2014年辽宁省锦州市中考数学试题(含答案)
- 格式:doc
- 大小:1.11 MB
- 文档页数:18
辽宁省盘锦市第一完全中学2012届九年级第二次中考模拟数学试题答题时间 120分钟 试卷满分150一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题卡相应位置上) 1.-2的绝对值是A .-2B .- 12C .2D .122. 下面四个几何体中,俯视图为四边形的是3. 温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是A .3.6×107B .3.6×106C .36×106D .0.36×108 4. 如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED′等于A .70°B .65°C .50°D .25°(第7题图)5.某市5月下旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是A .平均数为30B .众数为29C .中位数为31D .极差为56.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是7.如图,过O ⊙上一点C 作O ⊙的切线,交O ⊙直径AB 的延长线于点D. 若∠D=40°,则∠A 的度数A .20°B .25C .30° D.40°EDBC′FCD ′A(第4题图)A B C DB . 3 1 0 2 4 5 D .3 1 0 24 5A . 3 1 0 2 4 5 C . 3 1 0 2 4 58.如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c>1;(3)2a -b<0;(4)a+b+c<0。
2014年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2014•锦州)﹣1.5的绝对值是()A. 0 B.﹣1.5 C. 1.5 D.2.(3分)(2014•锦州)如图,在一水平面上摆放两个几何体,它的主视图是()A. B.C. D.3.(3分)(2014•锦州)下列计算正确的是()A. 3x+3y=6xy B. a2•a3=a6 C. b6÷b3=b2 D.(m2)3=m64.(3分)(2014•锦州)已知a>b>0,下列结论错误的是()A. a+m>b+m B. C.﹣2a>﹣2b D.5.(3分)(2014•锦州)如图,直线a∥b,射线DC与直线a相交于点C,过点D 作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115° B.125° C.155° D.165°6.(3分)(2014•锦州)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A. 320,210,230 B. 320,210,210C. 206,210,210 D. 206,210,2307.(3分)(2014•锦州)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5 C.m≥0 D. m>48.(3分)(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(3分)(2014•锦州)分解因式2x2﹣4x+2的最终结果是.10.(3分)(2014•锦州)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为米.11.(3分)(2014•锦州)计算:tan45°﹣(﹣1)0= .12.(3分)(2014•锦州)方程﹣=1的解是.13.(3分)(2014•锦州)如图,在一张正方形纸片上剪下一个半径为r的圆形和一个半径为R的扇形,使之恰好围成图中所示的圆锥,则R与r之间的关系是.14.(3分)(2014•锦州)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是.15.(3分)(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.16.(3分)(2014•锦州)如图,点B1在反比例函数y=(x>0)的图象上,过点B1分别作x轴和y轴的垂线,垂足为C1和A,点C1的坐标为(1,0)取x轴上一点C2(,0),过点C2分别作x轴的垂线交反比例函数图象于点B2,过B2作线段B1C1的垂线交B1C1于点A1,依次在x轴上取点C3(2,0),C4(,0)…按此规律作矩形,则第n(n≥2,n为整数)个矩形)An﹣1Cn﹣1CnBn的面积为.三、解答题(本大题共10小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(2014•锦州)已知=,求式子(﹣)÷的值.18.(8分)(2014•锦州)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.19.(8分)(2014•锦州)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图.等级频数频率★60 0.06★★80 0.08★★★160 0.16★★★★300 0.30★★★★★400 0.40(1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5%,估计全市约有多少名中学生的幸福指数能达到五★级?20.(10分)(2014•锦州)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?21.(10分)(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12 AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.22.(10分)(2014•锦州)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)23.(10分)(2014•锦州)如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.24.(12分)(2014•锦州)在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分.(1)根据图象回答: 调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是2<x<6 ; 说明线段AB的实际意义是从第二小时到第六小时甲的工作效率是3件.(2)求出调试过程中,当6≤x≤8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.25.(12分)(2014•锦州)(1)已知正方形ABCD中,对角线AC与BD相交于点O,如图① ,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想.(2)如图② ,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想.(3)如图③ ,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,∠EAF=∠DAC=α,连接DE、CF,请求出的值(用α的三角函数表示).26.(14分)(2014•锦州)如图,平行四边形ABCD在平面直角坐标系中,点A 的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n经过点A和C.(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.(3)在y轴上取一点D,坐标是(0,72),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.2014年辽宁省锦州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2014•锦州)﹣1.5的绝对值是()A. 0 B.﹣1.5 C. 1.5 D.考点:绝对值分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣1.5|=1.5.故选:C.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014•锦州)如图,在一水平面上摆放两个几何体,它的主视图是()A. B.C. D.考点:简单组合体的三视图..分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得左边是一个竖着的长方形,右边是一个横着的长方形,故选:B.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(2014•锦州)下列计算正确的是()A. 3x+3y=6xy B. a2•a3=a6 C. b6÷b3=b2 D.(m2)3=m6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:A、3x与3y不是同类项,不能合并,故A选项错误;B、a2•a3=a5,故B选项错误;C、b6÷b3=b3,故C选项错误;D、(m2)3=m6,故D选项正确.故选:D.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.4.(3分)(2014•锦州)已知a>b>0,下列结论错误的是()A. a+m>b+m B. C.﹣2a>﹣2b D.考点:不等式的性质..分析:运用不等式的基本性质判定即可.解答:解:a>b>0,A、a+m>b+m,故A选项正确;B、,故B选项正确;C、﹣2a<﹣2b,故C选项错误;D、,故D选项正确.故选:C.点评:本题主要考查了不等式的基本性质,熟记不等式的基本性质是解题的关键.5.(3分)(2014•锦州)如图,直线a∥b,射线DC与直线a相交于点C,过点D 作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115° B.125° C.155° D.165°考点:平行线的性质..分析:如图,过点D作c∥a.由平行线的性质进行解题.解答:解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.点评:本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.6.(3分)(2014•锦州)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A. 320,210,230 B. 320,210,210C. 206,210,210 D. 206,210,230考点:加权平均数;中位数;众数..分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.解答:解:平均数是:(1800+510+250×3+210×5+150×3+120×2)÷15=4800÷15=320(件);210出现了5次最多,所以众数是210;表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件).故选B.点评:此题主要考查了一组数据平均数的求法,以及众数与中位数的求法,又结合了实际问题,此题比较典型.7.(3分)(2014•锦州)二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5 C.m≥0 D. m>4考点:抛物线与x轴的交点..分析:根据题意利用图象直接得出m的取值范围即可.解答:解:一元二次方程ax2+bx+c=m有实数根,可以理解为y=ax2+bx+c和y=m有交点,可见,m≥﹣2,故选:A.点评:此题主要考查了利用图象观察方程的解,正确利用数形结合得出是解题关键.8.(3分)(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组..分析:由弟弟的年龄是x岁,哥哥的年龄是y岁,根据“哥哥与弟弟的年龄和是18岁,”,哥哥与弟弟的年龄差不变得出18﹣y=y﹣x,列出方程组即可.解答:解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.点评:此题考查由实际问题列方程组,注意找出题目蕴含的数量关系解决问题.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(3分)(2014•锦州)分解因式2x2﹣4x+2的最终结果是2(x﹣1)2.考点:提公因式法与公式法的综合运用..分析:先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.故答案为:2(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(3分)(2014•锦州)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为6×10﹣5米.考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:60000纳米=60000×10﹣9米=0.000 06米=6×10﹣5米;故答案为:6×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(3分)(2014•锦州)计算:tan45°﹣(﹣1)0= .考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项利用零指数幂法则计算即可得到结果.解答:解:原式=1﹣=.故答案为:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.(3分)(2014•锦州)方程﹣=1的解是x=0 .考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:﹣1﹣3﹣x=x﹣4,移项合并得:2x=0,解得:x=0,经检验x=0是分式方程的解,故答案为:x=0点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(3分)(2014•锦州)如图,在一张正方形纸片上剪下一个半径为r 的圆形和一个半径为R 的扇形,使之恰好围成图中所示的圆锥,则R 与r 之间的关系是 R=4r .考点: 圆锥的计算..分析: 利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算. 解答: 解:扇形的弧长是:=,圆的半径为r ,则底面圆的周长是2πr,圆锥的底面周长等于侧面展开图的扇形弧长则得到:=2πr,∴2R=2r , 即:R=4r ,r 与R 之间的关系是R=4r . 故答案为:R=4r .点评: 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.14.(3分)(2014•锦州)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是.考点:几何概率分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解答:解:由题意可得,投掷在阴影区域的概率是:=.故答案为:.点评:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.15.(3分)(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.考点:轴对称-最短路线问题;菱形的性质..分析:作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE 的最小值,再由轴对称的性质可知DE=DE′=1,故可得出△AE′D是直角三角形,由菱形的性质可知∠PDE′=∠ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长.解答:解:如图所示,作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE 的最小值,∵菱形ABCD的边长为2,E是AD边中点,∴DE=DE′=AD=1,∴△AE′D是直角三角形,∵∠ABC=60°,∴∠PDE′=∠ADC=30°,∴PE′=DE′•tan30°=,∴PC===.故答案为:.