调频、调相电路
- 格式:ppt
- 大小:1.18 MB
- 文档页数:45
第六章 频谱变换电路⎩⎨⎧非线性:调频、限幅频线性:调幅、混频、倍6.1概述频谱变换电路:频谱搬移,使之适合于传输.具备将输入信号频谱进行频谱变换,以获取具有所需频谱的输出信号这种功能的电路就叫做频谱变换电路。
6.2乘法器变跨导式模拟乘法器是以恒流源式差动放大电路为基础,并采用变换跨导的原理而形成的。
变跨导式模拟乘法器(恒流源式差分放大器)双入双出()()EQT EQT b b be i beco I U I U r r u r R u βββ+≈++=⋅-='111()21I U Tβ+= ∴I u U R u i TCo ⨯⋅-≈12若I u i ∞2成正比,则21i i o u u u ⨯∞ei e BE i e R u R u u I I 232≈-==∴21212i i e i i TC o U U R R u u U R u ⋅⋅=⋅⋅-=跨导222121i eI T T TEQ m u R UU U IU I g ∞⋅===∴称为变跨导乘法器.6.3调幅波一、幅度调制(AM )()t u Ω-低频 ()t u c -高频定义:用()t u Ω去控制()t u c 的幅度,使幅度()t u Ω∞,称为调制称()t u Ω为调制信号,()t u c 为载波信号.1、 调幅特性.令()t U t u m Ω=ΩΩcos ()t w U t u c cm c cos = 则)()t w t M U t u c a cm AM cos cos 1⋅Ω+=其中cmm a U U k M Ω⋅=称为调制指数.(k 由电路决定的一个常数)()t w t M U t w U t u c a cm c cm AM cos cos cos ⋅Ω⋅⋅+⋅=()()[]t w t w M U t w U c c a cm c cm Ω-+Ω+⋅⋅+⋅=cos cos 21cos∴调幅波有3个频率分量c w 、Ω+c w 、Ω-c w .称Ω+c w 为上边频,Ω-c w 为下边频m AM B Ω=2载波不携带()t u Ω的信息,而且占用较大的发射功率,可以只发射边带。
通信电路课题名称PM调相/解调电路设计院系电气信息工程学院专业通信工程班级通信1班学号学生姓名联系方式2012 年12 月摘要在无线电通信中,角度调制是一种重要的调制方式,它包括频率调制(FM)和相位调制(PM)。
角度调制的定义是高频振荡的振幅不变,而其总瞬时相角岁调制信号()按一u t定的关系变化。
与振幅调制相比,角度调制具有抗干扰能力强和较高的载波功率利用系数等优点,但占有更宽的传送频带。
调频主要应用于调频广播、广播电视、通信及遥测遥控等,而调相主要用于数字通信系统中的移相键控。
关键词:相位调制;鉴相器;Multisim目录1.设计目的 (4)2.设计要求 (4)3.设计原理 (4)3.1 调相原理 (4)3.2 解调原理 (5)4.设计方案 (5)5.设计电路图 (7)5.1低频信号产生模块 (7)5.2高频信号产生模块 (8)5.3低频信号放大模块 (9)5.4高频功率放大模块 (9)5.5调相模块 (10)5.6解调模块 (10)6.电路仿真 (11)7.结果分析 (12)8.设计小结 (13)参考文献 (15)1.设计目的通过对电路的设计实现相位随调制信号()u t Ω的变化而变化,然后再通过鉴相器从调相波中取出原调制信号。
2.设计要求(1)选取合适的调相解调电路; (2)画出电路图;(3)用Multisim 仿真电路图;(4)画出相关仿真的波形,频率波形图。
3.设计原理3.1 调相原理调相信号是瞬时相位以未调载波相位c ϕ为中心按调制信号规律变化的等幅高频振荡信号。
设调制信号为()cos u t U t ΩΩ=Ω(初始相位为零),载波信号为()cos c c c u t U w t =,那么调相波的瞬时相位可以表示为()()()cos cos c c p c m c p t t t t k U t t t t m t ϕωϕωωϕωΩ=+∆=+=+∆Ω=+Ω则调相信号可以表示为()cos(cos )C c p u t U m t ω=+Ω其中,m p p k U m ϕΩ∆== ,为最大相偏,p m 称为调相指数。
关于调频、调幅、调相关于调频、调幅、调相2008-03-26 09:54调幅:调制信号使载波的幅度随之变化;而调频:是使频率或相位随之变化。
发——调频,收——调幅:在特定的条件下应该可以接收到,只是检波效率不一定高。
比如:接收机(调幅)的回路对调频信号来讲处在斜率检波(参见有关无线电资料)状态时,就可以低效率的接收到调频信号。
调频和调相不同,调相的同时,频率一定会变化,但是调频的时候相位不一定变化。
++++++++++++++++++++++++++++++++幅与调频有什么区别?1.调频比调幅抗干扰能力强外来的各种干扰、加工业和天电干扰等,对已调波的影响主要表现为产生寄生调幅,形成噪声。
调频制可以用限幅的方法,消除干扰所引起的寄生调幅。
而调幅制中已调幅信号的幅度是变化的,因而不能采用限幅,也就很难消除外来的干扰。
另外,信号的信噪比愈大,抗干扰能力就愈强。
而解调后获得的信号的信噪比与调制系数有关,调制系数越大,信噪比越大。
由于调频系数远大于调幅系数,因此,调频波信噪比高,调频广播中干扰噪声小。
