大学数学(高数微积分)第十章线性函数第一节(课堂讲义)
- 格式:pdf
- 大小:1.17 MB
- 文档页数:13
【线性代数】07-线性函数1. 线性函数1.1 k重线性函数 前⾯讨论了纯代数意义上的线性空间,在实际场景中,我们经常需要处理向量的度量。
度量⼀般表现为向量的函数,⽐如⾏列式可以看成是n个⾏(列)向量的函数,矩阵之积的每⼀个元素其实就是⼀个⾏向量和⼀个列向量的函数。
严格来讲,对域F上的线性空间V,映射V\times\cdots\times V\mapsto F(k个V)叫做线性空间V上的k元函数,⼀般记作f(\xi_i,\cdots,\xi_k)。
如果函数在每⼀个变量\xi_i上都满⾜线性等式(1),它也叫V上的k重线性函数。
由定义容易知道,如果选定V的⼀组基,k重线性函数可以由\xi_1,\cdots,\xi_k分别取遍这组基所唯⼀确定。
特别地,n维线性空间上的k重线性函数由n^k个独⽴变量完全确定。
所有k重线性函数可以组成F上的线性空间,严格定义你可以⾃⼰给出。
f(\cdots,\xi_{i-1},k_1\alpha+k_2\beta,\xi_{i+1},\cdots)=k_1f(\cdots,\xi_{i-1},\alpha,\xi_{i+1},\cdots)+k_2f(\cdots,\xi_{i-1},\beta,\xi_{i+1},\cdots)\tag{1} 前⾯举的⾏列式和⾏列向量乘法显然都是线性函数,观察这两个例⼦,我们发现线性函数还有⼀个性质可以继续讨论,那就是变量\xi_i,\xi_j位置的交换对函数值的影响。
当然我们只讨论最典型的情况,对任何向量,式(2)恒成⽴的函数叫对称线性函数,⽽式(3)恒成⽴的叫反对称线性函数,这两种情况都是⽐较常见的。
容易证明,对称线性函数变量的顺序可以随意改变,⽽不影响函数的值。
f(\cdots,\xi_i,\cdots,\xi_j,\cdots)=f(\cdots,\xi_j,\cdots,\xi_i,\cdots)\tag{2}f(\cdots,\xi_i,\cdots,\xi_j,\cdots)=-f(\cdots,\xi_j,\cdots,\xi_i,\cdots)\tag{3} 反线性函数中,若\xi_i=\xi_j,则有f(\cdots,\xi_i,\cdots,\xi_j,\cdots)=0,继⽽将某个变量的倍数加到另⼀个变量后,函数的值不变。