常用复杂控制系统
- 格式:ppt
- 大小:1.11 MB
- 文档页数:44
复杂系统控制和优化技术复杂系统是指由多个部分相互作用而形成的系统,如交通网络、金融市场、生态系统等。
这些系统通常具有多样性、不确定性和灵敏性。
因此,对于复杂系统的控制和优化显得尤为重要。
本文将探讨复杂系统控制和优化技术。
1. 复杂系统控制技术复杂系统控制技术的目标是通过控制系统的输入和输出来稳定和优化系统的性能。
常用的复杂系统控制技术包括反馈控制、前馈控制和自适应控制。
反馈控制是一种最基本的控制方法,它通过对系统输出的反馈来调整输入,从而稳定系统。
反馈控制的本质是把输出与目标进行比较,然后产生误差信号并作为控制信号输入系统。
前馈控制是在输入信号中加入一个先验信息,以改进系统响应速度和稳定性。
具体来说,即在目标信号之前,将一些预测信号加入输入信号之中。
这样,系统会更快地响应,并更加稳定。
常见的前馈控制技术包括预测控制和自适应前馈控制。
自适应控制是一种能够自动调整控制器参数以达到最佳性能的控制方法。
自适应控制器利用反馈信号对系统进行监控,并根据监控结果改变控制器的行为。
最常用的自适应控制技术包括模型参考自适应控制、最小方差自适应控制和模糊自适应控制。
2. 复杂系统优化技术复杂系统优化技术的目标是找到系统的最优解,以达到最大化系统的性能。
常用的复杂系统优化技术包括遗传算法、蚁群算法和粒子群优化算法等。
遗传算法是一种基于进化的优化算法。
它通过对解决方案进行一定的变异、交叉和选择等操作,以逐步优化解决方案。
遗传算法的核心思想是将每个候选解看作一个“基因”,并通过对基因进行“进化”产生新的解决方案。
蚁群算法是一种基于蚂蚁群体行为的优化算法。
它借鉴了蚂蚁在寻找食物时的行为特征,通过模拟蚁群的行为寻找问题的最优解。
蚁群算法的重要性在于它能够适应复杂系统的非线性特性。
粒子群优化算法是一种基于群体行为的优化算法,其核心思想是将优化问题转化为寻求一组粒子在搜索空间中的最优位置。
与遗传算法和蚁群算法相比,粒子群优化算法更加灵活和高效。
21 复杂控制系统一、概述1、单回路控制系统——简单控制系统:在一般情况下能够满足生产控制要求。
特殊情况:系统干扰因素多、干扰变化剧烈,以及工艺特殊要求。
2、复杂控制系统——串级控制系统、比值控制系统、均匀控制系统、前馈控制系统、选择控制系统、分程控制系统等复杂系统--随着控制理论与工业应用的发展,包含的内容也不同,例如复杂大系统--人口系统,环境控制,能源控制,企业生产经营控制等。
3、多回路系统多回路系统特征:基于PID控制策略;由多个控制回路组成的系统。
4、多回路系统的发展80-90%控制系统是基于PID控制的系统,包括多回路系统。
多回路系统应用状况以乙烯生产厂为例,它共有421个控制回路其中:常规PID单回路347个,串级、比值等74个(串级24)多回路系统占17.5%。
二、串级控制系统的构成加热炉是工业生产中常用设备之一。
工艺要求被加热物料的温度为某一定值,因此选取加热炉的出口温度为被控变量,选取燃料量为操纵变量,构成图5-1(a)所示的单回路控制系统。
影响炉出口温度的因素很多,主要有:被加热物料的流量和炉前温度变化[f1(t)];燃料热值的变化、压力的波动[f2(t)];烟囱挡板位置的改变、抽力的变化[f3(t)]等。
图5-1(a)系统的特点是,所有对被控变量的扰动都包含在这个回路之中,并都由温度控制器来克服。
但是控制通道的时间常数和容量滞后较大,控制作用不用及时,系统克服扰动的能力较差,不能满足工艺的要求。
为此,另外选择,炉膛温度为被控变量,燃料量为操纵变量,设计图5-1(b)所示的单回路控制系统,以维持炉口温度为某一定值。
该系统的特点是对于扰动[f2(t)] 、[f3(t)]能及时有效地克服,但是扰动[f1(t)]未包括在系统内,系统不能克服扰动[f1(t)]对炉出口温度的影响,仍然不能达到生产工艺要求。
综上分析,为了充分应用上述两种方案的优点,选取炉出口温度为被控变量,选择炉膛温度为中间辅助参数,把炉出口温度控制器的输出作为炉膛温度控制器的设定值,构成了图5-2所示的炉出口温度与炉膛温度的串级控制系统,图5-3是它的方块图。
复杂控制系统。
一.串级控制系统串级控制系统的基本概念串级控制系统的采用了两个控制器,我们将温度控制器称为主控制器,把流量控制器称为副控制器。
主控制器的输出作为副控制器的设定,然后由副控制器的输出去操纵控制阀。
在串级控制系统中出现了两个被控对象,即主对象(温度对象)和副对象(流量对象),所以有两个被控参数,主被控参数(温度)和副被控参数(流量)。
主被控参数的信号送往主控制器,而副被控参数的信号被送往副控制器作为测量,这样就构成了两个闭合回路,即主回路(外环)和副回路(内环)。
1. 改善了对象特征,起了超前控制的作用2. 改善了对象动态特性,提高了工作频率3. 提高了控制器总放大倍数,增强了抗干扰能力4. 具有一定的自适应能力,适应负荷和操作条件的变化串级控制系统的设计原则1. 在选择副参数时,必须把主要干扰包含在副回路中,并力求把更多的干扰包含在副回路中。
2. 选择副参数,进行副回路的设计时,应使主、副对象的时间常数适当匹配。
