仪器分析(光谱部分)[深度分析]
- 格式:ppt
- 大小:26.34 MB
- 文档页数:7
第一章绪论1.仪器分析是以物质的物理组成或物理化学性质为基础,探求这些性质在分析过程中所产生分析信号与被分析物质组成的内在关系和规律,进而对其进行定性、定量、进行形态和机构分析的一类测定方法,由于这类方法的测定常用到各种比较贵重、精密的分析仪器,故称为仪器分析。
与化学分析相比,仪器分析具有取样量少、测定是、速度快、灵敏、准确和自动化程度高的显著特点,常用来测定相对含量低于1%的微量、痕量组分,是分析化学的主要发展方向。
2.仪器分析的特点:速度快、灵敏度高、重现性好、样品用量少、选择性高局限性:仪器装置复杂、相对误差较大3.精密度:是指在相同条件下对同一样品进行多次测评,各平行测定结果之间的符合程度。
4、灵敏度:仪器或方法的灵敏度是指被测组分在低浓度区,当浓度改变一个单位时所引起的测定信号的该变量,它受校正曲线的斜率和仪器设备本身精密度的限制。
5.准确度:是多次测定的平均值与真实值相符合的程度,用误差或相对误差来描述,其值越小准确度越高。
6.空白信号:当试样中没有待测组分时,仪器产生的信号。
它是由试样的溶剂、基体材质及共存组分引起的干扰信号,具有恒定性,可以通过空白实验扣除。
7.本底信号:通常将没有试样时,仪器所产生的信号主要是由随机噪声产生的信号。
它是由仪器本身产生的,具有随机性,难以消除,但可以通过增加平行测定次数等方法减小;、8.仪器分析法与化学分析法有何异同:相同点:①都属于分析化学②任务相同:定性和定量分析不同点:①与化学分析相比,仪器分析具有取样量少、测定快速、灵敏、准确和自动化程度高等特点②分析对象不同:化学分析是常量分析,而仪器分析是用来测定相对含量低于1%的微量、衡量组分,是分析化学的主要发展方向9.仪器分析主要有哪些分类:①光分析法:分为非光谱分析法和光谱法两类。
非光谱法:是不涉及物质内部能级跃迁的,通过测量光与物质相互作用时其散射、折射、衍射、干涉和偏振等性质的变化,从而建立起分析方法的一类光学分析法。
仪器分析部分作业题参考答案第一章绪论1-21、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进行组分测量的手段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。
因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。
第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。
各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。
各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光; 透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像; 出射狭缝:采集色散后具有特定波长的光入射样品或检测器 2-3棱镜的分光原理是光的折射。
仪器分析-光谱法总结AES原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。
原子发射一般是线状光谱。
原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能量,外层电子从基态跃迁到较高能态变成激发态,经过10-8s,外层电子就从高能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。
光谱选择定律:①主量子数的变化△n为包括零的整数,②△L=±1,即跃迁只能在S项与P项间,P与S或者D间,D到P和F。
③△S=0,即不同多重性状间的迁移是不可能的。
③△J=0,±1。
但在J=0时,J=0的跃迁是允许的。
N2S+1L J影响谱线强度的主要因素:1激发电位2跃迁概率3 统计权重4激发温度(激发温度↑离子↑原子光谱↓离子光谱↑)5原子密度原子发射光谱仪组成:激发光源,色散系统,检测系统,激发光源:①火焰:2000到3000K,只能激发激发电位低的原子:如碱性金属和碱土金属。
原子发射检测法:①目视法,②光电法,③摄谱法:用感光板来记录光谱,感光板:载片(光学玻璃)和感光乳剂(精致卤化银精致明胶)。
曝光量H=Et E感光层接受的照度、黑度:S=lgT-1=lg io/i io为没有谱线的光强,i通过谱线的光强度i ,透过率T定性分析:铁光谱比较法,标样光谱比较法,波长测定法。
定量法:①基本原理②内标法⑴内标元素和被测元素有相近的物理化学性质,如沸点,熔点近似,在激发光源中有相近的蒸发性。
⑵内标元素和被测元素有相近的激发能,如果选用离子线组成分析线对时,则不仅要求两线对的激发电位相等,还要求内标元素的电离电位相近。
⑶内标元素是外加的,样品中不应有内标元素,⑷内标元素的含量必须适量且固定,⑸汾西线和内标线无自吸或者自吸很小,且不受其他谱线干扰。
⑹如采用照相法测量谱线强度,则要求两条谱线的波长应尽量靠近。
简述内标法基本原理和为什么要使用内标法。
光谱分析仪的原理和应用1. 引言光谱分析仪是一种常见的科学仪器,广泛应用于化学、物理、生物学、环境科学等领域。
它能够将光信号分解为不同波长的光谱成分,通过分析和测量这些光谱成分,可以获得物质的结构、性质和组成等相关信息。
本文将介绍光谱分析仪的原理和常见的应用。
2. 光谱分析仪的原理光谱分析仪是基于光的物理性质来实现的。
光在物质中的传播和相互作用会导致光的频率和能量发生变化,从而形成不同波长的光谱。
光谱分析仪通过光学元件和检测器来获取物质的光谱信息,并通过数据处理得到相关的分析结果。
光谱分析仪的原理包括以下几个方面: - 光源:光谱分析仪通常使用可见光、紫外光或红外光作为光源。