点评:本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键.16.(3分)(2014•锦州)如图,点B1在反比例函数y=(x>0)的图象上,过点B1分别作x轴和y轴的垂线,垂足为C1和A,点C1的坐标为(1,0)取x轴上一点C2(,0),过点C2分别作x轴的垂线交反比例函数图象于点B2,过B2作线段B1C1的垂线交B1C1于点A1,依次在x轴上取点C3(2,0),C4(,0)…按此规律作矩形,则第n(n≥2,n为整数)个矩形)An﹣1Cn﹣1CnBn的面积为.考点:反比例函数系数k的几何意义.专题:规律型.分析:根据反比例函数的比例系数k的几何意义得到第1个矩形的面积=2,第2个矩形的面积=×(﹣1)=,第3个矩形的面积=(2﹣)×1=,…于是得到第n个矩形的面积=×=,由此得出答案即可.解答:解:第1个矩形的面积=2,第2个矩形的面积=×(﹣1)=,第3个矩形的面积=(2﹣)×1=,…第n个矩形的面积=×=.故答案为:.点评:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(本大题共10小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(8分)(2014•锦州)已知=,求式子(﹣)÷的值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再根据=得出=,代入原式进行计算即可.解答:解:原式=•===,∵=,∴=,∴原式=﹣2×=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.(8分)(2014•锦州)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.考点:作图—复杂作图;全等三角形的判定;角平分线的性质..分析:(1)作∠ABC的平分线即可;(2)利用点A关于BC的对称点E画出△EBC.解答:解:(1)如图,作∠ABC的平分线,(2)如图,点评:本题主要考查了作图﹣复杂作图,角平分线的性质及全等三角形的判定,解题的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.19.(8分)(2014•锦州)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图.等级频数频率★60 0.06★★80 0.08★★★160 0.16★★★★300 0.30★★★★★400 0.40(1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5%,估计全市约有多少名中学生的幸福指数能达到五★级?考点:条形统计图;用样本估计总体;频数(率)分布表..分析:(1)根据统计图中,4颗星的人数是300人,占0.3;根据频数与频率的关系,可知共随机调查的总人数,根据总人数即可求出别的数据.(2)根据(1)中求出的数值,据此可补全条形图;(3)先求出全市中学生的总人数,再除以对应的幸福指数为5颗星的百分比.解答:解:(1)对中学生的幸福指数进行调查的人数:300÷0.30=1000(人)一颗星的频率为:60÷1000=0.06,二颗星的频率为:80÷1000=0.08,三颗星的频数为:1000×0.16=160,四颗星的频数为:300,五颗星的频数为:1000﹣60﹣80﹣160﹣300=400,五颗星的频率为:400÷1000=0.40.故答案为:0.06,0.08,160,300,400,0.40.(2)如图,根据(1)中求出的数值,据此可补全条形图;(3)1000÷5%×0.4=8000(名)答:估计全市约有8000名中学生的幸福指数能达到五★级.点评:本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.20.(10分)(2014•锦州)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出乘积为负数的情况数,即可求出所求的概率;(2)找出乘积为无理数的情况数,即可求出一等奖的概率.解答:解:列表如下:1.5 ﹣3 ﹣0 0 0 0 01 1.5 ﹣3 ﹣﹣1 ﹣1.5 3 ﹣所有等可能的情况有12种,(1)乘积结果为负数的情况有4种,则P(乘积结果为负数)==;(2)乘积是无理数的情况有2种,则P(乘积为无理数)==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2014•锦州)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12 AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.考点:直角三角形斜边上的中线;等腰三角形的判定与性质;等腰直角三角形..分析:(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=AC;(2)判断出△AEC是等腰直角三角形,根据等腰直角三角形的性质可得EF垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AM=CM,然后求出CD=AM+DM,再等量代换即可得解.解答:(1)证明:∵C D=CB,点E为BD的中点,∴CE⊥BD,∵点F为AC的中点,∴EF=12 AC;(2)解:∵∠BAC=45°,CE⊥BD,∴△AEC是等腰直角三角形,∵点F为AC的中点,∴EF垂直平分AC,∴AM=CM,∵CD=CM+DM=AM+CM,CD=CB,∴BC=AM+DM.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质等腰直角三角形的判定与性质,难点在于(2)判断出EF垂直平分AC.22.(10分)(2014•锦州)如图,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79,sin22°≈0.37,cos22°≈0.93,sin37°≈0.60,cos37°≈0.80)考点:解直角三角形的应用-方向角问题..分析:延长BC交AN于点D,则BC⊥AN于D.先解Rt△ACD,求出CD=AC=10,AD=CD=10,再解Rt△ABD,得到∠B=22°,AB=≈46.81,BD=AB•cos∠B≈43.53,则BC=BD﹣CD≈33.53,然后根据时间=路程÷速度即可求出救生船到达B处大约需要的时间.解答:解:如图,延长BC交AN于点D,则BC⊥AN于D.在Rt△ACD中,∵∠ADC=90°,∠DAC=30°,∴CD=AC=10,AD=CD=10.在Rt△ABD中,∵∠ADB=90°,∠DAB=68°,∴∠B=22°,∴AB=≈≈46.81,BD=AB•cos∠B≈46.81×0.93=43.53,∴BC=BD﹣CD≈43.53﹣10=33.53,∴救生船到达B处大约需要:33.53÷20≈1.7(小时).答:救生船到达B处大约需要1.7小时.点评:本题考查了解直角三角形的应用﹣方向角问题,准确作出辅助线构造直角三角形,进而求出BC的长度是解题的关键.23.(10分)(2014•锦州)如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.考点:切线的判定..分析:(1)连接OA,由OA=OB,GA=GE得出∠ABO=∠BAO,∠GEA=∠GAE;再由EF⊥BC,得出∠BFE=90°,进一步由∠ABO+∠BEF=90°,∠BEF=∠GEA,最后得出∠GAO=90°求得答案;(2)BC为直径得出∠BAC=90°,利用勾股定理得出BC=10,由△BEF∽△BCA,求得EF、BF的长,进一步在△OEF中利用勾股定理得出OE的长即可.解答:(1)证明:如图,连接OA,∵OA=OB,GA=GE∴∠ABO=∠BAO,∠GEA=∠GAE∵EF⊥BC,∴∠BFE=90°,∴∠ABO+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,即AG与⊙O相切.(2)解:∵BC为直径,∴∠BAC=90°,AC=6,AB=8,∴BC=10,∵∠EBF=∠CBA,∠BFE=∠BAC,∴△BEF∽△BCA,∴==∴EF=1.8,BF=2.4,∴0F=0B﹣BF=5﹣2.4=2.6,∴OE==.点评:本题考查了切线的判定:过半径的外端点与半径垂直的直线是圆的切线.也考查了勾股定理、相似三角形的判定与性质以及圆周角定理的推论.24.(12分)(2014•锦州)在机器调试过程中,生产甲、乙两种产品的效率分别为y1、y2(单位:件/时),y1、y2与工作时间x(小时)之间大致满足如图所示的函数关系,y1的图象为折线OABC,y2的图象是过O、B、C三点的抛物线一部分.(1)根据图象回答: 调试过程中,生产乙的效率高于甲的效率的时间x(小时)的取值范围是2<x<6 ; 说明线段AB的实际意义是从第二小时到第六小时甲的工作效率是3件.(2)求出调试过程中,当6≤x≤8(3)时,生产甲种产品的效率y1(件/时)与工作时间x(小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z(件)与生产甲所用时间m(小时)之间的函数关系式.考点:二次函数的应用..分析:(1)根据y2图象在y1上方的部分,可得答案,根据线段AB的工作效率没变,可得答案案;(2)根据待定系数法,可得函数解析式;(3)根据根据甲的最大效率乘以时间,可得甲的产品,根据乙的最大效率乘以乙的时间,可得乙的产品,甲的产品加乙的产品,可得答案.解答:解:(1)y2图象在y1上方的部分,生产乙的效率高于甲的效率的时间x(小时)的取值范围是 2<x<6;线段AB的实际意义是从第二小时到第六小时甲的工作效率是3件;=kx+b,(2)设函数解析式是y1图象过点B(6,3)、C(8,0),解得,=﹣+12;故函数解析式为y1(3)Z=3m+4(6﹣m),即Z=﹣m+24.点评:本题考查了二次函数的应用,利用了函数图象,待定系数法,题目较为简单.25.(12分)(2014•锦州)(1)已知正方形ABCD中,对角线AC与BD相交于点O,如图① ,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想.(2)如图② ,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想.(3)如图③ ,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,。
2014年锦州市中考数学真题(附详细解析),于是得到CM=BN;(2)如图②,连接DC′,根据正方形的性质得AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,于是可判断△ABC和△OBC都是等腰直角三角形,则AC=AB,BC=BO,所以BD=AB;再根据旋转的性质得∠O′BC′=∠OBC=45°,OB=O′B,BC′=BC,则BC′=BO′,所以==,再证明∠1=∠2,则可根据相似的判定定理得到△BDC′∽△BAO′,利用相似比即可得到DC′=AO′;(3)如图③,根据余弦的定义,在Rt△AEF中得到cos∠EAF=;在Rt△DAC中得到cos∠DAC=,由于∠EAF=∠DAC=α,所以==cosα,∠EAD=∠FAC,则可根据相似的判定定理得到△AED∽△AFC,利用相似比即可得到=cosα.解答:解:(1)CM=BN.理由如下:如图①,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∠BOC=90°,∵△BOC绕点O逆时针方向旋转得到△B′OC′,∴∠B′OC′=∠BOC=90°,∴∠B′OC+∠COC′=90°,而∠BOB′+∠B′OC=90°,∴∠B′OB′=∠COC′,在△BON和△COM中,∴△BON≌△COM,∴CM=BN;(2)如图②,连接DC′,∵四边形ABCD为正方形,∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,∴△ABC和△OBC都是等腰直角三角形,∴AC=AB,BC=BO,∴BD=AB,∵△BOC绕点B逆时针方向旋转得到△B′OC′,∴∠O′BC′=∠OBC=45°,OB=O′B,BC′=BC,∴BC′=BO′,∴==,∵∠1+∠3=45°,∠2+∠3=45°,∴∠1=∠2,∴△BDC′∽△BAO′,∴==,∴DC′=AO′;(3)如图③,在Rt△AEF中,cos∠EAF=;在Rt△DAC中,cos∠DAC=,∵∠EAF=∠DAC=α,∴==cosα,∠EAF+∠FAD=∠FAD+∠DAC,即∠EAD=∠FAC,∴△AED∽△AFC,∴==cosα.点评:本题考查了四边形的综合题:熟练掌握矩形和正方形的性质;同时会运用等腰直角三角形的性质和旋转的性质;能灵活利用三角形全等或相似的判定与性质解决线段之间的关系.26.(14分)(2014•锦州)如图,平行四边形ABCD在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n 经过点A和C.(1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.(3)在y轴上取一点D,坐标是(0,),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;平行四边形的性质;锐角三角函数的定义..专题:综合题.分析:(1)由条件可求出点C的坐标,然后用待定系数法就可求出抛物线的解析式.(2)由抛物线的解析式可求出其对称轴,就可求出S2,从而求出S1,就可求出S1与S2的比.(3)由题可知DD′⊥O′C′,且DD′的中点在直线O′C′上.由OC∥O′C′可得DD′⊥OC.过点D作DM⊥CO,交x轴于点M,只需先求出直线DM的解析式,再求出直线DM与抛物线的交点,就得到点D′的坐标,然后求出DD′中点坐标就可求出对应的直线O′A′的解析式.解答:解:(1)如图1,∵四边形ABCO是平行四边形,∴BC=OA,BC∥OA.∵A的坐标为(﹣2,0),点B的坐标为(0,4),∴点C的坐标为(2,4).∵抛物线y=﹣x2+mx+n经过点A和C.∴.解得:.∴抛物线的解析式为y=﹣x2+x+6.(2)如图1,∵抛物线的解析式为y=﹣x2+x+6.∴对称轴x=﹣=,设OC所在直线的解析式为y=ax,∵点C的坐标为(2,4),∴2a=4,即a=2.∴OC所在直线的解析式为y=2x.当x=时,y=1,则点F为(,1).∴S2=EC•EF=×(2﹣)×(4﹣1)=.∴S1=S四边形ABCO﹣S2=2×4﹣=.∴S1:S2=:=23:9.∴S1与S2的比为23:9.(3)过点D作DM⊥CO,交x轴于点M,如图2,∵点C的坐标为(2,4),∴tan∠BOC=.∵∠OMD=90°﹣∠MOC=∠BOC,∴tan∠OMD==.∵点D的坐标是(0,),∴=,即OM=7.∴点M的坐标为(7,0).设直线DM的解析式为y=kx+b,则有,解得:∴直线DM的解析式为y=﹣x+.∵点D与点D′关于直线O′C′对称,∴DD′⊥O′C′,且DD′的中点在直线O′C′上.∵OC∥O′C′,∴DD′⊥OC.∴点D′是直线DM与抛物线的交点.联立解得:,,∴点D′的坐标为(﹣1,4)或(,).设直线O′C′的解析式为y=2x+c,①当点D′的坐标为(﹣1,4)时,如图3,线段DD′的中点为(,)即(﹣,),则有2×(﹣)+c=,解得:c=.此时直线O′C′的解析式为y=2x+.②当点D′的坐标为(,)时,如图4,同理可得:此时直线O′C′的解析式为y=2x+.综上所述:当点D′的坐标为(﹣1,4)时,直线O′C′的解析式为y=2x+;当点D′的坐标为(,)时,直线O′C′的解析式为y=2x+.点评:本题考查了用待定系数法求二次函数及一次函数的解析式、抛物线与直线的交点、平行四边形的性质、三角函数的定义、中点坐标公式等知识,有一定的综合性.。
