高三第一轮复习 函数的图象
- 格式:doc
- 大小:2.11 MB
- 文档页数:9
专题11 函数的图象【考点预测】一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数. 二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数);若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y fx -=与()y f x =的图像关于y x =对称.(3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到. 【方法技巧与总结】(1)若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.(2)设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.(3)若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.(4)函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ba x +=对称. (5)函数)(x f y =与函数)2(x a f y -=的图象关于直线a x =对称. (6)函数)(x f y =与函数)2(2x a f b y --=的图象关于点)(b a ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型归纳目录】题型一:由解析式选图(识图) 题型二:由图象选表达式 题型三:表达式含参数的图象问题 题型四:函数图象应用题 题型五:函数图像的综合应用【典例例题】题型一:由解析式选图(识图)例1.(2022·浙江·赫威斯育才高中模拟预测)函数2()sin 12xf x x =++的图象可能是( ) A . B .C .D .【答案】D 【解析】 【分析】通过判断()f x 不是奇函数,排除A ,B ,又因为302f π⎛⎫<⎪⎝⎭,排除C ,即可得出答案. 【详解】因为2()sin 12x f x x =++的定义域为R ,又因为()()222sin()sin 1221xx x f x x x f x -⋅-=-+=-+≠-++,所以()f x 不是奇函数,排除A ,B. 33223322sin()10221212f ππππ⎛⎫=+=-+< ⎪⎝⎭++,所以排除C.故选:D.例2.(2022·陕西·汉台中学模拟预测(理))函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据函数的定义域与奇偶性,排除A 、B 选项;结合导数求得函数在(1,)+∞上的单调性,排除D 选项,即可求解. 【详解】由题意,函数()2ln x f x x =的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x =,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增, 所以排除D 选项,选项C 符合. 故选:C.例3.(2022·天津·二模)函数sin exx xy =的图象大致为( )A .B .C .D .【答案】D 【解析】 【分析】 分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】 令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x ----===, 所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy =>,排除C 选项. 故选:D.例4.(2022·全国·模拟预测)已知函数())lnsin f x x x =⋅则函数()f x 的大致图象为( )A .B .C .D .【答案】A【分析】先利用函数的奇偶性排除部分选项,再根据()0,x π∈时,函数值的正负判断. 【详解】易知函数)lny x =为奇函数,sin y x =也是奇函数,则函数())ln sin f x x x =⋅为偶函数,故排除选项B ,C ;因为)lnln y x ⎛⎫==,当0x >1x >恒成立,所以ln 0⎛⎫<恒成立, 且当()0,x π∈时,sin 0x >,所以当()0,x π∈时,()0f x <,故选项A 正确,选项D 错误, 故选:A .例5.(2022·全国·模拟预测)函数()22e xx xf x -=的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据f (x )的零点和x →+∞时函数值变化情况即可判断求解. 【详解】由()0f x =得0x =或2,故排除选项A ;当x →+∞时,函数值无限靠近x 轴,但与x 轴不相交,只有选项B 满足.例6.(2022·河北·模拟预测)函数4cos3()cos (ππ)33xf x x x =---≤≤的部分图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】利用函数的奇偶性和代入特殊值即可求解. 【详解】由已知条件得函数()f x 的定义域关于原点对称, ∵()()cos 34()cos 33x f x x --=---()4cos3cos 33x x f x -=-=, ∴()f x 为偶函数,函数的图象关于y 轴对称,则排除选项B 、C , 又∵4cos3π(π)cos π33f =--4181333=++=, ∴排除选项D , 故选:A .【方法技巧与总结】利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案题型二:由图象选表达式例7.(2022·全国·模拟预测)已知y 关于x 的函数图象如图所示,则实数x ,y 满足的关系式可以为( )A .311log 0x y --=B .321xx y-=C .120x y --=D .ln 1x y =-【答案】A 【解析】 【分析】将311log 0x y --=化为11133x x y ---⎛⎫== ⎪⎝⎭,结合图像变换,可判断A;取特殊值验证,可判断B;作出函数12x y -=的图象,可判断C;根据函数ln 1y x =+的性质,可判断D.