第一章金属腐蚀的基本原理1
- 格式:ppt
- 大小:1.02 MB
- 文档页数:28
我国腐蚀与防护学会金属防腐蚀手册第一章:金属腐蚀的基本概念1. 金属腐蚀的定义金属腐蚀是指在金属与其周围环境接触的情况下,金属表面受到化学或电化学的侵蚀,导致金属的质量和结构发生变化的过程。
金属腐蚀是一个不可逆转的过程,对金属的损坏是永久性的。
2. 金属腐蚀的分类根据腐蚀介质的不同,金属腐蚀可分为化学腐蚀和电化学腐蚀两种类型。
化学腐蚀是指金属直接受到化学物质的腐蚀,而电化学腐蚀是指金属与电解质溶液接触时发生的一种电化学过程。
3. 金属腐蚀的危害金属腐蚀不仅会导致金属的质量和结构损坏,还会影响到金属制品的外观和使用寿命。
金属腐蚀也会对环境造成污染,对人体健康和安全构成威胁。
第二章:金属防腐蚀的原理和方法1. 金属防腐蚀的原理金属防腐蚀的原理是通过改变金属与其周围环境的接触状态,阻止金属腐蚀的发生。
常用的金属防腐蚀方法包括物理防腐蚀、化学防腐蚀和电化学防腐蚀等。
2. 金属防腐蚀的方法(1)涂层防腐蚀:将金属涂覆一层具有耐腐蚀性的涂层,以隔离金属与环境的接触,防止腐蚀的发生。
(2)阳极保护:在金属的表面放置一块较活泼的金属,使其成为阳极,从而保护被保护金属。
(3)合金化:将一种或多种金属或非金属添加到金属中,改变金属的组织结构和物理性能,提高金属的抗腐蚀能力。
(4)阴极保护:通过外加电流或外加电源,使金属表面成为阴极,从而抑制金属腐蚀的发生。
第三章:金属防腐蚀的应用实践1. 工业领域中的金属防腐蚀在石化、船舶、汽车、航空航天等工业领域中,金属制品往往需要具备较高的耐腐蚀性能,以确保设备和产品的安全、稳定和持久运行。
2. 城市基础设施中的金属防腐蚀城市基础设施中的钢结构、管道、桥梁、隧道等金属构件,常常需要经过防腐蚀处理,以保证其在潮湿、高盐度环境下的使用寿命和安全性。
3. 日常生活中的金属防腐蚀在日常生活中,我们经常接触到各种金属制品,如家具、电器、汽车等,这些金属制品也需要经过防腐蚀处理,以延长其使用寿命和美观度。
金属腐蚀原理金属腐蚀是指金属在特定条件下与周围环境中的化学物质发生反应导致其损失其原有性能和结构的现象。
金属腐蚀是一种自然现象,不可避免地影响了工业、农业、医疗、建筑和航空等领域的金属制品。
金属腐蚀的原理主要涉及以下几个方面:1. 化学反应金属与环境中的化学物质接触时,必然发生一系列化学反应。
铁与水和氧气反应会形成氧化铁,即铁锈。
Fe + H2O + O2 → Fe2O3·nH2O(铁锈)金属的电化学性质在这个过程中起着关键的作用。
如铜与氯离子反应如下:Cu + 2Cl- → CuCl2 + 2e-金属的原子释放出电子,产生正离子。
在电解质中,这些正离子随后会与负离子反应,导致金属表面的电化学腐蚀。
2. 电化学反应金属的表面被涂上一层绝缘性较好的材料或涂层,可以防止其与外部环境发生化学反应。
当涂层损坏或表面存在缺陷时,金属会变得更易受到腐蚀。
此时,金属会表现出电化学反应,也就是在金属表面形成电池。
金属的电子从阴极(电池的负极)流向阳极(电池的正极),从而导致阳极处的金属被电化学腐蚀。
3. 介质腐蚀金属腐蚀还会受到介质的影响,介质包括气体、液体和固体。
在钢材上,只有当表面附着了盐、油、水或化学物质等附件时,金属才会腐蚀。
在线的腐蚀往往会发生在地下管道和油罐等结构中,因为它们被完全包围在介质中。
在这种情况下,防护系统和钝化剂等方法可能会用来防护金属免受腐蚀的影响。
4. 海洋水腐蚀金属在海洋环境中面临更复杂的腐蚀挑战,因为海洋环境包含盐、水以及许多化学物质。
海水的腐蚀效果比纯水的腐蚀效果更严重,并可以在金属表面形成锈。
氯离子是最具腐蚀性的物质。
在船舶、桥梁和海上平台等重要结构中,通常需要采用特殊的腐蚀防护措施来保护金属免受海洋环境的损害。