2014年辽宁省盘锦市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)1.(3分)(2014•盘锦)﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.(3分)(2014•盘锦)病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×10﹣4B.1.5×10﹣5C.0.15×10﹣3D.1.5×10﹣33.(3分)(2014•盘锦)如图,下面几何体的左视图是()A.B.C.D.4.(3分)(2014•盘锦)不等式组的解集是()A.﹣2≤x<1 B.﹣2<x≤1C.﹣1<x≤2D.﹣1≤x<25.(3分)(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a66.(3分)(2014•盘锦)甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲7.(3分)(2014•盘锦)如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5 B.12 C.13 D.148.(3分)(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或29.(3分)(2014•盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()A.B.C.D.10.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.二、填空题(每小题3分,共24分)11.(3分)(2014•盘锦)计算|﹣|+的值是.12.(3分)(2014•盘锦)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.13.(3分)(2014•盘锦)某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是分.14.(3分)(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.15.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3.则矩形OABC的面积是.16.(3分)(2014•盘锦)如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC 上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是.17.(3分)(2014•盘锦)已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是.18.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是.三、解答题(19、20每小题9分,共18分)19.(9分)(2014•盘锦)先化简,再求值.(﹣)÷,其中m=tan45°+2cos30°.20.(9分)(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.四、解答题(本题14分)21.(14分)(2014•盘锦)某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.五、解答题(22小题10分、23小题14分,共24分)22.(10分)(2014•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB 长.23.(14分)(2014•盘锦)如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cosA=,AB=8,AG=2,求BE的长;(3)若cosA=,AB=8,直接写出线段BE的取值范围.六、解答题(本题12分)24.(12分)(2014•盘锦)某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)七、解答题(本题14分)25.(14分)(2014•盘锦)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG 绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.八、解答题(本题14分)26.(14分)(2014•盘锦)如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.2014年辽宁省盘锦市中考数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)1.(3分)(2014•盘锦)﹣5的倒数是()A.5 B.﹣5 C.D.﹣【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.(3分)(2014•盘锦)病理学家研究发现,甲型H7N9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为()A.1.5×10﹣4B.1.5×10﹣5C.0.15×10﹣3D.1.5×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00015=1.5×10﹣4;故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2014•盘锦)如图,下面几何体的左视图是()A.B.C.D.【分析】找到几何体从左面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:从左面看,得到左边3个正方形,右边1个正方形.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)(2014•盘锦)不等式组的解集是()A.﹣2≤x<1 B.﹣2<x≤1C.﹣1<x≤2D.﹣1≤x<2【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组的解集的规律找出即可.【解答】解:由①得:x≥﹣2由②得:x<1,所以不等式组的解集为:﹣2≤x<1.故选:A.【点评】本题主要考查利用不等式的性质解一元一次不等式,根据找不等式组的解集的规律找出不等式组的解集是解此题的关键.5.(3分)(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a6【分析】根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.【解答】解:原式==4a7,故选:B.【点评】本题考查了同底数幂的乘法法则,同底数幂相乘,底数不变指数相加;幂的乘方的法则,幂的乘方,底数不变,指数相乘.6.(3分)(2014•盘锦)甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是()A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲的方差是8.5,乙的方差是60.5,∴甲的方差小于乙的方差,∴甲的成绩比乙稳定;∵甲、乙的平均成绩分别是145,146,∴平均分相当;故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)(2014•盘锦)如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝)A.5 B.12 C.13 D.14【分析】首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【解答】解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高==12cm.故选:B.【点评】此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.8.(3分)(2014•盘锦)如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M 是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2 B.0或1 C.1或2 D.0,1或2【分析】分三种情况:点M的纵坐标小于1;点M的纵坐标等于1;点M的纵坐标大于1;进行讨论即可得到方程x2+bx+c=1的解的个数.【解答】解:分三种情况:点M的纵坐标小于1,方程x2+bx+c=1的解是2个不相等的实数根;点M的纵坐标等于1,方程x2+bx+c=1的解是2个相等的实数根;点M的纵坐标大于1,方程x2+bx+c=1的解的个数是0.故方程x2+bx+c=1的解的个数是0或2.故选:A.【点评】考查了二次函数的性质,本题涉及分类思想和方程思想的应用.9.(3分)(2014•盘锦)如图,四边形ABCD是矩形,点E和点F是矩形ABCD外两点,AE⊥CF于点H,AD=3,DC=4,DE=,∠EDF=90°,则DF长是()A.B.C.D.【分析】设DF和AE相交于O点,由矩形的性质和已知条件可证明∠E=∠F,∠ADE=∠FDC,进而可得到△ADE∽△CDF,由相似三角形的性质:对应边的比值相等即可求出DF的长.【解答】解:设DF和AE相交于O点,∵四边形ABCD是矩形,∴∠ADC=90°,∵∠EDF=90°,∴∠ADC+∠FDA=∠EDF+∠FDA,即∠FDC=∠ADE,∵AE⊥CF于点H,∴∠F+∠FOH=90°,∵∠E+∠EOD=90°,∠FOH=∠EOD,∴∠F=∠E,∴△ADE∽△CDF,∴AD:CD=DE:DF,∵AD=3,DC=4,DE=,∴DF=.故选:C.【点评】本题考查了矩形的性质、相似三角形的判断和性质以及等角的余角相等的性质,题目的综合性加强,难度中等.10.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【解答】解:根据题意,两人同时相向出发,甲到达B地时间为:=6小时,乙到达A地:=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A 地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:法二:本题可无需列出方程,只需弄清楚题意,分清楚s与t的变化可分为几个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地,故求出各个时间点便可.∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t之间函数关系的是B.故选:B.【点评】此题主要考查了函数图象,根据题意得出关键转折点是解题关键.二、填空题(每小题3分,共24分)11.(3分)(2014•盘锦)计算|﹣|+的值是.【分析】原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=﹣+=,故答案为:【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.(3分)(2014•盘锦)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为.【分析】先求出盒子里红色球的个数,再让红色球的个数除以球的总个数即为所求的概率.【解答】解:∵盒子里装有白球和红球共14个,其中红球比白球多4个,∴红色球有9个,从中随机摸出一个球,它为红色球的概率是:.故答案为:.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)(2014•盘锦)某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是92 分.【分析】根据加权平均数的计算公式和面试成绩占20%,笔试成绩占80%,列出算式,再进行计算即可.【解答】解:根据题意得:80×20%+95×80%=92(分),答:该候选人的最终得分是92分;故答案为:92.【点评】本题考查的是加权平均数的求法,在计算过程中要弄清楚各数据的权.14.(3分)(2014•盘锦)在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为.【分析】设获得一等奖的学生有x名,二等奖的学生有y名,根据“一等奖和二等奖共30名学生,”“一等奖和二等奖共花费528元,”列出方程组即可.【解答】解:设获得一等奖的学生有x名,二等奖的学生有y名,由题意得.故答案为:.【点评】此题考查从实际问题中抽出二元一次方程组,注意找出题目蕴含的数量关系.15.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3.则矩形OABC的面积是24 .【分析】根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.【解答】解:设E点坐标为(t,),∵AE:EB=1:3,∴B点坐标为(4t,),∴矩形OABC的面积=4t•=24.故答案为:24.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.(3分)(2014•盘锦)如图,已知△ABC是等边三角形,AB=4+2,点D在AB上,点E在AC 上,△ADE沿DE折叠后点A恰好落在BC上的A′点,且DA′⊥BC.则A′B的长是 2 .【分析】设A′B=x,根据等边三角形的性质可得∠B=60°,根据直角三角形两锐角互余求出∠BDA′=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2A′B,然后利用勾股定理列式表示出A′D,再根据翻折的性质可得AD=A′D,最后根据AB=BD+AD列出方程求解即可.【解答】解:设A′B=x,∵△ABC是等边三角形,∴∠B=60°,∵DA′⊥BC,∴∠BDA′=90°﹣60°=30°,∴BD=2A′B=2x,由勾股定理得,A′D===x,由翻折的性质得,AD=A′D=x,所以,AB=BD+AD=2x+x=4+2,解得x=2,即A′B=2.故答案为:2.【点评】本题考查了翻折变换的性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记各性质并用A′B表示出相关的线段是解题的关键.17.(3分)(2014•盘锦)已知,AB是⊙O直径,半径OC⊥AB,点D在⊙O上,且点D与点C在直径AB的两侧,连结CD,BD.若∠OCD=22°,则∠ABD的度数是23°或67°.【分析】按点D在直线OC左侧、右侧两种情形分类讨论,利用圆周角定理求解.【解答】解:由题意,①当点D在直线OC左侧时,如答图1所示.连接OD,则∠1=∠2=22°,∴∠COD=180°﹣∠1﹣∠2=136°,∴∠AOD=∠COD﹣∠AOC=136°﹣90°=46°,∴∠ABD=∠AOD=23°;②当点D在直线OC右侧时,如答图2所示.连接OD,则∠1=∠2=22°;并延长CO,则∠3=∠1+∠2=44°.∴∠AOD=90°+∠3=90°+44°=134°,∴∠ABD=∠AOD=67°.综上所述,∠ABD的度数是23°或67°,故答案为:23°或67°.【点评】此题考查圆周角定理及分类讨论的数学思想,画出图形,直观解决问题.18.(3分)(2014•盘锦)如图,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a,以线段AB为边在第一象限作正方形ABCD,CD的延长线交x轴于点E,再以CE为边作第二个正方形ECGF,…,依此方法作下去,则第n个正方形的边长是a•2n﹣1.【分析】判断出△AOB是等腰直角三角形,根据等腰直角三角形的性质求出第一个正方形的边长AB,然后判断出△ADE是等腰直角三角形,再求出AD=DE,从而求出第二个正方形的边长等于第一个正方形的边长的2倍,同理可得后一个正方形的边长等于前一个正方形的边长的2倍,然后求解即可.【解答】解:∵OA=OB,∴△AOB是等腰直角三角形,∴第一个正方形的边长AB=a,∠OAB=45°,∴∠DAE=180°﹣45°﹣90°=45°,∴△ADE是等腰直角三角形,∴AD=DE,∴第二个正方形的边长CE=CD+DE=2AB,…,后一个正方形的边长等于前一个正方形的边长的2倍,所以,第n个正方形的边长=2n﹣1AB=a•2n﹣1.故答案为:a•2n﹣1.【点评】本题考查了正方形的性质,等腰直角三角形的判定与性质,判断出后一个正方形的边长等于前一个正方形的边长的2倍是解题的关键.三、解答题(19、20每小题9分,共18分)19.(9分)(2014•盘锦)先化简,再求值.(﹣)÷,其中m=tan45°+2cos30°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出m的值代入计算即可求出值.【解答】解:原式=[﹣]•=•=•=﹣,当m=1+时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(9分)(2014•盘锦)某城市的A商场和B商场都卖同一种电动玩具,A商场的单价与B商场的单价之比是5:4,用120元在A商场买这种电动玩具比在B商场少买2个,求这种电动玩具在A商场和B商场的单价.