第2章:煤的液化与煤基化学品
- 格式:ppt
- 大小:564.50 KB
- 文档页数:3
煤炭液化技术[编辑本段] 煤炭液化技术煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。
根据不同的加工,使其转化成为液体燃料路线,煤炭液化可分为直接、化工原料和液化和间接液化两大类:一、直接液化直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。
1、发展历史煤直接液化技术是由德国人于1913 年发现的,并于二战期间在德国实现了工业化生产。
德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。
二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。
70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。
日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。
目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。
这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。
到目前为止,上述国家均已完成了新工艺技术的处理煤100t/d 级以上大型中间试验,具备了建设大规模液化厂的技术能力。
煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。
目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。
2、工艺原理煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。
第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。
煤的液化原理及应用1. 煤的液化原理煤的液化是指将固态的煤转化为液态燃料的过程。
液化煤是一种高效的能源资源,具有较高的能量密度和较低的环境排放。
煤的液化原理主要包括以下几个方面:1.1 煤的化学组成煤是一种由碳、氢、氧、氮、硫等多种元素组成的有机物质。
不同种类的煤具有不同的化学组成,其中碳含量较高。
1.2 煤的热解过程煤在高温下会发生热解,即煤的大分子结构被破坏,并产生气体、液体和固体副产品。
煤的热解过程可以通过裂解温度、升温速率和保持时间来控制。
1.3 煤的液化反应煤的液化是在高温下将煤与氢气或氢气和氢化物催化剂接触,通过氢解和缩聚反应将煤转化为液态燃料。
煤的液化反应主要包括溶解、裂解、重组和饱和等过程。
2. 煤的液化应用煤的液化在能源领域具有广泛的应用前景。
以下是煤的液化在多个领域的应用介绍:2.1 燃料应用液化煤被广泛用作燃料,可以替代石油、天然气等传统化石燃料。
液化煤具有高能量密度和较低的环境污染排放,可以用于发电、加热和工业用途。
2.2 化学工业液化煤可以作为化学原料,生产石油、化肥、塑料、橡胶等化工产品。
煤的液化过程可以将煤中的碳、氢等元素转化为有机物,满足化学工业对原料资源的需求。
2.3 交通运输液化煤可以用作交通燃料,制造液化煤汽油、液化煤柴油等燃料,用于汽车、火车等交通工具。
液化煤汽油具有较高的能量密度,可以增加车辆续航里程。
2.4 煤化学开发煤的液化过程中产生的液态产物还可以用于进一步的煤化学开发。
煤液化副产品可以作为原料生产碳纤维、炭黑、活性炭等材料,用于材料工业。
3. 结论煤的液化是一种将煤转化为液态燃料的过程,具有广泛的应用前景。
液化煤可以用作燃料、化学原料和交通燃料,同时也可以用于煤化学开发。
煤的液化技术的应用可以提高能源利用效率,减少环境污染,是一种可持续发展的能源替代方案。
煤气化及煤基化工产品链煤气化和煤基化工产品链是指利用煤作为原料,进行气化、炼制、提纯、裂解等过程,最终生产出一系列具有高附加值的煤基化工产品的生产过程。
本文将从煤气化和煤基化工产品的定义、应用、工艺和发展方向等方面进行详细阐述。
一、煤气化和煤基化工产品的定义和应用煤气化是指将固态煤炭在高温、高压、无氧等条件下,通过气化反应转化为一系列可燃气体的工艺过程。
经过煤气化处理后,所得到的产物气体被称为含气体;经过深度处理后,可得到甲烷、苯、甲醇、合成氨、合成油等附加值较高的煤基化工产品。
煤基化工产品链是指利用煤作为原料生产的一系列化工产品,主要包括:1. 煤焦油及其深加工产品:主要包括沥青、碳黑、防腐剂、有机溶剂等;2. 煤气及其深加工产品:主要包括甲醇、合成气、合成油、甲烷等;3. 煤制油及其深加工产品:主要包括汽油、柴油、煤油、沥青等。
煤基化工产品广泛应用于能源、化工、冶金、建材、环保等诸多领域,如煤炭化学工业、化纤、冶金、化肥、生物化学等。
其中,大部分煤基化工产品都是高附加值、高技术含量的产品,在我国的经济发展中起着至关重要的作用。