3. 方案应考虑工艺上的合理性、可能性和经济性。
串级控制系统的应用场合1. 被控对象的控制通道纯滞后时间较长,用单回路控制系统不能满足质量指标时,可采用串级控制系统。
2对象容量滞后比较大,用单回路控制系统不能满足质量指标时,可采用串级控制系统。
3.控制系统内存在变化激烈且幅值很大的干扰。
4. 被控对象具有较大的非线性,而负荷变化又较大。
串级控制系统应用中的问题1. 主、副控制器控制规律的选择串级控制系统中主、副控制器的控制规律选择都应按照工艺要求来进行。
主控制器一般选用PID控制规律,副控制器一般可选P控制规律。
2. 主、副控制器正、反作用方式的确定。
副控制器作用方式的确定,与简单控制系统相同。
主控制器的作用方向只与工艺条件有关。
3. 串级控制系统控制器参数整定⑴在主回路闭合的情况下,主、副控制器都为纯比例作用,并将主控制器的比例度置于100%,用4:1衰减曲线法整定副控制器,求取副回路4:1衰减过程的副控制器比例度(δ2p)以及操作周期(T2P)。
DCS控制系统和P1C控制系统的对比2023目录1.DCS控制系统和P1C控制系统的定义区别 (1)2.DCS控制系统和P1C控制系统的区别 (1)3.DCS分散控制系统的特点与应用 (2)3.1. DCS分散控制系统的特点 (2)1.2.DCS分散控制系统的应用 (3)4.什么是P1C,它有什么作用、特点和优势 (4)4. 1. P1C的特点 (4)5. 2. P1C的优势 (5)6. 3. P1C的应用 (5)5.DCS控制系统和P1C控制系统的定义区别DCS控制系统(DiStribUtedContro1SyStem)是一种分布式控制系统,主要用于大型、复杂的连续过程控制,如炼油、化工、电力等。
该系统由多个控制器组成一个完整的系统,可实现对过程变量的监测和控制,并能够对大量的数据进行处理和显示,从而实现对生产过程的优化和自动化控制。
P1C控制系统(PrOgrammabIe1OgiCCOntrO11er)是一种可编程控制器,主要用于离散制造过程控制,如自动化生产线、机床加工等。
该系统采用数字化控制技术,能够对开关量进行精确控制,通过编程实现对生产过程的自动化控制和监测。
P1C是一种用于工业控制的电子设备,包含了CPU、内存、输入输出端口、通信接口等多种功能组件。
其通过程序进行控制,实现对各种工业设备、机器的自动化控制。
P1C最早出现在20世纪60年代,从那时起,P1C就在工业自动化领域中发挥着不可替代的作用。
6.DCS控制系统和P1C控制系统的区别DCS控制和P1C控制都是常用的工业自动化控制系统,它们有以下区别:应用范围:DCS主要用于大型、复杂的连续过程控制,如炼油、化工、电力、冶金等;而P1C主要用于离散制造过程控制,如自动化生产线、机床加工系统结构:DCS采用分布式控制系统结构,多个控制器组成一个完整的系统;而P1C采用集中式控制系统结构,一个控制器可以控制多个设备。
控制方式:DCS采用模拟量控制,能够对模拟量信号进行精细控制;而P1C主要采用数字量控制,能够对开关量进行精确控制。
常用的几种复杂控制在DCS系统中的应用摘要随着化工行业的发展,系统的控制发挥了重要的作用,并且在化工行业的发展中,为了满足工艺生产条件的控制,应用最多的是较为复杂的控制。
本文笔者就当前应用较为广泛的几种复杂控制进行了相应的阐述,介绍了各个方案的控制原理以及在系统中的应用情况,目的是为复杂控制在DCS系统中的应用提供指导和借鉴。
关键词复杂控制;DCS系统;比值控制;分程控制;串级控制DCS系统需要复杂控制来为系统的正常运行提供有力的条件和支持,以便促进系统的正常运行。
同时对于系统的复杂控制的方法较多,本文着重阐述集中常用的复杂控制,以便为对复杂控制在DCS系统中的应用进行总结和分析。
1常用复杂控制的原理1.1比值控制在化工生产的过程中,很多工作需要将材料同时投入到反应器中,这就需要借助于比值控制,进而确定各种材料的比例,实现化工生产的的顺利进行,因为化工生产是一个特殊的生产过程,对各个材料的比例有严格的要求,因此需要利用比值控制对原料等比例进行有效地控制,进而推进化工生产工作的开展。
以甲醛制备为例,为了实现生产的安全和高效率,需要对四种材料的比例进行分析和控制,这就需要借助于比值控制,利用比值控制的组态策略,计算出其他三种原料气体的体积量,最终实现甲醛制备的完成。
在实际的生产控制过程汇总,实际的工作环境是处于不断发展变化中,并且设备本身也存在一定的差异性,这就容易导致一种原料的进料量产生变化,为了满足生产的需要,另一种原料也要跟随第一种原料的变化而变化,确保两种原料的设定值是不变的,在比值控制的帮助下,计算出输出的设定值,即调节模块的设定值,在不断的比较运算中,通模块的输出来控制调节阀,决定调节阀的开度,又对原料进行调整,进而实现两种原料量的协调。
可见,比值控制对化工生产中原料用量的控制和协调起到了很好的控制作用。
1.2分程控制一般而言,通过对一只调节阀的操作便能够实现对一台调节器的输出工作,如果通过一只调节器对两个或者是两个以上的调节阀进行控制,并且是通过对信号的分析根据不同的需求去对不同的阀门进行操作,这种控制方式就是分程控制。