【分析】设A商场该种电动玩具的单价是5x元,则B商场的该种电动玩具的单价是4x元.由等量关系:用120元在A商场买这种电动玩具比在B商场少买2个,列出方程.【解答】解:设A商场该种电动玩具的单价是5x元,则B商场的该种电动玩具的单价是4x元.则+2=,解得x=3,则4x=12,5x=15.答:这种电动玩具在A商场和B商场的单价分别是15元、12元.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.四、解答题(本题14分)21.(14分)(2014•盘锦)某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.【分析】(1)根据题意得出喜欢新闻的人数÷所占百分比=总人数,进而得出答案;(2)利用(1)中所求得出喜欢体育的人数为:80﹣24﹣16﹣8,进而得出收看“综艺节目”的人数占调查总人数的百分比;(3)利用“科普节目”在扇形图中所占比例,进而得出所对应的圆心角的度数;(4)利用树状图得出所有可能,进而求出概率.【解答】解:(1)由条形图可得出:喜欢新闻的人数是24人,所占百分比为:30%,故本次问卷调查共调查的观众人数为:24÷30%=80(人);(2)由(1)得出:喜欢体育的人数为:80﹣24﹣16﹣8=32(人),收看“综艺节目”的人数占调查总人数的百分比为:16÷80×100%=20%,如图所示:(3)“科普节目”在扇形图中所对应的圆心角的度数为:360°×=36°;(4)如图所示:一共有12种可能,恰好抽到喜欢“新闻节目”和“体育节目”两位观众的有2种,故恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率为:=.【点评】此题主要考查了扇形统计图与条形统计图的综合应用以及利用列表法求概率等知识,利用条形统计图与扇形统计图得出正确信息是解题关键.五、解答题(22小题10分、23小题14分,共24分)22.(10分)(2014•盘锦)如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB 长.【分析】过B作BE⊥DC于E,设AB=x米,则CE=5.5﹣x,BC=6﹣x,根据30°角的正弦值即可求出x,则AB求出.【解答】解:过B作BE⊥DC于E,设AB=x米,∴CE=5.5﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.【点评】考查了解直角三角形,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(14分)(2014•盘锦)如图,△ABC中,∠C=90°,点G是线段AC上的一动点(点G不与A、C重合),以AG为直径的⊙O交AB于点D,直线EF垂直平分BD,垂足为F,EF交BC于点E,连结DE.(1)求证:DE是⊙O的切线;(2)若cosA=,AB=8,AG=2,求BE的长;(3)若cosA=,AB=8,直接写出线段BE的取值范围.【分析】(1)连接OD,根据互余得∠A+∠B=90°,再根据线段垂直平分线的性质得ED=EB,则∠B=∠EDB,加上∠A=∠ODA,所以∠ODA+∠EDB=90°,利用平角的定义得∠ODE=90°,然后根据切线的判定定理得到DE是⊙O的切线;(2)连接GD,根据圆周角定理由AG为直径得∠ADG=90°,再根据特殊角的三角函数值得∠A=60°,则∠AGD=30°,根据含30度的直角三角形三边的关系,得AD=AG=,则BD=AB﹣AD=7,所以BF=BD=,在Rt△BEF中,可计算出EF=BF=,BE=2EF=7;(3)由于∠A=60°,则∠B=30°,所以AC=AB=4,由(2)得AD=AG,所以BF=(AB﹣AD)=4﹣AG,在Rt△BEF中,EF=BF,BE=2EF=BF=(4﹣AG)=8﹣AG,利用0<AG<AC即可得到6<BE<8.【解答】(1)证明:连接OD,如图,∵△ABC中,∠C=90°,∴∠A+∠B=90°,∵直线EF垂直平分BD,∴ED=EB,∴∠B=∠EDB,∵OA=OD,∴∠A=∠ODA,∴∠ODA+∠EDB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接GD,∵AG为直径,∴∠ADG=90°,∵cosA=,∴∠A=60°,∴∠AGD=30°,∴AD=AG=,∵AB=8,∴BD=AB﹣AD=8﹣=7,∵直线EF垂直平分BD,∴BF=BD=,在Rt△BEF中,∠B=30°,∴EF=BF=,∴BE=2EF=7;(3)解:∵cosA=,∴∠A=60°,∴∠B=30°,∴AC=AB=4,由(2)得AD=AG,BF=(AB﹣AD)=4﹣AG,在Rt△BEF中,∠B=30°,∴EF=BF,∴BE=2EF=BF=(4﹣AG)=8﹣AG,∵0<AG<AC,即0<AG<4,∴6<BE<8.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了线段垂直平分线的性质和含30度的直角三角形三边的关系.六、解答题(本题12分)24.(12分)(2014•盘锦)某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为y(人).(1)求y与x(x>20)的函数关系式;(2)已知景点每日的接待成本为z(元),z与y满足函数关系式:z=100+10y.求z与x的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?(利润=门票收入﹣接待成本)【分析】(1)根据门票价格每提高5元,日接待游客人数就会减少50人,可得价格与人数的关系;(2)根据成本与人数的关系式,可得函数解析式;(3)根据二次函数的性质,a<0,当自变量取﹣时,函数取最大值,可得答案.【解答】解:(1)由题意得y=500﹣50×,即y=﹣10x+700;(2)由z=100+10y,y=﹣10x+700,得z=﹣100x+7100;。
2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。
【中考数学真题精编】辽宁省锦州市2013—2019年中考数学试题汇编(含参考答案与解析)1、辽宁省锦州市2013年中考数学试题及参考答案与解析 (2)2、辽宁省锦州市2014年中考数学试题及参考答案与解析 (27)3、辽宁省锦州市2015年中考数学试题及参考答案与解析 (56)4、辽宁省锦州市2016年中考数学试题及参考答案与解析 (78)5、辽宁省锦州市2017年中考数学试题及参考答案与解析 (104)6、2辽宁省锦州市018年中考数学试题及参考答案与解析 (127)7、辽宁省锦州市2019年中考数学试题及参考答案与解析 (152)辽宁省锦州市2013年中考数学试题及参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣3的倒数是()A.13-B.﹣3 C.3 D.132.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x53.下列几何体中,主视图和左视图不同的是()A.B.C.D.圆柱正方体正三棱柱球4.为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A.8,8 B.8.4,8 C.8.4,8.4 D.8,8.45.不等式组312114x xx-⎧⎪⎨≤⎪⎩<的解集在数轴上表示正确的是()A.B.C.D.6.如图,直线y=mx与双曲线kyx=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为()A.﹣2 B.2 C.4 D.﹣4 7.有如下四个命题:(1)三角形有且只有一个内切圆;(2)四边形的内角和与外角和相等;(3)顺次连接四边形各边中点所得的四边形一定是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有( )A .1个B .2个C .3个D .4个8.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是( )A .4800500020x x =-B .4800500020x x =+C .4800500020x x=- D .4800500020x x =+ 二、填空题(本大题共8个小题,每小题3分,共24分)9.分解因式x 3﹣xy 2的结果是 .10.函数y =中,自变量x 的取值范围是 .11.据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为 .12.为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S 2甲=1.22,S 2乙=1.68,S 2丙=0.44,则应该选 参加全运会.13.计算:()101|1 3.142π-⎛⎫----= ⎪⎝⎭ . 14.在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是 .15.在△ABC 中,AB=AC ,AB 的垂直平分线DE 与AC 所在的直线相交于点E ,垂足为D ,连接BE .已知AE=5,tan ∠AED=34,则BE+CE= . 16.二次函数223y x =的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n ﹣1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为 .三、解答题(本大题共2个小题,每小题8分,共16分)17.(8分)先将21112x x x x -⎛⎫-÷ ⎪⎝⎭+化简,然后请自选一个你喜欢的x 值代入求值.18.(8分)如图,方格纸中的每个小正方形边长都是1个长度单位,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(1,1),点B的坐标为(4,1).(1)先将Rt△ABC向左平移5个单位长度,再向下平移1个单位长度得到Rt△A1B1C1,试在图中画出Rt△A1B1C1,并写出点A1的坐标;(2)再将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出Rt△A2B2C2,并计算Rt△A1B1C1在上述旋转过程中点C1所经过的路径长.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)以下是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图中信息解答下列问题:(1)求2013年全国普通高校毕业生数年增长率约是多少?(精确到0.1%)(2)求2011年全国普通高校毕业生数约是多少万人?(精确到万位)(3)补全折线统计图和条形统计图.20.(10分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.五、解答题(本大题共2个小题,每小题10分,共20分)21.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.22.(10分)如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)六、解答题(本大题共2个小题,每小题10分,共20分)23.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=求由劣弧BC、线段CE和BE所围成的图形面积S.24.(10分)甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.(1)直接写出a,m,n的值;(2)求出甲车与B 地的距离y (千米)与甲车出发时间x (小时)的函数关系式(写出自变量x 的取值范围);(3)当两车相距120千米时,乙车行驶了多长时间?七、解答题(本题12分)25.(12分)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,将此三角板绕点A 旋转,使三角板中该锐角的两条边分别交正方形的两边BC ,DC 于点E ,F ,连接EF .(1)猜想BE 、EF 、DF 三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A 作AM ⊥EF 于点M ,请直接写出AM 和AB 的数量关系;(3)如图2,将Rt △ABC 沿斜边AC 翻折得到Rt △ADC ,E ,F 分别是BC ,CD 边上的点,∠EAF=12∠BAD ,连接EF ,过点A 作AM ⊥EF 于点M ,试猜想AM 与AB 之间的数量关系.并证明你的猜想.八、解答题(本题14分)26.(14分)如图,抛物线218y x mx n =-++经过△ABC 的三个顶点,点A 坐标为(0,3),点B 坐标为(2,3),点C 在x 轴的正半轴上.(1)求该抛物线的函数关系表达式及点C 的坐标;(2)点E 为线段OC 上一动点,以OE 为边在第一象限内作正方形OEFG ,当正方形的顶点F 恰好落在线段AC 上时,求线段OE 的长;(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动.设平移的距离为t ,正方形DEFG 的边EF 与AC 交于点M ,DG 所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.﹣3的倒数是()A.13-B.﹣3 C.3 D.13【知识考点】倒数.【思路分析】根据乘积是1的两个数互为倒数解答.【解答过程】解:∵﹣3×(13-)=1,∴﹣3的倒数是13 -.故选A.【总结归纳】本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.2.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x5【知识考点】完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【思路分析】A、利用完全平方公式展开得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用幂的乘方运算法则计算得到结果,即可做出判断;D、利用单项式乘单项式法则计算得到结果,即可做出判断.【解答过程】解:A、(a+b)2=a2+2ab+b2,本选项错误;B、x3+x3=2x3,本选项错误;。
