中所有独立源置零时的入端等效电阻Req。
三、实验仪器与设备1. 信号发生器2. 万用表3. 电阻箱4. 电流表5. 电压表6. 电路实验板7. 连接线四、实验步骤1. 构建电路:根据实验原理,搭建戴维南等效电路和诺顿等效电路。
2. 测量开路电压Uoc:将万用表设置在电压挡,测量原一端口的开路电压。
3. 测量短路电流Isc:将万用表设置在电流挡,测量原一端口的短路电流。
4. 计算等效电阻Req:根据戴维南定理和诺顿定理,计算等效电阻Req。
5. 测试等效电路:将等效电路接入外部电路,观察并记录电路性能。
五、实验数据与结果1. 开路电压Uoc:测量值1为5V,测量值2为5.2V。
2. 短路电流Isc:测量值1为0.5A,测量值2为0.48A。
3. 等效电阻Req:根据戴维南定理和诺顿定理,计算得到Req为10Ω。
4. 测试等效电路:将等效电路接入外部电路,观察并记录电路性能。
在测试过程中,发现等效电路的性能与原电路基本一致。
六、实验分析与讨论1. 实验结果表明,戴维南定理和诺顿定理在理论上是正确的,可以通过实验验证。
2. 实验过程中,需要注意电路搭建的准确性,以及测量数据的准确性。
3. 实验结果表明,等效电路的性能与原电路基本一致,说明戴维南定理和诺顿定理在实际应用中具有较高的可靠性。
XXXX大学
电工电子实验教学中心
学生实验报告
——学年第学期
实验课程
实验地点
学院
专业
学号
姓名
点;
UR :将2K 电阻接于a ,b 两点之间,用万用表测端电压UR; RL:实测RL 的值,用于计算。
将测量结果记录在表3-1中,用两种方法计算R0,并与理论值进行比较,分析误差原因
图3-1戴维南、诺顿定理的实验电路图
表3-1戴维南等效参数的测量
oc U
SC I
RL U
o R
理论值
sc
oc
I U (
RL
oc
U U -1)RL 测量值
2.叠加定理验证:
按图3-2接线,然后调试两组电源(带载调试)。
图3-2叠加原理电路图
(1)测量1E 、2E 共同作用时各电阻上的电压; (2)测量1E 单独作用时,各电阻上的电压; (3)测量2E 单独作用时,各电阻上的电压。
数据记录于表3-2中
注意:一个电源单独作用时,另一个电源需从电路中取出,并将空出的两点用导线连起来。
还要注意电流(或电压)的正、负极性。
(注意:测量时,电压和电流的参考方向与图3-2中参考方向一致),接线时注意两组电源负极要连线。
表3-2 测量数据记录
1R V
2R V
2R V
4R V
5R V
12E E V 1E V 2E V
六、数据及处理 表3-1数据处理过程:。
第三章线性网络的一般分析方法和网络定理线性网络的一般分析方法和网络定理是线性系统理论的基础,对于理解和分析线性网络的性质和行为具有重要意义。
本章将介绍线性系统的一般分析方法和一些常见的网络定理。
线性网络一般分析方法包括模型描述、稳态分析和频域分析等。
模型描述是指将线性系统用数学方程建模,常见的描述方法包括微分方程、差分方程和传递函数等。
稳态分析是指研究系统在长时间作用下的稳定行为,包括零输入响应和零状态响应。
频域分析是指将系统的输入和输出用频域表达,通过频率响应函数分析系统的频率特性。
线性系统的性质和行为可以利用一些重要的网络定理进行分析和描述。
常见的网络定理包括叠加原理、超级位置原理、频域定理和稳定性条件等。
叠加原理是线性系统最基本的性质之一,它表示系统输出可以分解为各个输入分量响应的叠加。
具体地说,如果一个线性系统对于输入信号x1(t)的响应为y1(t),对于输入信号x2(t)的响应为y2(t),那么对于输入信号x(t)=x1(t)+x2(t),系统的响应为y(t)=y1(t)+y2(t)。
超级位置原理是叠加原理的一种推广,它描述了线性系统对于输入信号的定比例缩放响应的性质。
具体地说,如果一个线性系统对于输入信号x(t)的响应为y(t),那么对于输入信号kx(t)(k为常数),系统的响应为ky(t)。
频域定理是指在频域上分析线性系统的性质和行为,常见的频域定理包括傅里叶变换、拉普拉斯变换和z变换等。
通过频域分析,可以得到系统的频率响应函数,从而研究系统的频率特性。
稳定性条件是指线性系统的稳定性的必要和充分条件。
对于连续时间系统,稳定性条件是系统的所有特征根(极点)的实部都小于零;对于离散时间系统,稳定性条件是系统的所有特征根(极点)的模都小于1除了以上介绍的常见网络定理外,还有一些其他重要的网络定理,如包络定理、发散定理、主值定理等,它们在具体的分析和设计问题中具有重要的应用。
总之,线性网络的一般分析方法和网络定理是理解和分析线性系统行为和性质的基础。
成都信息工程大学
工程实践中心实验总结报告
电路与电子技术基础课程实验总结报告实验方式:线上
实验名称实验一线性网络基本
定理的研究
指导教师赵丽娜成绩
姓名代震班级数媒181 学号2018062078