二、煤气化和煤基化工产品的工艺1. 煤气化工艺(1)固定床煤气化:是指将小块的煤料铺成一个固定的床层,通过缸内的气体在固定床中切割、分解、转化得到含氢气和含一氧化碳气的反应。
(2)流化床煤气化:是指利用空气向固定床中喷射使床料呈流化状态,这样能够提高气化反应的速率和数值。
2. 煤基化工产品加工工艺(1)煤焦油加工:首先通过高温炭化得到焦炭,同时得到煤焦油。
在蒸馏和提纯的过程中,可以得到燃料油、润滑油、基础油等广泛应用于石化工业的煤基化工产品。
(2)煤气加工:经过初步的处理和净化,可以得到焦炉煤气,该煤气可以被深度加工,得到甲醇、甲烷、合成气、合成油等煤基化工产品。
(3)煤制油加工:通过分馏提取、加氢裂解等工艺得到高附加值的汽油、柴油、煤油等煤基化工产品。
三、煤气化和煤基化工产品发展方向现代煤基化学工业需要不断提高产品附加值、科技创新和环境保护等综合性要求,为此,我国煤基化工产品主要发展方向主要体现在以下几个方面:1. 优化煤气化工艺,延长设备寿命,减少能耗和开销。
煤的直接液化概述煤的液化是先进的洁净煤技术和煤转化技术之一,是用煤为原料以制取液体烃类为主要产品的技术。
煤液化分为“煤的直接液化”和“煤的间接液化”两大类,煤的直接液化是煤直接催化加氢转化成液体产物的技术.煤的间接演化是以煤基合成气(CO+H 2)为原料,在一定的温度和压力下,定向催化合成烃类燃料油和化工原料的工艺,包括煤气化制取合成气及其挣化、变换、催化合成以及产品分离和改质加工等过程。
通过煤炭液化,不仅可以生产汽油、柴油、LPG (液化石油气)、喷气燃料,还可以提取BTX (苯、甲苯、二甲苯),也可以生产制造各种烯烃及含氧有机化台物。
煤炭液化可以加工高硫煤,硫是煤直接液化的助催化剂,煤中硫在气化和液化过程中转化威H2S 再经分解可以得到元素硫产品.本篇专门介绍煤炭直接液化技术早在1913 年,德国化学家柏吉乌斯(Bergius)首先研究成功了煤的高压加氢制油技术,并获得了专利,为煤的直接液化奠定了基础。
煤炭直接加氢液化一般是在较高温度(400 C以上),高压(10MPa以上),氢气(或CO+H 2,C0+H20)、催化剂和溶剂作用下,将煤的分子进行裂解加氢,直接转化为液体油的加工过程。
煤和石油都是由古代生韧在特定的地质条件下,经过漫长的地质化学滴变而成的。
煤与石油主要都是由C、H、O 等元素组成。
煤和石油的根本区别就在于:煤的氢含量和H/C原子比比石油低,氧含量比石油高I 煤的相对分子质量大,有的甚至大干1000.而石油原油的相对分子质量在数十至数百之间,汽油的平均分子量约为110;煤的化学结构复杂,它的基本结构单元是以缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。
煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧,氮、硫)、碱金属和微量元素。
通过加氢,改变煤的分子结构和H/C 原子比,同时脱除杂原子,煤就可以液化变成油。
现代煤制气技术的研究与应用发展分析第一章:绪论近年来,随着国家对环境保护和能源安全的重视,煤制气技术逐渐受到关注。
煤制气技术就是利用煤炭等矿物质资源生产气体燃料的一种先进工艺,属于煤化工领域。
与传统的直接利用石油和天然气等化石能源相比,煤制气技术具有独特的优势。
本篇文章将探讨现代煤制气技术的研究与应用发展情况,分别从技术路线、应用场景、环保性、经济效益等方面进行深入分析。
第二章:技术路线现代煤制气技术主要有两条分支路线:煤基气化和煤基液化。
煤基气化技术是指将煤炭和水蒸气在一定的温度、压力下进行热化学反应,产生气体燃料,主要包括干式气化、湿式气化、氧气膨胀气化和采用固定流化床气化等工艺。
其中,干式气化被认为是最成熟、技术最稳定的一种方式,但也存在一些问题,如反应率低、设备维护难度大等。
煤基液化技术是指在高温、高压的条件下,使煤在液态烃的存在下发生热力学反应,使其转化为液体燃料,包括合成油、合成甲醇等。
这种技术的特点是对煤种的选择不够严格,可以利用各种低质煤,包括褐煤等。
但煤基液化工艺还存在着高压、高温等方面的风险和设备花费等问题。
第三章:应用场景现代煤制气技术有广泛的应用场景。
首先,在无管道天然气的地区,煤制气可以作为一种清洁、环保的替代燃料供应方式。
其次,在工业领域,煤制气可以用于化工、热力发电、城市燃气等领域。
此外,在交通领域,如采用煤制合成甲醇技术,可以生产出符合国六排放标准的清洁燃料,用于汽车和船舶等交通工具。
但是,在实际应用中,煤制气也面临一些挑战。
例如,煤制气与管道天然气等传统燃料比较,价格相对较高;煤制气生产过程中会排放大量的二氧化碳等有害气体,不利于环境保护。
对于这些问题,我们可以通过技术研发、政策引导等手段来加以解决。
第四章:环保性在煤制气生产过程中,会产生大量的二氧化碳等有害气体,这对环境带来了巨大的威胁。
因此,煤制气在环保方面面临着极大的挑战。
为了解决这个问题,现代煤制气技术不断发展,各种环保措施不断加强。