光谱分析-仪器分析
- 格式:ppt
- 大小:403.01 KB
- 文档页数:43
一、实验目的1. 理解光谱分析的基本原理及其在化学、材料科学等领域的应用。
2. 掌握光谱仪器的操作方法,包括紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)和荧光光谱仪。
3. 学习分析玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。
4. 了解影响光谱分析结果的主要因素,并尝试进行误差分析和数据处理。
二、实验原理光谱分析是利用物质对光的吸收、发射、散射等特性,对物质的组成、结构进行分析的一种方法。
主要包括紫外-可见光谱、红外光谱、荧光光谱等。
1. 紫外-可见光谱:物质对紫外-可见光的吸收与分子中的电子跃迁有关,通过测量吸收光谱,可以了解物质的组成和结构。
2. 红外光谱:物质对红外光的吸收与分子中的振动、转动有关,通过测量红外光谱,可以了解物质的官能团和化学结构。
3. 荧光光谱:物质在吸收光子后,会发射出光子,通过测量荧光光谱,可以了解物质的分子结构、聚集态等。
三、实验仪器与材料1. 紫光/可见光光度计2. 傅里叶变换红外光谱仪(FTIR)3. 荧光光谱仪4. 标准样品(玻璃、薄膜、固体粉末、发光材料)5. 仪器操作说明书四、实验步骤1. 紫光/可见光光度计操作(1)打开仪器,预热30分钟。
(2)设置波长范围、扫描速度、灵敏度等参数。
(3)将标准样品放入样品池,进行光谱扫描。
(4)记录吸收光谱,并进行数据处理。
2. 傅里叶变换红外光谱仪(FTIR)操作(1)打开仪器,预热60分钟。
(2)设置波数范围、分辨率、扫描次数等参数。
(3)将标准样品放入样品池,进行光谱扫描。
(4)记录红外光谱,并进行数据处理。
3. 荧光光谱仪操作(1)打开仪器,预热30分钟。
(2)设置激发波长、发射波长、扫描速度等参数。
(3)将标准样品放入样品池,进行光谱扫描。
(4)记录荧光光谱,并进行数据处理。
五、实验结果与分析1. 紫光/可见光光度计通过比较标准样品和待测样品的吸收光谱,可以确定待测样品的组成和结构。
仪器分析部分作业题参考答案第一章绪论1-21、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进行组分测量的手段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。
因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。
第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。
各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。
各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光; 透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像; 出射狭缝:采集色散后具有特定波长的光入射样品或检测器 2-3棱镜的分光原理是光的折射。
仪器分析(名词解释).doc仪器分析(Instrumental Analysis)是一门研究测定物质的含量、结构及性质的科学。
它是由分析化学与仪器学结合起来的科学。
它是对物质的构成、含量及性质进行分析测定和确定的方法,也就是说,借助仪器和手段,通过物质本身的反应,检测物质的特征和各种组成,以及它们之间的关系,从而达到确定物质组成和性质的目的。
仪器分析具有准确、快速、高效、可重复等特点。
它结合了传统的分析化学和仪器学的技术,能够检测出物质的特征,并且能够精确地测定出物质的含量。
仪器分析可以分为光谱分析、质谱分析、电化学分析和核磁共振分析等。
光谱分析是仪器分析中最常用的一种技术。
它利用物质发出的不同波长的光,从而判断物质的组成、结构及性质。
可以分为原子光谱分析、分子光谱分析、X射线光谱分析、红外光谱分析、紫外光谱分析等。
质谱分析是测定物质分子结构的另一种方法。
它利用质谱仪,将物质分成其原子的离子,并以质量分辨率的形式测定出物质的分子结构。
它分为电子质谱分析和离子质谱分析两类。
电化学分析是测定物质及其反应物的含量时使用的常用方法。
它通过测量物质在电极上发生的电化学反应,从而测定出物质的含量。
它有很大的应用前景,因为它可以测定出低激活能量物质的含量。
核磁共振分析(NMR)是一种测定物质结构和性质的非常有效的方法。
它可以通过在核磁场中对物质的核磁共振信号的分析,测定出物质的结构和性质。