四、实验电路与数据记录
4.1 实验电路运行结果图:
4.2 实验数据记录
4.2.1 基尔霍夫定律的研究
电流测量:
4.2.2 叠加原理的研究
表1.1 基尔霍夫定律、叠加原理数据记录表
U R1/V U R2/V U RL/V
U S1、U S2共同作用-3.63 -0.64 2.44 U S1单独作用-4.86 1.21 1.21
U S2单独作用 1.23 -1.85 1.23
U S1、U S2共同作用I1= -0.60 mA I2= -0.21 mA I L= 0.81 mA
4.2.3 戴维南定理的研究
①开路电压U OC= 4.07 V,短路电流I SC= 2.04 mA。
②等效电阻R o = 1.9951 KΩ。
4.2.4 测定原网络的外特性
表1.2 原网络外特性数据记录表
R L/Ω∞3K 2K 1K 原网络U/V 4.07 2.44 2.04 1.36 戴维南等效电路U/V 4.07 2.44 2.04 1.36
对于电路中的左侧网孔,按照标出的绕行方向,根据表格中各元件的吸收或放出的电压,
-3.63 -0.64
得出关系:Us1-Ur1+Ur2+Us2
= -6-(-3.63)+(-0.64)+3
= -0.01
这个误差在误差范围之内,可以用来验证KVL定律:在集总参数电路中,任一时刻,沿任一回路所有支路电压的代数和恒等于零。
∑u=0
5.2 叠加原理的验证:
(提示:从表1.1中共同作用数据与单独作用数据关系来看,如何验证叠加原理?)
由表中数据可知:
-3.63 = -4.86+1.23
-0.64 = 1.21+(-1.85)
故:Us1、Us2共同作用导致的电压Ur1和Ur2等于仅有Us1作用时以及仅有Us2作用时的各对应电压值的代数和,验证了叠加原理。
5.3 戴维南定理的验证:
(提示:根据表1.2每一列两个数据的关系,说明戴维南定理是成立的。
)
由表1.2可知,每一列测量的两个数据全都相等,表示用一个理想电压源与电阻的串联支路来
代替的电路效果与原电路等效,从而验证了戴维南定理。
5.4最大功率传输定理的验证:
(提示:计算出表1.3第三行各功率值,并通过计算出的功率说明最大传输定理是成立的。
)
六、思考题
6.1 如何使用万用表对市电(220V AC)、碱性AA(5号)电池电压、电阻值、电容值等进行测量?
市电(220V AC):
按图中方式连接电路,
点击运行后,按AC按钮,和启动power按钮,即可在屏幕显示电压。
注意不能把人体皮肤电
阻并联在电路中。
碱性AA(5号)电池的电压测量:
点击运行后,按DC按钮,和启动power按钮,即可在屏幕显示电压。
注意不能把人体皮肤电阻并联在电路中。
6.2 在实验中进行电压测量时,电压表红黑表笔与参考方向正负极的关系是什么?记录的测量值是否需要保留正负号,为什么?
答:
1.对于直流电压的测量要注意区分正负极,
如果红表笔接参考方向的正极,黑表笔接参考方向的负极,那么测量的值为正数,反之则为负数。
对于交流电压的测量,不区分红黑表笔和极性。
2.记录的测量值需要保留正负号。
因为在实际问题中的很多时候,电路往往很复杂,很难通过电路知道电压或电流的真实方向,
难以事先判断电流的真实方向。
为了解决这样的困难,我们引用“参考方向”这一概念,所以我们需要对记录的测量值保留正负号
6.3 进行叠加定理实验时,不作用的电压源应如何处理?为什么?
答:不作用的电压源应以短路线代替。
因为应用叠加定理时,不作用的电源需要“置零”。
电压置零之后,两端的电势差就为0(就是等电势),任何电势相等的两点都可以用一根导线相连。
6.4 如网络中含有受控源,戴维南定理是否成立? 如网络中含有非线性元件呢?
答:
网络中含有受控源,戴维南定百理仍然成立。
但网络中含有非线性元件则不成立。
七、心得体会
(实验过程中遇到了哪些问题,怎么查找原因,怎么分析问题和解决问题,有什么知识、能力、思维或思想方面的收获。
)
在实验过程中,在各电路重新连接完成后,点击按钮运行,然后由于心急,快速地按了
停止按钮,却发现万用表还未发生变化,导致数据出错。
因为一开始就感觉这里会出现问题,所以特别留意了下,所以最终未造成大碍。
在本次实验中,在能力上,学会了用Multisim软件创建实验文件,并将其放入了好认的路径,知道了怎么在工作区内放入元器件,熟悉了电压源,电阻,万用表的名称和放入方法,并学会了连接导线,按Delete删除导线,按Ctrl+R旋转元器件,按alt+x翻转元器件等操作,同时知道接地点和电路节点的重要性。
在知识上,对于基尔霍夫电流和电压定律、叠加原理、戴维南定理,都有了更清楚的了解和掌握,加深了对他们的记忆。
在思维上,对于不懂的定理,多查阅资料,查阅术语,再用自己的语言表达出来,就能对定理更加了解了。
在思想上,懂得了实践是检验真理的唯一标准,很多知识也需要实践才更容易学习掌握,。