光源的稳定性和光谱范围对于获得准确的光谱信息非常重要。
- 光学元件:光学元件用于对光线进行分散、聚焦和选择性透过等操作。
常见的光学元件包括光栅、棱镜和光纤等。
- 探测器:探测器用于测量光的强度,常见的探测器包括光电二极管(Photodiode)、光电倍增管(Photomultiplier Tube)等。
不同探测器适用于不同波长范围的光谱分析。
- 数据处理:通过对探测器输出信号进行放大、滤波和数学处理等操作,可以得到物质的光谱特征和相关的分析结果。
3. 光谱分析仪的应用光谱分析仪在许多领域都有广泛的应用,下面将介绍几个常见的应用领域:3.1 化学分析光谱分析仪在化学分析中扮演着重要角色。
通过测量物质的吸收、发射、散射等光谱特征,可以确定物质的化学组成、浓度、反应动力学和结构等信息。
常见的化学分析方法包括紫外可见光谱、红外光谱和拉曼光谱等。
•紫外可见光谱:用于测量物质对紫外可见光的吸收和发射情况,可以判断物质的吸收峰、颜色、稀释度等信息。
•红外光谱:用于测量物质对红外光的吸收情况,可以判断物质的官能团、化学键类型、结构等信息。
•拉曼光谱:通过测量物质散射光的频移,可以得到物质的振动和转动状态,从而确定物质的结构和组成。
3.2 生物医学研究在生物医学研究中,光谱分析仪常用于研究细胞、组织和生物大分子的结构和功能。
AES原子发射光谱:原子的外层由高层能及向底层能级,能量以电磁辐射的形式发射出去,这样就得到了发射光谱。
原子发射一般是线状光谱。
原理:原子处于基态,通过电至激发,热至激发或者,光至激发等激发作用下,原子获得能屋,外层电子从基态跃迁到较髙能态变成激发态,经过10%,外层电子就从髙能级向较低能级或基态跃迁,多余能量的发射可得到一条光谱线。
光谱选择定律:①主量子数的变化为包括零的整数,②1,即跃迁只能在S项与P 项间,P与S或者D间,D到P和F。
③△$=(),即不同多重性状间的迁移是不可能的。
@AJ=0, ±1。
但在J=O 时,J=0的跃迁是允许的。
N2S+1L J影响谱线强度的主要因素:1激发电位2跃迁概率3统汁权重4激发温度(激发温度f离子t原子光谱I离子光谱t )5原子密度原子发射光谱仪组成:激发光源,色散系统,检测系统,激发光源:①火焰:2000到3000K,只能激发激发电位低的原子:如碱性金属和碱上金属。
②直流电弧:4000到7000K,优点:分析的灵敏度髙,背景小,适合定量分析和低含量的测定。
缺点:不宜用于定量分析及低熔点元素的分析。
③交流电弧:温度比直流高,离子线相对多,稳左性比直流髙,操作安全,但灵敏度差④火花:一万K,稳定性好,泄量分析以及难测元素。
每次放电时间间隔长,电极头温度低。
适合分析熔点低。
缺点:灵敏度较差,背景大,不宜做痕量元素分析(金属,合金等组成均匀的试样)⑤辉光激发能力强,可以激发很难激发的元素,(非金属,卤素,一些气体)谱线强度大,背景小,检岀限低,稳左性好,准确度髙(设备复杂,进样不方便)⑥电感耦合等离子体10000K基体效应小,检岀限低,限行范用宽⑦激光一万K,适合珍贵样品分光系统:单色器:入射狭缝,准直装巻,色散装置,聚焦透镜,出射狭缝。
棱镜:分光原理:光的折射,由于不同的光有不同的折射率,所以分开。
光栅:光的折射与干涉的总效果,不同波长的光通过光栅作用各有不同的衍射角。
(完整版)仪器分析习题答案-光谱分析部分仪器分析部分作业题参考答案第⼀章绪论1-21、主要区别:(1)化学分析是利⽤物质的化学性质进⾏分析;仪器分析是利⽤物质的物理或物理化学性质进⾏分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能⽤于组分的定量或定性分析;仪器分析还能⽤于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度⾼,适合于常量组分分析;仪器分析灵敏度⾼、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进⾏组分测量的⼿段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的⼀种技术设备,是⼀种装置;仪器分析是利⽤仪器设备进⾏组分分析的⼀种技术⼿段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的⽬的,分析仪器是仪器分析的⼯具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号⽽不是其浓度或质量数,⽽信号与浓度或质量数之间只有在⼀定的范围内才某种确定的关系,且这种关系还受仪器、⽅法及样品基体等的影响。
因此要进⾏组分的定量分析,并消除仪器、⽅法及样品基体等对测量的影响,必须⾸先建⽴特定测量条件下信号与浓度或质量数之间的关系,即进⾏定量分析校正。
第⼆章光谱分析法导论2-1光谱仪的⼀般组成包括:光源、单⾊器、样品引⼊系统、检测器、信号处理与输出装置。
各部件的主要作⽤为:光源:提供能量使待测组分产⽣吸收包括激发到⾼能态;单⾊器:将复合光分解为单⾊光并采集特定波长的光⼊射样品或检测器;样品引⼊系统:将样品以合适的⽅式引⼊光路中并可以充当样品容器的作⽤;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进⾏放⼤、转化、数学处理、滤除噪⾳,然后以合适的⽅式输出。
2-2:单⾊器的组成包括:⼊射狭缝、透镜、单⾊元件、聚焦透镜、出射狭缝。
各部件的主要作⽤为:⼊射狭缝:采集来⾃光源或样品池的复合光;透镜:将⼊射狭缝采集的复合光分解为平⾏光;单⾊元件:将复合光⾊散为单⾊光(即将光按波长排列)聚焦透镜:将单⾊元件⾊散后的具有相同波长的光在单⾊器的出⼝曲⾯上成像;出射狭缝:采集⾊散后具有特定波长的光⼊射样品或检测器 2-3棱镜的分光原理是光的折射。