2.调频波比调幅波频带宽频带宽度与调制系数有关,即:调制系数大,频带宽。
调频中常取调频系数大于1,而调幅系数是小于1的,所以,调频波的频带宽度比调幅波的频带宽度大得多。
3.调频制功率利用率大于调幅制发射总功率中,边频功率为传送调制信号的有效功率,而边频功率与调制系数有关,调制系数大,边频功率大。
由于调频系数mf大于调幅系数ma,所以,调频制的功率利用率比调幅制高。
++++++++++++++++++++++++++++++调频和调幅区别就像是手机的GSM和CDMA一样,是不同的传输方式,CDMA的技术要比GSM先进的不知多少,但是133的手机信号未必比139的手机信号强,反而不如。
为什么同样的139的手机,有些厂家的信号强,有些厂家的信号弱呢?就是说一个产品的好与坏不是传输方式决定的,而是由厂家的技术能力和产品完成度来决定的。
教学内容:一、调频信号的产生由调频信号的频谱分析可知,调制后的,要产生调频信号就必须利用非线性调频信号中包含许多新的频率分量,因此元器件进行频率变换;产生调频信号的方法主要有两种:直接调频和间接调频;直接调频是用调制信号直接控制载波的瞬时频率,产生调频信号;间接调频则是先将调制信号进行积分,再对载波进行调相,获得调频信号;二、直接调频电路直接调频的基本原理是利用调制信号直接控制振荡器的振荡频率,使其不失真地反映调制信号变化规律;1改变振荡回路的元件参数实现调频调频电路中常用的可控电容元件有变容二极管和电抗管电路;常用的可控电感元件是具有铁氧体磁芯的电感线圈或电抗管电路,而可控电阻元件有PIN二极管和场效应管;若将这样的可控参数元件或电路直接代替振荡器振荡回路的某一元件例如L或C或者直接并接在振荡回路两端,这样振荡频率就会与可控参数元件的数值有关,用调制信号去控制这样元件的参数值,就能够实现直接调频;2变容二极管直接调频电路1变容二极管的特性变容二极管是根据PN结的结电容随反向电压改变而变化的原理设计的一种二极管;它的极间结构、伏安特性与一般检波二极管没有多大差别;不同的是在加反向偏压时,变容二管呈现一个较大的结电容;这个结电4312容的大小能灵敏地随反向偏压而变化;正是利用了变容二极管这一特性,将变容二极管接到振荡器的振荡回路中,作为可控电容元件,则回路的电容量会明显地随调制电压而变化,从而改变振荡频率,达到调频的目的;右图为变容二极管的反向电压与其结电容呈非线性关系2基本原理变容二极管是振荡回路的一个组成部分,加在变容二极管上的反向电压u = VCC –VB+Ut,结电容是振荡器的振荡回路的一部分,结电容随调制信号变化,回路总电容也随调制信号变化,故振荡频率也将随调制信号而变化;只要适当选取变容二极管的特性及工作状态,可以使振荡频率的变化与调制信号近似成线性关系,从而实现调频;3电路分析a变容二极管作为振荡回路的总电容根据调频的要求,当变容二极管的结电容作为回路总电容时,实现线性调频的条件是变容二极管的电容变化系数 r=2;在相对频偏较小的情况下,对变容二极管值的要求并不严格;然而在微波调频制多路通信系统中,通常需要产生相对频偏比较大的调频信号;这时由于m值较大,当时.就会产生较大的非线性失真和中心频率偏移;这种情况下,则应采用r近于2的变容二极管;b变容二极管部分接入振荡回路调频特性取决于回路的总电容 C,而 C 可以看成一个等效的变容二极管,随调制电压Ut的变化规律不仅决定于变容二极管的结电容CJ随调制电压的变化规律,而且还与C1和CC的大小有关;因为变容二极管部分接入振荡回路,其中心频率稳定度比全部接入振荡回路要高,但其最大频偏要减小;4变容二极管调频电路的优点电路简单,工作频率高,易于获得较大的频偏,而且在频偏较小的情况下,非线性失真可以很小;因为变容二极管是电压控制器件,所需调制信号的功率很小;这种电路的缺点是偏置电压漂移,温度变化等会改变变容二极管的结电容,即调频振荡器的中心频率稳定度不高,而在频偏较大时,非线性失真较大;对晶体振荡器进行直接调频时,因为振荡回路中引入了变容二极管,所以调频振荡器的频率稳定度相对于不调频的晶体振荡器是有所下降;三、间接调频-由调相实现调频实现调相的方法通常有三类:一类是可变移相法调相;第二类是向量合成的移相电路;第三类是脉冲调相电路;因为调相电路输入的载波振荡信号可采用频率稳定度很高的晶体振荡器,所以采用调相电路实现间接调频,可以提高调频电路中心频率的稳定度;在实际应用中,间接调频是一种应用较为广泛的方式;1变容二极管移相的单回路的移相电路将载波振荡信号电压通过一个受调制信号电压控制的相移网络,即可以实现调相;可控相移网络有多种实现电路;其中,应用最广的是变容二极管调相电路;下图为单回路变容二极管调相电路和调相电路的相频特性等幅的频率恒定的载波信号通过谐振频率受调制信号调变的谐振回路,其输出电压将是一个相位受调制信号控制的调相波;在实际应用中.通常需要较大的调相指数,为了增大它,可以采用多级单回路构成的变容二极管调相电路;2三级单回路变容二极管调相电路原理图如下:上图是一个三级单回路变容二极管调相电路;每一个回路均有一个变容二极管以实现调相;三个变容二极管的电容量变化均受同一调制信号控制;为了保证三个回路产生相等的相移,每个回路的Q值都可用可变电阻22k调节;级间采用小电容1PF作为耦合电容,因其耦合弱,可认为级与级之间的相互影响较小,总相移是三级相移之和;这种电路能在范围内得到线性调制;这类电路由于电路简单、调整方便、故得到了广泛的应用;。