B . 12C . 16D . 202018年辽宁省锦州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题给岀的四个选项中,只有一项是符合题目要求的 )1 . (2分)下列实数为无理数的是()C . 04. (2分)为迎接中考体育加试,小刚和小亮分另U 统计了自己最近 是() A •平均数10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的D .方差5. (2分)如图,直线l i 〃 I 2,且分别与直线I 交于C , D 两点,把一块含30角的三角尺按如图所示的位置摆放,若/仁52 °(2分)下列运算正确的是( )2357a — a=6 B . a ^a =a(2分)如图,在△KBC 中,/ ACB=90°过B ,C 两点的O O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O O 于点F ,2 2连接 BF ,CF ,若/ EDC=135 ; CF=2 ,_则 AE +BE 的值为() 5个大小相同的正方体搭成的几何体,该几何体的左视图 ( )2 . (2分)如图,这是由 C .3. (2分)一元二次方程 A •两个不相等的实数根2x 2 - x+仁0根的情况是( )B •两个相等的实数根C .没有实数根D .无法判断B .中位数C .众数 C . 102°D . 108°C . (a 3)3=a 64 4D . (ab)=ab98 °8 . (2分)如图,在△ABC中,/ C=90° AC=BC=3cm,动点P从点A出发,以_cm/s的速度沿AB方向运动到点B,动点Q 同时从点A出发,以1cm/s的速度沿折线AC - CB方向运动到点B.设△APQ的面积为y(cm"),运动时间为x(s),则下列图象能反映y与x之间关系的是()二、填空题(本大题共8小题,每小题3分,共24分)9. (3分)因式分解:X3- 4x= ___ .10. (3分)上海合作组织青岛峰会期间,为推进一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款,将300亿元用科学记数法表示为__________ 元.11. (3分)如图,这是一幅长为3m,宽为2m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为__________ m2.C.△AOB与A A1OB1位似,位似中12 . (3分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知B i的坐标为13. (3分)如图,直线y i=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,- 3),则关于x的不等式-x+a < bx-4的解14. (3分)如图,菱形ABCD的对角线AC, BD相交于点0,过点A作AH丄BC于点H,连接0H,若0B=4 , S菱形ABCD=24 , 则0H 的长为______________ .15. (3分)如图,矩形0ABC的顶点A, C分别在x轴,y轴上,顶点B在第一象限,AB=1,将线段0A饶点0按逆时针方向旋转60得到线段OP,连接AP,反比例函数y=-(k工0的图象经过P, B两点,贝U k的值为aC/V5/ \A J16. (3分)如图,射线OM在第一象限,且与x轴正半轴的夹角为60°过点D(6 , 0)作DA丄OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB,以AB为边在△AOB的外侧作正方形ABCA1,延长AQ交射线OB于点B1,以A1B1为边在△AOB的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在M2OB2的外侧作正方形A2B2C2A3…按此规律进行下去,则正方形A2017B2017C2017A2018的周长为_______ .三、综合题17. (7分)先化简,再求值:(2 ------------ )H------- ,其中x=3 .18 . (7分)为了解同学们每月零花钱数额,校园小记者随机调查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:请根据以上图表,解答下列问题:零花钱数额x元人数濒数) 频率0$ < 3060.1530 孝< 60120.3060 孝< 90160.40900 < 120b0.10120^< 1502a(1) 这次被调查的人数共有________ 人,a= _______ .(2) 计算并补全频数分布直方图;⑶请估计该校1500名学生中每月零花钱数额低于90元的人数.四、解答题(本大题共2小题,每小题8,共16分)19. (8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为B乔治t»r…D倆奇爸爸(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率. 20. (8分)为迎接七?一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?五、解答题(本大题共2小题,每小题8分,共16分)21. (8分)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者,在消防车上点A处测得点B和点C的仰角分别为45和65。
2014-2015学年辽宁省锦州四中初二第一学期期中数学试卷一、选择题(每小題2分,共计16分)1.(2.00分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(2.00分)如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5) B.(C,4) C.(4,C) D.(5,C)3.(2.00分)下列说法正确的是()A.﹣6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根4.(2.00分)以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个 B.2个 C.3个 D.4个5.(2.00分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与6.(2.00分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3个 B.4个 C.5个 D.6个7.(2.00分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A 的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+8.(2.00分)如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()A.9 B.12 C.15 D.18二、填空题(每小题3分,共计24分)9.(3.00分)已知直角三角形的两边的长分别是3和4,则第三边长为.10.(3.00分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)11.(3.00分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.12.(3.00分)若a<<b,且a,b为连续正整数,则b2﹣a2=.13.(3.00分)=,的算术平方根是,1﹣的相反数为.14.(3.00分)已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=.15.(3.00分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.16.(3.00分)如图,已知点A(1,1),B(3,2),且P为x轴上一动点,则△ABP周长的最小值为.三、计算题(每题5分,共20分)17.(20.00分)计算:(1)(﹣2)×(2)﹣(3)()﹣(3﹣2)(4)(7+4)(2﹣)2+(2+)(2﹣)﹣.四、解答题(共40分)18.(5.00分)如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C (﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.19.(6.00分)如图,在四边形ABCD中,∠ABC=90°,,AD=13,求四边形ABCD的面积.20.(8.00分)(1)若|x﹣3|+(4+y)2+=0,求3x+y+z的值.(2)设2+的小数部分是a,求a(a+2)的值.21.(6.00分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)22.(7.00分)某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km的A,B两站之间E点修建一个土特产加工基地,如图,DA⊥AB于A,CB ⊥AB于B,已知DA=15km,CB=10km,现在要使C、D两村到E点的距离相等,那么基地E应建在离A站多少km的地方?23.(8.00分)在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x 轴上,且点B在点C的左侧,满足BC=OA,若﹣3a m﹣1b2与a n b2n﹣2是同类项且OA=m,OB=n.(1)m=;n=.(2)点C的坐标是.(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.2014-2015学年辽宁省锦州四中初二第一学期期中数学试卷参考答案与试题解析一、选择题(每小題2分,共计16分)1.(2.00分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选:B.2.(2.00分)如图是一局围棋比赛的几手棋.为记录棋谱方便,横线用数字表示,纵线用字母表示,这样,黑棋的位置可记为(B,2),白棋②的位置可记为(D,1),则白棋⑨的位置应记为()A.(C,5) B.(C,4) C.(4,C) D.(5,C)【解答】解:∵黑棋的位置可记为(B,2),∴白棋⑨的位置应记为(C,4).故选:B.3.(2.00分)下列说法正确的是()A.﹣6是36的算术平方根B.±6是36的算术平方根C.是36的算术平方根D.是的算术平方根【解答】解:A、6是36的算术平方根,错误;B、6是36的算术平方根,错误;C、6是36的算术平方根,错误;D、是的算术平方根,正确,故选:D.4.(2.00分)以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个 B.2个 C.3个 D.4个【解答】解:(1)∵32+42=52,∴是直角三角形,故(1)正确;(2)∵,∴不是直角三角形,故(2)错误;(3)∵,∴不是直角三角形,故(3)错误;(4)∵0.032+0.042=0.052,∴是直角三角形,故(4)正确.根据勾股定理的逆定理,只有(1)和(4)正确.故选:B.5.(2.00分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.2与(﹣)2D.|﹣|与【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、是同一个数,故B错误;C、是同一个数,故C错误;D、是同一个数,故D错误;故选:A.6.(2.00分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()A.3个 B.4个 C.5个 D.6个【解答】解:无理数有:,,共有3个.故选:A.7.(2.00分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A 的对称点为C,则点C所表示的数为()A.﹣2﹣B.﹣1﹣C.﹣2+D.1+【解答】解:∵对称的两点到对称中心的距离相等,∴CA=AB,|﹣1|+||=1+,∴OC=2+,而C点在原点左侧,∴C表示的数为:﹣2﹣.故选:A.8.(2.00分)如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()A.9 B.12 C.15 D.18【解答】解:∵AC=18,EC=5,∴AE=13,∵将∠A沿DE折叠,使点A与点B重合,∴BE=AE=5,在Rt△BCE中,由勾股定理得:BC=,故选:B.二、填空题(每小题3分,共计24分)9.(3.00分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.10.(3.00分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是2.(结果保留根号)【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=2.∴AC===2,故答案为:2.11.(3.00分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.12.(3.00分)若a<<b,且a,b为连续正整数,则b2﹣a2=7.【解答】解:∵32<13<42,∴3<<4,即a=3,b=4,∴b2﹣a2=7.故答案为:7.13.(3.00分)=4,的算术平方根是2,1﹣的相反数为﹣1.【解答】解:∵43=64,∴=4,∵=4,4的算术平方根是2,1﹣的相反数为﹣(1﹣)=﹣1,故答案为:4,2,﹣1.14.(3.00分)已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=﹣5.【解答】解:∵点P(5,a)在第二、四象限角平分线上,∴点P在第四象限上,且横坐标与纵坐标的长度相等,∴点P的纵坐标为负数,是﹣5.故答案为:﹣5.15.(3.00分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.16.(3.00分)如图,已知点A(1,1),B(3,2),且P为x轴上一动点,则△ABP周长的最小值为.【解答】解:做点B关于x轴的对称点B′,连接AB′,当点P运动到AB′与x轴的交点时,△ABP周长的最小值.∵A(1,1),B(3,2),′∴AB==,又∵P为x轴上一动点,当求△ABP周长的最小值时,∴A B′==,∴△ABP周长的最小值为:AB+AB′=.故答案为:.三、计算题(每题5分,共20分)17.(20.00分)计算:(1)(﹣2)×(2)﹣(3)()﹣(3﹣2)(4)(7+4)(2﹣)2+(2+)(2﹣)﹣.【解答】解:(1)原式=(﹣2)×=﹣6;(2)原式=﹣=4﹣3=1;(3)原式=4﹣﹣+=3;(4)原式=(7+4)(7﹣4)+4﹣3﹣=49﹣48+4﹣3﹣=2﹣.四、解答题(共40分)18.(5.00分)如图,在平面直角坐标系中,已知A(﹣1,5),B(﹣1,0),C (﹣4,3).①在图中作出△ABC关于y轴的对称图形△A1B1C1;②写出点A1和C1的坐标.【解答】解:(1)所作图形如图所示:;(2)点A1的坐标为(1,5),点C1的坐标为(4,3).19.(6.00分)如图,在四边形ABCD中,∠ABC=90°,,AD=13,求四边形ABCD的面积.【解答】解:连接AC,∵AB=3,BC=,∠ABC=90°,∴AC===5,∵DC=12,AD=13,∴△DCA为直角三角形,∴四边形ABCD的面积=S△DCA +S△ACB=AC•CD+AB•BC,=×5×12+3×,=30+,=.答:四边形ABCD的面积为.20.(8.00分)(1)若|x﹣3|+(4+y)2+=0,求3x+y+z的值.(2)设2+的小数部分是a,求a(a+2)的值.【解答】解:(1)∵|x﹣3|+(4+y)2+=0,∴x﹣3=0,4+y=0,z+2=0,∴x=3,y=﹣4,z=﹣2,∴3x+y+z=3×3﹣4﹣2=3;(2)∵2<<3,∴4<2+<5,∴a=2+﹣4=﹣2,∴a(a+2)=(﹣2)(﹣2+2)=7﹣2.21.(6.00分)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.22.(7.00分)某镇为响应中央关于建设社会主义新农村的号召,决定公路相距25km的A,B两站之间E点修建一个土特产加工基地,如图,DA⊥AB于A,CB ⊥AB于B,已知DA=15km,CB=10km,现在要使C、D两村到E点的距离相等,那么基地E应建在离A站多少km的地方?【解答】解:设AE=x千米,则BE=(25﹣x)千米,在Rt△DAE中,DA2+AE2=DE2,在Rt△EBC中,BE2+BC2=CE2,∵CE=DE,∴DA2+AE2=BE2+BC2,∴152+x2=102+(25﹣x)2,解得,x=10千米.答:基地应建在离A站10千米的地方.23.(8.00分)在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x 轴上,且点B在点C的左侧,满足BC=OA,若﹣3a m﹣1b2与a n b2n﹣2是同类项且OA=m,OB=n.(1)m=3;n=2.(2)点C的坐标是(5,0)或(1,0).(3)若坐标平面内存在一点D,满足△BCD全等△ABO,试求点D的坐标.【解答】解:(1)∵﹣3a m﹣1b2与a n b2n﹣2是同类项,∴,解得.(2)∵OA=m,OB=n,∴B(2,0)或(﹣2,0),∵点B在点C的左侧,BC=OA,∴C(5,0)或(1,0);(3)当C(5,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(5,2)或(5,﹣2)或(2,2)或(2,﹣2);当C(1,0)时,∵△BCD全等△ABO,BC=OA=3,∴CD=2或BD=2,∴D的坐标为(1,2)或(1,﹣2)或(﹣2,2)或(﹣2,﹣2).所以D点的坐标为(5,2)或(5,﹣2)或(2,2)或(2,﹣2),(1,2)或(1,﹣2)或(﹣2,2)或(﹣2,﹣2).。