它也可用于测定物质的含量。
仪器分析是一门研究物质的含量、结构及性质的科学,它是由分析化学与仪器学结合起来的科学。
仪器分析具有准确、快速、高效、可重复等特点,它的应用非常广泛,可以用于科学研究、工业生产、农业生产等多个领域。
它是通过借助仪器和手段,结合传统的分析化学和仪器学技术,对物质进行分析测定和确定的方法,从而达到确定物质组成和性质的目的。
常见的仪器分析方法有光谱分析、质谱分析、电化学分析和核磁共振分析等。
AES 原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。
原子发射一般是线状光谱。
原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能量,外层电子从基态跃迁到较高能态变成激发态,经过10-8s,外层电子就从高能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。
光谱选择定律:①主量子数的变化△ n为包括零的整数,②△ L= ± 1,即跃迁只能在S项与P 项间,P与S或者D间,D到P和S=0,即不同多重性状间的迁移是不可能的。
%△ J=0,± 1。
但在J=0时,J=0的跃迁是允许的。
N2S+1L J影响谱线强度的主要因素:1激发电位2跃迁概率3统计权重4激发温度(激发温度f离子f原子光谱J离子光谱f)5原子密度原子发射光谱仪组成:激发光源,色散系统,检测系统,激发光源:①火焰:2000到3000K,只能激发激发电位低的原子:如碱性金属和碱土金属。
②直流电弧:4000到7000K,优点:分析的灵敏度高,背景小,适合定量分析和低含量的测定。
缺点:不宜用于定量分析及低熔点元素的分析。
③交流电弧:温度比直流高,离子线相对多,稳定性比直流高,操作安全,但灵敏度差④火花:一万K ,稳定性好,定量分析以及难测元素。
每次放电时间间隔长,电极头温度低。
适合分析熔点低。
缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均匀的试样)⑤ 辉光激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱线强度大,背景小,检出限低,稳定性好,准确度高(设备复杂,进样不方便)⑥电感耦合等离子体10000K 基体效应小,检出限低,限行范围宽⑦激光一万K,适合珍贵样品分光系统:单色器:入射狭缝,准直装置,色散装置,聚焦透镜,出射狭缝。
棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。
光栅:光的折射与干涉的总效果,不同波长的光通过光栅作用各有不同的衍射角。
仪器分析方法仪器分析方法是化学分析中常用的一种技术手段,它通过利用各种仪器设备对样品进行分析,从而得到样品的成分、结构和性质等信息。
仪器分析方法的发展,为化学分析提供了更加准确、快速、灵敏的手段,广泛应用于环境监测、食品安全、药物研发等领域。
本文将就常见的仪器分析方法进行介绍和分析。
一、光谱分析。
光谱分析是利用物质对光的吸收、发射、散射等特性进行分析的一种方法。
常见的光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等。
这些方法通过测量样品对特定波长的光的吸收或散射情况,从而得到样品的成分和结构信息。
光谱分析方法具有快速、非破坏性、灵敏度高的特点,被广泛应用于化学分析领域。
二、色谱分析。
色谱分析是利用物质在固定相和流动相作用下的分离和检测特性进行分析的一种方法。
常见的色谱分析包括气相色谱、液相色谱、超高效液相色谱等。
这些方法通过样品在色谱柱中的分离和检测,从而得到样品中各种成分的含量和结构信息。
色谱分析方法具有分离效果好、分析速度快、灵敏度高的特点,被广泛应用于食品安全、环境监测等领域。
三、质谱分析。
质谱分析是利用物质在电场或磁场中的运动特性进行分析的一种方法。
常见的质谱分析包括质子磁共振质谱、质子转移反应质谱、质子撞击电离质谱等。
这些方法通过测量样品中各种离子的质荷比,从而得到样品的成分和结构信息。
质谱分析方法具有高分辨率、高灵敏度、高准确度的特点,被广泛应用于药物研发、生物分析等领域。
四、电化学分析。
电化学分析是利用物质在电极上的电化学反应特性进行分析的一种方法。
常见的电化学分析包括极谱法、循环伏安法、恒电位法等。
这些方法通过测量样品在电极上的电流和电压变化,从而得到样品的成分和性质信息。
电化学分析方法具有灵敏度高、实时性好、样品准备简单的特点,被广泛应用于环境监测、能源材料等领域。