金属腐蚀涉及多个因素,包括化学反应、电化学反应、介质腐蚀和海水腐蚀等。
通过了解这些原理,我们可以采取更有效的方法来防止金属腐蚀并延长其寿命。
除了了解金属腐蚀的原理之外,还需要对不同类型的金属腐蚀有深入的了解。
腐蚀基本原理1. 金属的电化学腐蚀1.1. 腐蚀原理与阴阳极反应如果把金属材料浸入水溶液中,因不同部位电极电位不同,形成阳极区和阴极区,在局部电池作用下便发生腐蚀。
如图2.7.1所示。
阴、阳极位置的变化将使金属成为全面腐蚀形态。
在阳极区金属以离子状态溶出,阳极区获得残余电子并发生析氢反应,可以用下式表示:如在酸性水溶液中:Fe Fe2++2e- (阳极反应)2H++e-H2 (阴极反应)但溶液中有溶解氧存在时,阴极反应为:2H+1O2+2e-H2O(氧的还原2反应)在脱气的碱性溶液中发生的阴极反应为:H2O+e-1H+OH-2在含氧的碱性溶液中,对应的阴极反应力:H2O+1O2+2e-22OH-在溶液中存在高价金属离子的还原。
如在铁或铝上沉积出铜和银:Cu2++2e-CuAg++e-Ag某些有机化合物的还原,如:RO+4e+4H+RH2+H2OR+2e+2H+RH2这种情况在石油化工设备的腐蚀中常见。
氧化性酸或某些负离子进行还原,如:NO3-+2H++2e NO2+H2O金属的腐蚀量一般可表示如下:(法拉弟定律)W(g)=k·I·t式中:I——电流(A);t——时间(h);k—一常数。
按照法拉第定律,腐蚀速度(R)可表示如下:R=0.13ie/ρ式中:i——电流密度(μA/cm2);e——全感的克当量数(g);ρ——金属的密度(g/cm3)。
1.2.各种腐蚀类型1.2.1. 点蚀表面生成钝化膜而具有耐蚀性的金属和合金,一旦表面膜被局部破坏而露出新鲜表面后,这部分的金属就会迅速溶解而发生局部腐蚀。
被称为点蚀。
其腐蚀机理是在中性溶液中的离子(例如Cl—)作用于表面钝化膜,表面膜受破坏,因而发生点蚀。
组织、夹杂物等金属构造上的不均匀部分易成为点蚀源。
1.2.2.缝隙腐蚀浸在腐蚀介质中的金属构件,在缝隙和其它隐蔽的区域内常常发生强烈的局部腐蚀,这种现象称为缝隙腐蚀,这种腐蚀常和孔穴,垫片的底面、搭接缝、表面沉积物以及螺栓螺帽和柳钉下的缝隙积存的少量静止溶液有关。
金属腐蚀的原理
金属腐蚀是指金属表面与周围环境中的化学物质发生反应,使金属失去其原有的性能和外观的过程。
金属腐蚀的原理主要涉及电化学和化学反应两方面。
1. 电化学腐蚀:在金属与电解质溶液接触时,金属表面上会形成一个电化学反应的界面,即金属溶液间的电极。
在这个界面上,存在氧化和还原反应。
金属表面的阳极区域发生氧化反应,即金属原子失去电子形成离子,并溶解到电解质溶液中;而金属表面的阴极区域发生还原反应,即电解质中的阴离子接受电子,并在金属表面上发生沉积或析出。
这些电化学反应导致了金属表面的腐蚀。
2. 化学腐蚀:金属腐蚀还可以通过直接与大气中的化学物质发生反应引起。
例如,金属与氧气反应形成金属氧化物,如铁与氧气反应形成铁锈。
金属还可以与酸、碱等化学物质发生反应导致腐蚀。
这种腐蚀过程主要是由于金属与化学物质发生氧化还原反应,导致金属表面破坏。
除了电化学和化学反应,金属腐蚀还受到其他因素的影响,如湿度、温度、金属表面的质量、表面处理等。
湿度和温度的提高促进了金属腐蚀的发生,而金属表面的质量和表面处理可以对腐蚀起到一定的保护作用。
金属腐蚀是一种常见的现象,会导致金属材料的性能下降、丧失机械强度和导电性能,甚至导致设备和结构的损坏和失效。
因此,在工业和日常生活中,采取防腐措施或使用耐腐蚀材料来延缓金属腐蚀的发生是非常重要的。
金属腐蚀的原理和特点是金属腐蚀是指金属与周围环境中的物质发生化学反应,导致金属表面产生氧化、腐蚀等现象的过程。
金属腐蚀是一个复杂的过程,它受到多种因素的影响,包括温度、湿度、氧气、酸碱性等。