2014-2015学年辽宁省锦州实验中学八年级(上)期中数学试卷一、选择题(每题2分,共14分)1.(2.00分)在实数﹣3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个2.(2.00分)估算﹣2的值在()A.在5和6之间B.在4和5之间C.在3和4之间D.在2和3之间3.(2.00分)函数y=2x﹣5的图象一定过()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(1,﹣2)4.(2.00分)如图图象可能是关于x的一次函数y=k(x﹣1)的图象的是()A.B.C.D.5.(2.00分)一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动()A.150cm B.90cm C.80cm D.40cm6.(2.00分)如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是()A.3 B.4 C.5 D.67.(2.00分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33二、填空(每题2分,共14分)8.(2.00分)9的算术平方根是.9.(2.00分)1﹣的绝对值是.10.(2.00分)已知直角三角形的两边的长分别是3和4,则第三边长为.11.(2.00分)点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1y2(填“>”或“<”)12.(2.00分)已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为.13.(2.00分)一个正数的平方根为2x﹣4和3x﹣1,则x=.14.(2.00分)关于x的一次函数y=kx﹣3的图象过点M(﹣2,1),则该图象与x轴交点坐标,与y轴交点坐标.三、计算(每小题20分,共20分)15.(20.00分)(1)﹣﹣﹣2(2)(1+)(2﹣)(3)÷22×(4)(4﹣4+3)÷2.四、作图题(6分)16.(6.00分)作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)五、解答题(20、21题各11分,22、23题各12分,共46分)17.(11.00分)如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.18.(11.00分)如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)19.(12.00分)某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.20.(12.00分)如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;(2)求△AOC的面积.2014-2015学年辽宁省锦州实验中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题2分,共14分)1.(2.00分)在实数﹣3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:无理数有:,π,1010010001…(每两个1之间的0的个数依次多1)共4个.故选:C.2.(2.00分)估算﹣2的值在()A.在5和6之间B.在4和5之间C.在3和4之间D.在2和3之间【解答】解:∵6<<7,∴4<﹣2<5,即﹣2在4和5之间,故选:B.3.(2.00分)函数y=2x﹣5的图象一定过()A.(﹣2,1)B.(2,﹣1)C.(﹣1,2)D.(1,﹣2)【解答】解:A、∵2×(﹣2)﹣5=﹣9≠1,∴此点不在该一次函数的图象上,故本选项错误;B、∵2×2﹣5=﹣1,∴此点在该一次函数的图象上,故本选项正确;C、∵2×(﹣1)﹣5=﹣7≠2,∴此点不在该一次函数的图象上,故本选项错误;D、∵2×1﹣5=﹣3≠﹣2,∴此点不在该一次函数的图象上,故本选项错误.故选:B.4.(2.00分)如图图象可能是关于x的一次函数y=k(x﹣1)的图象的是()A.B.C.D.【解答】解:y=k(x﹣1)=kx﹣k,当k>0时,﹣k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;当k<0时,﹣k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;故选:D.5.(2.00分)一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动()A.150cm B.90cm C.80cm D.40cm【解答】:解:在Rt△OAB中,根据勾股定理OA===240cm.则OA′=OA﹣40=240﹣40=200米.在Rt△A′OB′中,根据勾股定理得到:OB′===150cm.则梯子滑动的距离就是OB′﹣OB=150﹣70=80cm.故选:C.6.(2.00分)如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是()A.3 B.4 C.5 D.6【解答】解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD==3.故选:A.7.(2.00分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选:C.二、填空(每题2分,共14分)8.(2.00分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.9.(2.00分)1﹣的绝对值是﹣1.【解答】解:1﹣的绝对值是﹣1.故答案为:﹣1.10.(2.00分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.11.(2.00分)点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1>y2(填“>”或“<”)【解答】解:因为直线y=﹣x+2中k=﹣<0,所以y随x的增大而减小.又因为﹣4<2,所以y1>y2.故答案为:>.12.(2.00分)已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为(4,﹣3).【解答】解:因为点P在第四象限,所以其横、纵坐标分别为正数、负数,又因为点P到x轴和y轴的距离分别是3和4,所以点P的坐标为(4,﹣3).故答案为(4,﹣3).13.(2.00分)一个正数的平方根为2x﹣4和3x﹣1,则x=1.【解答】解:一个正数的平方根为2x﹣4和3x﹣1,得(2x﹣4)+(3x﹣1)=0.2x﹣4+3x﹣1=0.解得x=1,故答案为:1.14.(2.00分)关于x的一次函数y=kx﹣3的图象过点M(﹣2,1),则该图象与x轴交点坐标(﹣,0),与y轴交点坐标(0,﹣3).【解答】解:∵一次函数y=kx﹣3的图象经过点M(﹣2,1),∴﹣2k﹣3=1.解得:k=﹣2.∴此一次函数的解析式为y=﹣2x﹣3.令y=0,可得x=﹣.∴一次函数的图象与x轴的交点坐标为(﹣,0).令x=0,可得y=﹣3.∴一次函数的图象与y轴的交点坐标为(0,﹣3).故答案为(﹣,0),(0,﹣3).三、计算(每小题20分,共20分)15.(20.00分)(1)﹣﹣﹣2(2)(1+)(2﹣)(3)÷22×(4)(4﹣4+3)÷2.【解答】解:(1)原式=4﹣5﹣﹣=﹣;(2)原式=2﹣+2﹣5=﹣3+;(3)原式=1××=;(4)原式=2﹣1+3=2+2.四、作图题(6分)16.(6.00分)作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)【解答】解:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.五、解答题(20、21题各11分,22、23题各12分,共46分)17.(11.00分)如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.【解答】解:如图1所示,AC1==5cm;如图2所示,AC1==cm,∵>5,∴按图1的爬行路线最短.18.(11.00分)如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)【解答】解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).∴S阴影答:剩余土地(图中阴影部分)的面积为:96米2.19.(12.00分)某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.【解答】解:(1)y1=50+0.4x;y2=0.6x;(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250所以通话250分钟两种费用相同;(3)令x=300则y1=50+0.4×300=170;y2=0.6×300=180所以选择全球通合算.20.(12.00分)如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;(2)求△AOC的面积.【解答】解:(1)设正比例函数解析式为y=kx,∵图象经过点A(3,4),∴4=k×3,k=,∴正比例函数解析式为y=x;设一次函数解析式为y=kx+b,∵图象经过(3,4)(0,﹣5),∴,解得,∴一次函数解析式为y=3x﹣5.(2)∵一次函数解析式为y=3x﹣5.∴C(,0)=××4=.∴S△AOC赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2014-2015学年辽宁省锦州市八年级(上)期末数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,本大题共8个小题,每小题2分,共16分)1.4的算术平方根是()A.±2 B. 2 C.﹣2 D.2.下列语句是命题的是()A.两点能确定一条直线吗 B.在线段AB上任意取一点C.∠A的平分线AM D.对顶角相等一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据的()A.平均数 B.中位数 C.众数 D.方差4.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行 B.两直线平行,同位角相等C.内错角相等,两直线平行 D.两直线平行,内错角相等5.将△ABC的三个顶点坐标的横坐标保持不变,纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于y轴对称B.关于x轴对称C.将原图形向x轴负方向平移了1个单位D.关于原点对称6.下列各式中,正确的是()A. B. C. D.7.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b 等于()A. 7 B. 6 C. 5 D. 48.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种 B. 3种 C. 2种 D. 1种二、填空题(共8小题,每小题2分,满分16分)9.化简:= .10.某公司招收职员一名,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如表实数,如果将学历、经验和工作态度三项得分按1:2:3的比例确定各人的最终得分,并将此依据确定录用者,那么被录取的是测试项目测试成绩甲乙学历 7 10经验 8 7工作态度 9 811.如图,直线l是一次函数y=kx+b的图象,若点A(x1,y1)和B(x2,y2)在直线l上,且x1<x2,则y1与y2的大小关系是.12.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.如果设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意列方程组.13.等腰三角形的一个内角为100°,则它的底角为.14.如图,直线l1:y=ax,l2:y=kx+b相交于点A,则关于x,y的二元一次方程组的解为.15.如图,在△ABC中,∠A=80°,∠ABC与∠ACD的平分线交于点E,∠EBC与∠ECD的平分线相交于点F,则∠BFC= .16.如图,在平面直角坐标系中,动点P从(0,﹣2)位置开始,一次关于点A、B、C作循环对称的跳动,即第一次跳到点P关于点A对称点M处,第二次接着跳到点M关于点B的对称点N处,第三次跳到点N关于点C的对称点处,…,按如此方法继续跳下去,则经过第2015次跳动之后,动点P落点处的坐标为.三、解答题(共2小题,满分10分)17.计算:﹣(+2)(﹣2)18.用适当的方法解方程组:.四、解答题(共2小题,满分14分)19.某小组织了生活常识竞赛,每班选25名同学参加比赛,成绩分为A、B、C四个等级,其中相应等级的得分依次记为100分,90分,70分,学校将八年级一班和二班的成绩整理并绘制成统计图,根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)将下表补充完整:(3)请从以下两个方面对这次竞赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩②从平均数和方差方面比较一班和二班的成绩.20.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.五、解答题(共4小题,满分34分)21.已知:如图,∠1=∠ACB,∠2=∠3,求证:∠BOC+∠DGF=180°.请把下面证明过程及括号中的依据补充完整.证明:∵∠1=∠ACB(已知)∴()∴∠2= ()∵∠2=∠3(已知)∴∠3= (等量代换)∴()∴∠BDC+∠DGF=180°()22.已知:如图,点D、E分别在AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.23.在2015年元旦来临之际,某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如下表:求这两种服装各购进多少件?24.已知A、B两市相距200千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障不能行驶,立即通知技术人员乘乙车从A市赶去维修(通知时间忽略不计),乙车到达M地后用24分钟修好甲车后以原速度原路返回,同时甲车以原速1.5倍的速度前往B 市,如图是两车距A市的路程y(千米)与甲车的行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/小时,点C的坐标是,点C的实际意义是;(2)求乙车返回时y与x之间的函数关系式并写出自变量x的取值范围;(3)乙车返回A市多长时间后甲车到达B市.六、解答题(共1小题,满分10分)25.【问题情境】用同样大小的黑色棋子按如图1试试的规律摆放,则第2015个图形共有多少枚棋子?关于这个问题我们可以通过建立函数模型的方法求解【建立模型】上述图形的规律我们可以借助建立函数模型来探讨,具体步骤如下:第一步:确定变量,即确定自变量和函数(因变量)第二步:在直角坐标系中画出函数图象第三步:根据函数图象猜想并求函数关系式;第四步:把另外的其它点代入验证,若成立,则说明所求函数关系式能够反映图形摆放棋子的一班规律.【解决问题】根据以上步骤,完成下列问题:(1)上述问题情境中以为自变量,以为函数;(2)请在已知的直角坐标系中画出图象;(3)猜想它是什么函数?求这个函数的关系式;(4)求第2015个图形中有多少枚棋子.2014-2015学年辽宁省锦州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,本大题共8个小题,每小题2分,共16分)1.4的算术平方根是()A.±2 B. 2 C.﹣2 D.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:4的算术平方根是2,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.2.下列语句是命题的是()A.两点能确定一条直线吗 B.在线段AB上任意取一点C.∠A的平分线AM D.对顶角相等考点:命题与定理.分析:根据表示对一件事情进行判断的语句叫命题,分别对每一项进行分析即可.解答: A.两点能确定一条直线吗?不是命题,B.在线段AB上任意取一点,不是命题,C.∠A的平分线AM,不是命题,D.对顶角相等,是命题,故选:D.点评:此题考查了命题,用到的知识点是命题的定义,表示对一件事情进行判断的语句叫命题.3.一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据的()A.平均数 B.中位数 C.众数 D.方差考点:统计量的选择.分析:根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.解答:解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.故选:C.点评:此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是()A.