解二元一次方程组复习课
- 格式:ppt
- 大小:431.50 KB
- 文档页数:15
二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。
《第八章二元一次方程组》复习教案【教学设计思想】本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
【教学目标】知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
【教学方法】:复习法,练习法。
【重、难点】重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
【教学过程设计】(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18找学生写出它的五个解。
2.分别用代入消元法、加减消元法求出它的解来。
答案:3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。
解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。
设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。
方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。
找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
二元一次方程组及解法复习课教案教学目标知识与技能掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。
过程与方法能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组。
情感、态度与价值观培养学生分析问题,解决问题的能力,体验学习数学的快乐。
重点:掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。
难点:选择合适的方法解方程组;并能把相应问题转化为解方程组。
教学手段多媒体,小组评比。
教学过程(一)导入新课创设情境引出问题六一儿童节要到了,小强在儿童节前用12.4元钱,恰好买了单价为0.8元和1.2元的两种贺卡。
试问:两种贺卡各能买几张?(二元一次方程组解答)设计意图:调动学生学习的积极性,体会数学来源于生活。
(二)知识梳理以小组为单位讨论二元一次方程组已经学了哪些知识?1、什么是二元一次方程?什么是二元一次方程的解?2、什么是二元一次方程组?什么是二元一次方程组的解?3、解二元一次方程组的基本思想是什么?消元的方法有哪些?设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础。
(三)基础训练例1. m , n 为何值时,是同类项。
问题:解二元一次方程组的基本思路是什么?用代入法和加减法解方程的主要步骤是什么?教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。
设计意图:基础知识达标训练。
(四)能力提升1、已知(3m+2n-16)2与|3m-n-1|互为相反数求:m+n的值2、已知方程组ax+5y=15 ①4x-by=-2 ②由于甲看错了字母a得到方程组的解为 x=-3 y=-1;乙看错了字母b得到方程组的为 x=5 y=4,若按正确的a、b计算,求原方程组的正确解。
3、已知方程组和有相同的解,求a,b的值。
教学手段与方法:毎小组选代表讲解为小组加分,充分调动学生的积极性。
学生讲解不到位的老师补充。
设计意图:对二元一次方程组解法的灵活应用。