金属腐蚀对金属材料的性能和寿命有着重要影响,因此深入了解金属腐蚀的原理和特点十分重要,有助于我们采取适当的防护措施,延长金属材料的使用寿命。
一、金属腐蚀的原理:1. 电化学腐蚀原理:金属腐蚀通常是一种电化学过程,涉及到两个重要的反应:氧化反应和还原反应。
当金属与介质接触时,金属表面发生氧化反应形成阳极区,金属离子在介质中溶解。
同时,介质中的电子被金属表面吸收,然后在离开金属表面的地方发生还原反应,形成阴极区。
金属腐蚀的电化学过程就是阳极和阴极之间的电子传递和离子迁移的过程。
2. 因素影响:金属腐蚀的速度受到多种因素的影响。
首先是介质的性质,如湿度、温度、气压、含氧量等。
湿度高、温度高、氧气浓度大的介质是金属腐蚀的主要原因。
其次是金属自身的性质,如金属在介质中的溶解度、自蚀性和金属晶格的缺陷等。
此外,金属腐蚀还受到介质中杂质、金属表面的形貌、金属的应力状态等因素的影响。
二、金属腐蚀的特点:1. 化学变化:金属腐蚀是一种化学反应,金属离子在介质中与其他物质发生反应形成化合物。
这个过程中,金属原子的价电子会发生改变,金属表面会发生氧化、还原等化学变化。
由于金属腐蚀引起的化学变化是不可逆的,往往会导致金属的损坏。
2. 金属材料破坏:金属腐蚀使金属表面受到侵蚀和腐蚀,使金属材料的物理性能和机械性能降低。
金属腐蚀会使金属表面产生褐色、黑色等不均匀的凹陷,甚至形成孔洞、脱落,导致金属材料的破坏。
3. 减小金属的强度和硬度:金属腐蚀会影响金属材料的力学性能,使其强度和硬度降低。
金属腐蚀使金属表面形成微小的凹坑和裂纹,这些缺陷对金属材料的强度和硬度造成负面影响。
金属腐蚀还使金属材料的疲劳寿命降低,容易导致断裂。
4. 影响金属材料的外观和质感:金属腐蚀会使金属表面变得粗糙、不光滑,影响金属材料的外观和质感。
第⼀章腐蚀基本原理1、腐蚀原电池原电池是腐蚀原电池的基础。
腐蚀原电池的实质是⼀个短路的原电池。
腐蚀原电池的形成条件:阳极阴极电解质溶液电路。
阳极过程:⾦属溶解过程,以离⼦形式转⼊溶液,并把电⼦留在⾦属上,⼜称为氧化过程。
M M n+ + ne。
电⼦转移:在电路中电⼦由阳极流⾄阴极。
阴极过程:接受电⼦的还原过程。
腐蚀原电池⼯作所包含的三个基本过程既是互相独⽴、⼜是彼此联系的。
只要其中⼀个过程受到阻滞不能进⾏,则其他两个过程也将停⽌,⾦属腐蚀过程也就停⽌了。
①、析氢腐蚀②、吸氧腐蚀2、腐蚀原电池与⼀般原电池的⽐较:⼆者结构和原理⽆本质的区别。
腐蚀原电池是⼀种短路的原电池,有电流但不能利⽤,以热的形式散失,其直接结果是造成了⾦属的腐蚀。
3、宏电池:⽤⾁眼能明显看到的由不同电极所组成的腐蚀原电池。
形成条件分类:电偶腐蚀电池:不同⾦属与同⼀电解溶液接触,如钢管本体⾦属与焊缝⾦属,镀锌钢管与黄铜阀。
浓差电池:同⼀⾦属不同部位接触不同的电解质。
造成不同区域电位不同,可分为氧浓差电池和盐浓差电池。
温差电池:同⼀⾦属在同⼀电解质溶液中,由于各部位温度不同⽽构成的腐蚀电池。
如换热器。
4、微电池:由⾦属表⾯上许多微⼩的电极所组成的腐蚀原电池叫微电池。
形成微电池的基本原因:⾦属化学成分的不均匀性;⾦属组织的不均匀:晶粒晶界的电位不同;⾦属物理状态不均匀:变形和应⼒不均匀;⾦属表⾯膜的不均匀;⼟壤微结构的差异。
5、电极:电⼦导体(⾦属)与离⼦导体(液、固电解质)接触,并且有电荷在两相之间迁移⽽发⽣氧化还原反应的体系,称为电极。
电极反应:在电极与溶液界⾯上的进⾏的电化学反应称为电极反应。
双电层:当⾦属浸⼊电解质溶液中时,其表⾯离⼦与溶液中的离⼦相互作⽤,使界⾯处⾦属和溶液分别带异电荷,即双电层(electrostatic double layer, double electrode layer)。
电极电位:双电层两侧的电位差,即⾦属与溶液之间的电位差称为电极电位。