同位角相等,两直线平行 B.两直线平行,同位角相等C.内错角相等,两直线平行 D.两直线平行,内错角相等考点:平行线的判定.专题:探究型.分析:根据∠BAC=∠EDC,由同位角相等,两直线平行,即可判定AB∥DE.解答:解:∵∠BAC=∠EDC,∴AB∥DE.故选A.点评:本题考查的是平行线的判定定理,即同位角相等,两直线平行.5.将△ABC的三个顶点坐标的横坐标保持不变,纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于y轴对称B.关于x轴对称C.将原图形向x轴负方向平移了1个单位D.关于原点对称考点:关于x轴、y轴对称的点的坐标.分析:利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解答:解:∵将△ABC的三个顶点坐标的横坐标保持不变,纵坐标都乘以﹣1,∴所得图形与原图形的关系是关于x轴对称.故选:B.点评:此题主要考查了关于x轴对称点的性质,正确把握横纵坐标关系是解题关键.6.下列各式中,正确的是()A. B. C. D.考点:立方根;平方根;算术平方根.分析: A、根据算术平方根的性质即可判定;B根据算术平方根的性质计算即可判定、C、根据立方根的定义即可判定;D、根据平方根的定义计算即可判定.解答:解:A、,应该=2,故选项错误;B、,应该等于3,故选项错误;C、,不能开立方,故选项错误;D、,故选项正确.故选D.点评:此题主要考查了算术平方根的性质、立方根的定义及立方根的定义,都是基础知识,比较简单.7.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b 等于()A. 7 B. 6 C. 5 D. 4考点:整式的加减.分析:设空白出的面积为x,根据题意列出关系式,相减即可求出a﹣b的值.解答:姐:设空白出图形的面积为x,根据题意得:a+x=16,b+x=9,则a﹣b=7.故选A.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种 B. 3种 C. 2种 D. 1种考点:一元一次不等式组的应用.专题:应用题;压轴题;方案型.分析:关键描述语:某旅行团20人准备同时租用这三种客房共7间,每个房间都住满,可先列出函数关系式,再根据已知条件确定所求未知量的范围,从而确定租房方案.解答:解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选C.点评:本题的关键是找出题中的隐藏条件,列出不等式进行求解.二、填空题(共8小题,每小题2分,满分16分)9.(2分)(2013•嘉定区二模)化简:= .考点:实数的性质.分析:先比较1与的大小,再根据绝对值的定义即可求解.解答:解:=﹣1.点评:此题主要考查了求实数的绝对值,其中非负数的绝对值等于他本身,负数的绝对值等于它的相反数.10.某公司招收职员一名,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如表实数,如果将学历、经验和工作态度三项得分按1:2:3的比例确定各人的最终得分,并将此依据确定录用者,那么被录取的是甲测试项目测试成绩甲乙学历 7 10经验 8 7工作态度 9 8考点:加权平均数.分析:根据加权平均数的计算公式,列出算式,分别求出甲、乙的最终得分,即可得出答案.解答:解:∵甲的最终得分是7×+8×+9×=,乙的最终得分是10×+7×+8×=8,∴被录取的是甲;故答案为:甲.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式求出甲、乙的最终得分.11.如图,直线l是一次函数y=kx+b的图象,若点A(x1,y1)和B(x2,y2)在直线l上,且x1<x2,则y1与y2的大小关系是y1>y2.考点:一次函数图象上点的坐标特征.分析:先根据一次函数y=kx+b的图象判断出此函数的增减性,再根据x1>x2即可得出y1与y2的大小关系.解答:解:∵此函数中y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为y1>y2.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键.12.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元.如果设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据题意列方程组.考点:由实际问题抽象出二元一次方程组.分析:设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,根据调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,列方程组即可.解答:解:设调价前这种碳酸饮料每瓶x元,果汁饮料每瓶y元,由题意得,.故答案为:.点评:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.等腰三角形的一个内角为100°,则它的底角为40°.考点:等腰三角形的性质.专题:分类讨论.分析:由于等腰三角形的一个内角为100°,这个角是顶角或底角不能确定,故应分两种情况进行讨论.解答:解:①当这个角是顶角时,底角=(180°﹣100°)÷2=40°;②当这个角是底角时,另一个底角为100°,因为100°+100°=200°,不符合三角形内角和定理,所以舍去.故答案为:40°.点评:本题考查的是等腰三角形的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.14.如图,直线l1:y=ax,l2:y=kx+b相交于点A,则关于x,y的二元一次方程组的解为.考点:一次函数与二元一次方程(组).分析:先利用待定系数法分别求出直线l1与l2的解析式,再解方程组即可求解.解答:解:将(2,2)代入直线l1:y=ax,得2a=2,解得a=1,所以直线l1:y=x.将(0,5),(1,3)代入l2:y=kx+b,得,解得,所以直线l2:y=﹣2x+5.由,解得,所以关于x,y的二元一次方程组的解为.故答案为.点评:本题考查了一次函数与二元一次方程组的关系,待定系数法求直线的解析式,二元一次方程组的解法,难度适中.15.如图,在△ABC中,∠A=80°,∠ABC与∠ACD的平分线交于点E,∠EBC与∠ECD的平分线相交于点F,则∠BFC= 20°.考点:三角形内角和定理;三角形的外角性质.分析:利用角平分线定义可知∠ECD=∠ACD.再利用外角性质,可得∠ACD=∠A+∠ABC①,∠ECD=∠E+∠ABC②,那么可利用∠ECA=∠ECD,可得相等关系:∠E=∠A,从而可求∠E,同理可得:,进而求出∠F的度数.解答:解:∵CE是∠ACD的角平分线,∴∠ECD=∠ACD,又∵∠ACD=∠A+∠ABC,∴∠ECD=A+∠ABC,又∵∠ECD=∠E+∠ABC,∴∠A+∠ABC=∠E+∠ABC,∴∠E=∠A=40°;同理:∠F=∠E=20°,即:∠BFC=20°.故答案为:20°.点评:本题利用了角平分线定义、三角形外角的性质.三角形的外角等于与它不相邻的两个内角之和.16.如图,在平面直角坐标系中,动点P从(0,﹣2)位置开始,一次关于点A、B、C作循环对称的跳动,即第一次跳到点P关于点A对称点M处,第二次接着跳到点M关于点B的对称点N处,第三次跳到点N关于点C的对称点处,…,按如此方法继续跳下去,则经过第2015次跳动之后,动点P落点处的坐标为(﹣2,0).考点:规律型:点的坐标.分析:连接PA延长到M使MA=PA,所以M的坐标是M(4,4),连接MB延长到N使BN=BM,所以N的坐标是N(﹣2,0),连接NC延长到P,则PC=NC,所以棋子跳动3次后又回点P 处,根据经过第2015次跳动后,棋子落在点N处,即可得出坐标.解答:解:∵棋子跳动3次后又回点P处,∴经过第2015次跳动后,即2015÷3=671余2,棋子落在点N处,其坐标为N(﹣2,0).故答案为:(﹣2,0).点评:本题考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.三、解答题(共2小题,满分10分)17.计算:﹣(+2)(﹣2)考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再合并后根据二次根式的除法法则运算和利用平方差公式计算,然后进行加法运算.解答:解:原式=﹣(3﹣4)=+1=+1=.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.用适当的方法解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,②×4,得4x﹣8y=16③,①﹣③,得11y=﹣11,即y=﹣1,把y=﹣1代入②,得x=2,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四、解答题(共2小题,满分14分)19.某小组织了生活常识竞赛,每班选25名同学参加比赛,成绩分为A、B、C四个等级,其中相应等级的得分依次记为100分,90分,70分,学校将八年级一班和二班的成绩整理并绘制成统计图,根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)将下表补充完整:①从平均数和中位数方面比较一班和二班的成绩②从平均数和方差方面比较一班和二班的成绩.考点:条形统计图;扇形统计图;加权平均数;中位数;众数;方差.专题:数形结合.分析:(1)用25分别减去A、B、D级人数即可得到C级人数;(2)根据平均数的定义计算一班的平均数,根据中位数和众数的定义分别求出一班的中位数和二班的众数;(3)①根据中位数的意义进行发现;②根据方差的意义进行分析.解答:解:(1)一班成绩为C等级的人数:25﹣6﹣12﹣5=2(人).统计图补充如图;(2)一班的平均数==87.6,一班第13个成绩为90(分),所以一班的中位数为90(分);二班中100分出现的次数最多,所以二班的众数为100(分),故答案为87.6,90,100;(3)①从平均数和中位数方面:两班成绩的平均数相等,一班成绩的中位数比二班成绩的中位数高,所以综合两者,一班成绩好于二班.…(6分)②从平均数和方差方面:两班成绩的平均数相等,二班成绩的方差比一班成绩的方差大,综合两者,一班成绩的离散程度比二班小,一班25名学生成绩稳定一些.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、中位数和众数.20.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.五、解答题(共4小题,满分34分)21.已知:如图,∠1=∠ACB,∠2=∠3,求证:∠BOC+∠DGF=180°.请把下面证明过程及括号中的依据补充完整.证明:∵∠1=∠ACB(已知)∴DE∥BC (同位角相等,两条直线平行)∴∠2= ∠BCD (两直线平行,内错角相等)∵∠2=∠3(已知)∴∠3= ∠BCD (等量代换)∴DC∥FG (同位角相等,两条直线平行)∴∠BDC+∠DGF=180°(两直线平行,同旁内角互补)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定推出DE∥BC,根据平行线的性质推出∠2=∠BCD,求出∠3=∠BCD,根据平行线的判定得出DC∥FG,根据平行线的性质得出即可.解答:证明:∵∠1=∠ACB,∴DE∥BC(同位角相等,两条直线平行),∴∠2=∠BCD(两直线平行,内错角相等),∵∠2=∠3,∴∠3=∠BCD(等量代换),∴DC∥FG(同位角相等,两条直线平行),∴∠BDC+∠DGF=180°(两直线平行,同旁内角互补),故答案为:DE∥BC,同位角相等,两条直线平行,∠BCD,两直线平行,内错角相等,∠BCD,DC∥FG,同位角相等,两条直线平行,两直线平行,同旁内角互补.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.已知:如图,点D、E分别在AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;(2)∠EGH=∠ADE+∠A+∠AEF.考点:三角形的外角性质;平行线的性质.专题:证明题.分析:(1)根据平行线的性质得出∠B=∠ADE,根据三角形的外角性质得出∠EGH>∠B,即可得出答案;(2)根据三角形的外角性质得出∠BFE=∠A+∠AEF,∠EGH=∠B+∠BFE,根据平行线的性质得出∠B=∠ADE,即可得出答案.解答:证明:(1)∵∠EGH是△FBG的外角,∴∠EGH>∠B,又∵DE∥BC,∴∠B=∠ADE.(两直线平行,同位角相等),∴∠EGH>∠ADE;(2)∵∠BFE是△AFE的外角,∴∠BFE=∠A+∠AEF,∵∠EGH是△BFG的外角,∴∠EGH=∠B+∠BFE.∴∠EGH=∠B+∠A+∠AEF,又∵DE∥BC,∴∠B=∠ADE(两直线平行,同位角相等),∴∠EGH=∠ADE+∠A+∠AEF.点评:本题考查了三角形的外角性质和平行线的性质的应用,能运用三角形外角性质进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的一个外角大于任何一个和它不相邻的内角.23.在2015年元旦来临之际,某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如下表:求这两种服装各购进多少件?考点:二元一次方程组的应用.分析:设A种服装购进x件,B种服装购进y件,根据用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元,列方程组求解.解答:解:设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进30件.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.24.已知A、B两市相距200千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障不能行驶,立即通知技术人员乘乙车从A市赶去维修(通知时间忽略不计),乙车到达M地后用24分钟修好甲车后以原速度原路返回,同时甲车以原速1.5倍的速度前往B 市,如图是两车距A市的路程y(千米)与甲车的行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60 千米/小时,点C的坐标是(2.8,80),点C的实际意义是乙车出发0.8小时到达距离A市80千米甲车出现故障的M地;(2)求乙车返回时y与x之间的函数关系式并写出自变量x的取值范围;(3)乙车返回A市多长时间后甲车到达B市.考点:一次函数的应用.分析:(1)求出乙车的速度就可以求出乙车到达故障地点的时间就可以求出C的坐标,得出C的坐标的含义;(2)先求出E的坐标,设线段EF的解析式为y=kx+b,由待定系数法求出其解即可;(3)求出甲车到达B市的时间就可以求出结论.解答:解:(1)由题意,得乙车的往返的时间为:120﹣24=96分钟=1.6小时.乙车的速度为:160÷1.6=100千米/时.∴乙车到达C地的时间为:80÷100=0.8小时.∴C(2.8,80).甲车提速前的速度为:80÷2=40千米/时,∴提速后的速度为:40×1.5=60千米/时.∴点C的实际意义是:乙车出发0.8小时到达距离A市80千米甲车出现故障的M地或技术人员在甲车出发2.8小时后到达离A市80千米的甲车出现故障的M地.故答案为:60,(2.8,80),乙车出发0.8小时到达距离A市80千米甲车出现故障的M地;(2)由题意,得E(3.2,80).设线段EF的解析式为y=kx+b,由题意,得,解得:.则y=﹣100x+400(3.2≤x≤4).(3)甲车到达B市的时间为:3.2+=5.2,则5.2﹣4=1.2(小时).答:乙车返回A市1.2小时后甲车才到达B市.点评:本题考查了一次函数图象的运用,待定系数法求一次函数的解析式的运用,行程问题的数量关系的运用,解答时分析清楚函数图象的意义,求出函数的解析式是关键.六、解答题(共1小题,满分10分)25.【问题情境】用同样大小的黑色棋子按如图1试试的规律摆放,则第2015个图形共有多少枚棋子?。