综上所述,仪器分析方法在化学分析中具有重要的地位和作用,它为化学分析提供了更加准确、快速、灵敏的手段。
随着科技的不断发展,仪器分析方法将会不断完善和创新,为人类的健康和环境保护提供更多的支持和帮助。
(完整版)仪器分析习题答案-光谱分析部分仪器分析部分作业题参考答案第⼀章绪论1-21、主要区别:(1)化学分析是利⽤物质的化学性质进⾏分析;仪器分析是利⽤物质的物理或物理化学性质进⾏分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能⽤于组分的定量或定性分析;仪器分析还能⽤于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度⾼,适合于常量组分分析;仪器分析灵敏度⾼、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进⾏组分测量的⼿段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的⼀种技术设备,是⼀种装置;仪器分析是利⽤仪器设备进⾏组分分析的⼀种技术⼿段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的⽬的,分析仪器是仪器分析的⼯具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号⽽不是其浓度或质量数,⽽信号与浓度或质量数之间只有在⼀定的范围内才某种确定的关系,且这种关系还受仪器、⽅法及样品基体等的影响。
因此要进⾏组分的定量分析,并消除仪器、⽅法及样品基体等对测量的影响,必须⾸先建⽴特定测量条件下信号与浓度或质量数之间的关系,即进⾏定量分析校正。
第⼆章光谱分析法导论2-1光谱仪的⼀般组成包括:光源、单⾊器、样品引⼊系统、检测器、信号处理与输出装置。
各部件的主要作⽤为:光源:提供能量使待测组分产⽣吸收包括激发到⾼能态;单⾊器:将复合光分解为单⾊光并采集特定波长的光⼊射样品或检测器;样品引⼊系统:将样品以合适的⽅式引⼊光路中并可以充当样品容器的作⽤;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进⾏放⼤、转化、数学处理、滤除噪⾳,然后以合适的⽅式输出。
2-2:单⾊器的组成包括:⼊射狭缝、透镜、单⾊元件、聚焦透镜、出射狭缝。
各部件的主要作⽤为:⼊射狭缝:采集来⾃光源或样品池的复合光;透镜:将⼊射狭缝采集的复合光分解为平⾏光;单⾊元件:将复合光⾊散为单⾊光(即将光按波长排列)聚焦透镜:将单⾊元件⾊散后的具有相同波长的光在单⾊器的出⼝曲⾯上成像;出射狭缝:采集⾊散后具有特定波长的光⼊射样品或检测器 2-3棱镜的分光原理是光的折射。
仪器分析法的名词解释近年来,随着科学技术的快速发展,仪器分析法在各个领域的重要性逐渐凸显。
仪器分析法是一种运用专用仪器设备对物质进行分析的方法。
下面将对仪器分析法中的几个重要名词进行解释,以帮助读者更好地了解这一领域。
一、质谱分析质谱分析是一种常见的仪器分析法,通过测量物质分子或原子的质量和相对丰度,从而对其结构和组成进行分析。
利用质谱仪器,可以对固体、液体和气体样品进行分析,并获得准确的分子质量和元素组成信息。
质谱分析在各个领域都有广泛的应用,例如医药研发、环境监测和食品安全等方面。
二、光谱学光谱学是仪器分析法中的一个重要分支,研究物质与光的相互作用。
通过测量物质对不同波长的光的吸收、发射或散射行为,可以获得有关物质分子结构和组成的信息。
主要的光谱学方法包括紫外可见光谱、红外光谱和拉曼光谱等。
光谱学在化学、物理、天文学等领域都有广泛的应用。
三、色谱法色谱法是一种将混合物中的组分根据其在固定相和流动相之间的相互作用差异进行分离的方法。
主要有气相色谱、液相色谱和薄层色谱等不同类型。
色谱法广泛应用于化学、生物化学、环境科学和食品科学等领域,用于分离和鉴定各种物质。
四、电化学分析电化学分析是利用电化学方法对物质进行分析的一种技术。
主要包括电位滴定法、电位分析法和电化学传感器等。
通过测量样品与电极之间的电流和电势差,可以获得关于物质的浓度、电荷和反应动力学等信息。
电化学分析具有快速、灵敏和选择性高的特点,广泛应用于环境监测、药物分析和生命科学研究等方面。
五、原子吸收光谱法原子吸收光谱法是一种通过测量样品中金属元素原子对特定波长光的吸收来进行分析的方法。
原子吸收光谱法广泛应用于环境、食品和制药行业等,用于快速、准确地测定金属元素的含量。
该方法具有高灵敏度和高选择性,并且不需要样品的前处理。
总结起来,仪器分析法是一种运用专用仪器设备对物质进行分析的方法。
质谱分析、光谱学、色谱法、电化学分析和原子吸收光谱法等是仪器分析法中的重要名词。