2014年辽宁省锦州市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2014辽宁锦州,1,3分)-1.5的绝对值是()A .0B .-1.5C .1.5D .23答案:C2. (2014辽宁锦州,2,3分)如图,在一水平面上摆放两个几何体,它的主视图是( )A .B .C D .答案:B3.下列计算正确的是()A.3x+3y=6xyB.a 2×a 3=a 6C.b 6÷b 3=b 2D.(m 2)3=m 6答案:D4. (2014辽宁锦州,4,3分)已知a >b >0,下列结论错误的是( )A .a m b m ++>B a b >.22a b ->- D .22a b>答案:C(第2题图)5. (2014辽宁锦州,5,3分)如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°答案:A6. (2014辽宁锦州,6,3分)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示: 每人销售件数 1800510250210150120人数113532那么这15位销售人员该月销售量的平均数、众数、中位数分别是( ) A.320,210,230 B. 320,210,210 C. 206,210,210 D. 206,210,230 答案:B7. (2014辽宁锦州,7,3分)二次函数2y ax bx c =++(a ≠0,a ,b ,c 为常数)的图象如图所示,2ax bx c m ++=有实数根的条件是( )A.2m ≤-B. 2m ≥-C. 0m ≥D. 4m >(第7题图)4-2O 5y xEDC21 ba (第5题图)答案:A8. (2014辽宁锦州,8,3分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁,”如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.1818x y y x y =-⎧⎨-=-⎩B. 1818y x x y y -=⎧⎨-=+⎩C. 1818x y y x y +=⎧⎨-=+⎩D. 1818y x y y x =-⎧⎨-=-⎩答案:D二、填空题(本大题共6小题,每小题3分,满分18分.)9.(2014辽宁锦州,11,3分)分解因式2242x x -+ 的结果是__________.答案:22(1x -)10.(2014辽宁锦州,11,3分)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10-9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为_________米. 答案:6×10-511.(2014辽宁锦州,11,3分)计算:tan45°-)1313=________.答案:2312. (2014辽宁锦州,12,3分)方程13144x x x +-=-- 的解是________. 答案:x=013. (2014辽宁锦州,13,3分)如图,在一张正方形纸片上剪下一个半径为r 的圆形和一个半径为R 的扇形,使之恰好围成图中所示范的圆锥,则R 与r 之间的关系是________.(第13题图)答案:R=4r .14. (2014辽宁锦州,14,3分)某数学活动小组自制一个飞镖游戏盘,如图,若向游戏盘内投掷飞镖,投掷在阴影区域的概率是_________.答案:1315. (2014辽宁锦州,15,3分)菱形ABCD 的边长为2,60ABC ∠=︒,E 是AD 边中点,点P 是对角线BD 上的动点,当AP+PE 的值最小时,PC 的长是__________.(第14题图)16. (2014辽宁锦州,16,3分)如图,点B 1在反比例函数2y x=(x >0)的图象上,过点B 1分别作x 轴和y 轴的垂线,垂足为C 1和A ,点C 1的坐标为(1,0)取x 轴上一点C 2(32,0),过点C 2分别作x 轴的垂线交反比例函数图象于点B 2,过B 2作线段B 1C 1的垂线交B 1C 1于点A 1,依次在x 轴上取点C 3(2,0),C ,4(52,0)…按此规律作矩形,则第n ( 2,n n ≥为整数)个矩形)A n-1C n-1C ,n B n 的面积为________.BD(第15题图)答案:21 n三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2014辽宁锦州,21,8分)已知53nm=,求式子222()m m nm n m n m m-?+--的值.答案:解:222 ()m m nm n m n m m-?+--=22222 ()()m m n m m nmnmn m-+¸---=22 2222mn m n m n n--×-=2mn -.∵53nm=,∴35 mn=.∴原式=-2×35=-65.18.(2014辽宁锦州,21,8分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.(1)利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.(不写作法,保留作图痕迹)(2)在网格中,△ABC的下方..,直接画出△EBC,使△EBC与△ABC全等.CBA答案:解:(1)如图,点D 即为所求.(2)如图,1BCE V 和2BCE V 即为所求.E 2E 1D19.(2014辽宁锦州,21,10分)对某市中学生的幸福指数进行调查,从中抽取部分学生的调查表问卷进行统计,并绘制出不完整的统计表和条形统计图. (1)直接补全统计表.(2)补全条形统计图(不要求写出计算过程).(3)抽查的学生约占全市中学生的5℅,估计全市约有多少名中学生的幸福指数能达到五★级?3★1★3008060人数4003002001000等级 频数 频率 ★ 60 ★★ 80 ★★★0.16 ★★★★ 0.30 ★★★★★答案:解:(1)补全的统计表如下图所示:(每空0.5分,共3分)(2)补全的统计图如下图所示:(每个条形1分,共5分)等级频数频率★600.06★★800.08★★★1600.16★★★★3000.30★★★★★4000.40人数6080300160400(3)∵被抽查的学生总数为:300÷0.3=1000(人)∴全市的中学生总数约为:1000÷5%=20000(人)∴幸福指数能达到五★级的全市学生约有20000×0.40=8000(人)……………10分20.(2014辽宁锦州,21,10分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都飘浮相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转发盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一下区域内为止),然后,将两次记录的数据相乘.(1)请利用画树状图或列表表格的方法,求出乘积结果为负数的概率.(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?答案:解:(1)解法一:根据题意画树状图如下:-1.532-121.5-3-212积BA1.51.51.5-3-3-3-2-2-2121212- 11解法二:根据题意列表得:(A)-11(B)1 122-3- 1.5-1 -122 3 -1.5由表(图)可知,所有可能结果共有12种,且每种结果发生的可能性相同,其中积结果为负数的结果有4种,分别是(1,-2),(1,-3),(-1,12),(-1,1.5),乘积结果为负数的概率为41 123=.(2)乘积是无理数的结果有2种,分别是(1,-2),(-1,-2),所以获得一等奖的概率为21 126=.21. j(2014辽宁锦州,22,10分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.(1)求证:EF=12 AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.M FEDCBA答案:解:(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12 AC.(2)解:∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM=CD.又∵CD=CB,∴AM+DM=BC.22. (2014辽宁锦州,22,10分)如图所示,位于A处的海上救援中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等待营救.该中心立即把消息告知在其北偏东30°相距20海里的C处救生船,并通知救生船,遇险船在它的正东方向B处,现救生船沿着航线CB前往B处救援,若救生船的速度为20海里/时,请问:救生船到达B处大约需要多长时间?(结果精确到0.1小时:参考数据:sin38°≈0.62,cos38°≈0.79, sin22°≈0.37,cos22°≈0.93, sin37°≈0.60,cos37°≈0.80)东答案:解:过点C作CD⊥AB,垂足为D.由题意知∠NAC=30°,∠NAB=68°,AC=20,∴∠CAB=38°,∠BAM=90°—68°=22°,∵BC∥AM,∴∠CBA=∠BAM=22°.∵CD⊥AB,∴∠ADC=∠CDB=90°.在Rt△BCD中,sin∠CBD=CD CB,∴CB=12412433.51 sin sin220.37CDCBD°=换Ð,∴t =33.5120=1.7(小时). 答:救生船到达B 处大约需要1.7小时.23. (2014辽宁锦州,23,10分)已知,⊙O 为∆ABC 的外接圆,BC 为直径,点E 在AB 上,过点E 作EF ⊥BC ,点G 在FE 的延长线上,且GA=GE . (1)求证:AG 与⊙O 相切.(2)若AC=6,AB=8,BE=3,求线段OE 的长.答案:解:(1)连接OA ,∵OA=OB ,∴∠B=∠BAO ,又∵EF ⊥BC ,∴∠BFE=900,∴∠B+∠BE F=900,…………2分 ∵AG=GE ,∴∠GAE=∠GEA ,∵∠GEA=∠BEF ,∴∠BAO+∠GAE=900,……………………4分 ∴GA ⊥AO ,又OA 为⊙O 的半径,∴ AG 与⊙O 相切…………………………………………5分(2)过点O 作OH ⊥AB ,垂足为H ,BAC OE FG BACOEFGHBACOE FG由垂径定理得,BH=AH=21AB=21×8=4.………………6分 ∵BC 是直径,∴∠BAC=900,又∵AB=8,AC=6,∴AB=2268+=10,……………………8分 ∴OA=5,OH=3,又∵BH=4,BE=3,∴EH=1,∴OE=2213+=10……………………………………10分24. (2014辽宁锦州,24,10分)在机器调试过程中,生产甲、乙两种产品的效率分别为y 1、y 2(单位:件/时),y 1、y 2与工作时间x (小时)之间大致满足如图所示的函数关系,y 1的图像为折线OABC ,y 2的图像是过O 、B 、C 三点的抛物线一部分.(1)根据图像回答:①调试过程中,生产乙的效率高于甲的效率的时间x (小时)的取值范围是_________________________;②说明线段AB 的实际意义是___________________. (2)求出调试过程中,当8x 6≤≤时,生产甲种产品的效率y 1(件/时)与工作时间x (小时)之间的函数关系式.(3)调试结束后,一台机器先以图中甲的最大效率生产甲产品m 小时,再以图中乙的最大效率生产乙产品,两种产品共生产6小时,求甲、乙两种产品的生产总量Z (件)与生产甲所用时间m (小时)之间的函数关系式.OABCx (时y (件/答案:解:(1)①6x 8x 2≠<<且,(或866x 2<<<<x ,)……………………2分 ②从第1小时到底6小时乙的生产效率保持3件/时,…………………………4分 (2)当8x 6≤≤时,图像呈直线,故可设解析式为y=kx+b , ∵过点(6,3),(8,0),∴6380k b k b +=⎧⎨+=⎩,解得⎪⎩⎪⎨⎧==12b 23k ,…………………………………………6分 当8x 6≤≤时,y 1与x 之间的函数关系式为12x 23y +=.………………7分 (3)由题意可知,Z=3m+4(6-m )=m+24,………………………………9分 ∴Z 与m 之间的函数关系式为:Z=m+24.……………………………10分25. (2014辽宁锦州,25,12分)(1)已知正方形ABCD 中,对角线AC 与BD 相交于点O ,如图①,将∆BOC 绕点O 逆时针方向旋转得到∆B ’OC ’,OC ’与CD 交于点M ,OB ’与BC 交于点N ,请猜想线段CM 与BN 的数量关系,并证明你的猜想.(2)如图②,将(1)中的∆BOC 绕点B 逆时针旋转得到∆BO ’C ’,连接AO ’、DC ’,请猜想线段AO ’与DC ’的数量关系,并证明你的猜想.(3)如图③,已知矩形ABCD 和Rt ∆AEF 有公共点A ,且∠AEF=900,∠EAF=∠DAC=α,连接DE 、CF ,请求出CFDE的值(用α的三角函数表示).图① 图② 图③ 答案:解:(1)BN=CM 理由如下:……………………………………………………1分 ∵四边形ABCD 是正方形,A B CD C'B 'OMNABC D C 'O ' OE ABCDOF∴BO=CO ,∠BOC=900,∠OBC=∠OCD=21×900=450.……………………2分 由旋转可知,∠B ’OC ’=900,∠BON=∠COM,…………………………3分 ∴∆BON ≌∆COM ,∴BN=CM .……………………………………4分 (2)AO ’=22DC ’.………………………………………………5分 由旋转可知,∠O ’BC ’=∠OBC=450,∠BO ’C ’=∠BOC=900.∴BO'BC' 又∵四边形ABCD 是正方形, ∴∠ABO=21×900=450,∴22BD AB =,………………6分 ∴ ∠ABO ’=∠OBC ’,=BC'BO'22BDAB=…………………………………………7分 ∴∆ABO ’∽∆OBC ’,∴22DC'AO'=,即AO ’=22DC ’,……………………8分(3)在矩形ABCD 中,∠ADC=900, ∵∠AEF=900,∴∠AEF=∠ADC ∵∠EAF=∠DAC=α,∴∆AEF ∽∆ADC ,∴ACAFAD AE =,…………………………10分 又∵∠EAF+∠FAD=∠DAC+∠FAD ,∴∠EAD=∠FAC , ∴∆AED ∽∆AFC ,∴αcos AFAECF DE ==……………………………………12分 26. (2014辽宁锦州,26,14分)如图,平行四边形ABCD 在平面直角坐标系中,点A 的坐标为(-2,0),点B 的坐标为(0,4),抛物线2y x mx n =-++经过点A 和C . (1)求抛物线的解析式.(2)该抛物线的对称轴将平行四边形ABCO 分成两部分,对称轴左侧部分的图形面积记为1S ,右侧部分图形的面积记为2S ,求1S 与2S 的比.(3)在y 轴上取一点D ,坐标是(0,72),将直线OC 沿x 轴平移到O C '',点D 关于直线O C ''的对称点记为D ',当点D '正好在抛物线上时,求出此时点D '坐标并直接写出直线O C ''的函数解析式.答案:解:(1)∵四边形ABCO 为平行四边形, ∴BC ∥AO ,且BC=AO ,由题意知,A (-2,0),C (2,4),将其代入抛物线n mx x y ++-=2中,有⎩⎨⎧=++-=+--424024n m n m ,解得⎩⎨⎧==61n m ,∴抛物线解析式为62++-=x x y …………4分 (2)由(1)知,抛物线对称轴为直线21=x , 设它交BC 于点E ,交OC 于点F ,则BE=21,CE=23. 又∵∠A=∠C ,∴∆CEF ∽∆AOB , ∴EF BO 2CE AO==, ∴EF=3,∴4932321S 2=⨯⨯=,……………………6分 又∵S □ABCD =2×4=8,∴423498S 1=-=,∴S 1:S 2=23:9.…………………………………………………………8分y xABCO yx ABCO(3)如图,设过DD ’的直线交x 轴于点M ,交OC 于点P , ∵DM ⊥OC ,∴∠DOP=∠DMO ,∵AB ∥OC ,∴∠DOC=∠ABO ,∴∆ABO ∽∆DMO ,∴2OAOBOD OM ==,∴OM=7………………………………………………10分 设直线DM 的解析式为b kx y +=,将点D (0,27),M (7,0)代入,得⎪⎩⎪⎨⎧=+=027727k b ,解得⎪⎩⎪⎨⎧=-=2721b k , ∴直线DM 的解析式为2721+-=x y ,由题意得⎪⎩⎪⎨⎧++-=+-=627212x x y x y ,解得⎩⎨⎧=-=4111y x ,⎪⎩⎪⎨⎧==492522y x ,……………………12分 ∴点D ’坐标为(-1,4)或(25,49).直线O ’C ’的解析式为:832+=x y (如图1)或4192+=x y (如图2)………………………………14分yx ABCOEF图1 图2。