【详解】 由311log 0x y --=,得31log 1x y=-, 所以3log 1y x -=-,即3log 1y x =--, 化为指数式,得11133x x y ---⎛⎫== ⎪⎝⎭,其图象是将函数1,01333,0xxx x y x ⎧⎛⎫≥⎪⎛⎫⎪==⎨⎝⎭⎪⎝⎭⎪<⎩的图象向右平移1个单位长度得到的, 即为题中所给图象,所以选项A 正确;对于选项B ,取1x =-,则由()31121y---=,得21y =>,与已知图象不符,所以选项B 错误; 由120x y --=,得12x y -=,其图象是将函数2xy =的图象向右平移1个单位长度得到的,如图:与题中所给的图象不符,所以选项C 错误;由ln 1x y =-,得ln 1y x =+,该函数为偶函数,图象关于y 轴对称, 显然与题中图象不符,所以选项D 错误, 故选:A.例8.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭【答案】C 【解析】 【分析】分三步进行图像变换①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 【详解】12()()(1)(12)x xx x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半 故选:C.例9.(2022·浙江·模拟预测)已知函数()f x 的大致图象如图所示,则函数()y f x =的解析式可以是( )A .()()2211--=xxex y eB .()21sin -=xxex y eC .()()2211-+=xxex y eD .()21cos -=xxex y e【答案】B【解析】 【分析】根据函数图象,可知函数为偶函数,排除A ,D ,根据C 项函数没有零点,排除C 项,最终选出正确结果. 【详解】根据函数图象,可知函数为偶函数,排除A ,D ;对于C ,当0x >时,22110,2-+>≥x xe x e x ,函数显然不存在零点,排除C . 故选:B .例10.(2022·全国·模拟预测)已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()()1πsin f x x x =-C .()()sin π1f x x x =+D .()()1cos πf x x x =-【答案】B 【解析】 【分析】根据已知图象的对称性,结合AC 的奇偶性可排除AC ,根据已知图象f (0)=0可排除D ,从而正确可得B 为正确选项. 【详解】对于A ,()()()sin πsin πf x x x x x f x -=--==,故()sin πf x x x =为偶函数,图象应该关于y 轴对称,与已知图象不符;对于C ,()()sin ππf x x x =+sin πx x =-也为偶函数,故排除AC ; 对于D ,()01f =-,与已知图象不符,故排除D .对于B ,()()()()()()221sin 2(1)sin π1sin ππf x x x x x x x f x -=---=--=-=,故f (x )关于x =1对称,f (0)=0,均与已知图象符合,故B 正确. 故选:B .例11.(2022·河北沧州·模拟预测)下列图象对应的函数解析式正确的是( )A .()cos f x x x =B .()sin f x x x =C .()sin cos f x x x x =+D .()cos sin f x x x x =+【答案】D 【解析】 【分析】由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对选项B 、C :由函数()f x 为偶函数即可判断,对选项A :函数()f x 为奇函数,但()cos 0222f πππ==即可判断;对选项D :函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>即可判断.【详解】解:由图可知,函数()f x 的图象关于原点中心对称,所以函数()f x 为奇函数,且()02f π>,对A :因为()()()cos cos ()f x x x x x f x -=--=-=-,所以函数()f x 为奇函数,但()cos 0222f πππ==,故选项A 错误;对B :因为()()()sin sin ()f x x x x x f x -=--==,所以函数()f x 为偶函数,故选项B 错误;对C :因为()()()()sin cos sin cos ()f x x x x x x x f x -=--+-=+=,所以函数()f x 为偶函数,故选项C 错误; 对D :因为()()()()cos sin cos sin ()f x x x x x x x f x -=--+-=--=-,所以函数()f x 为奇函数,且()cos sin 102222f ππππ=+=>,符合题意,故选项D 正确. 故选:D.例12.(2022·浙江绍兴·模拟预测)已知函数()sin f x x =,()e e x x g x -=+,下图可能是下列哪个函数的图象( )A .()()2f x g x +-B .()()2f x g x -+C .()()⋅f x g xD .()()f xg x【答案】D 【解析】 【分析】根据图象体现的函数性质,结合每个选项中函数的性质,即可判断和选择. 【详解】由图可知,图象对应函数为奇函数,且()011f <<; 显然,A B 对应的函数都不是奇函数,故排除;对C :()()()sin e e x xy f x g x x -=⋅=⋅+,其为奇函数,且当1x =时,11sin1e e 1e 2⎛⎫⋅+>⨯> ⎪⎝⎭,故错误;对D :y =()()f xg x sin e e x xx-=+,其为奇函数,且当1x =时,sin110112e e<<<+,故正确. 故选:D .【方法技巧与总结】1.从定义域值域判断图像位置;2.从奇偶性判断对称性;3.从周期性判断循环往复;4.从单调性判断变化趋势;5.从特征点排除错误选项.题型三:表达式含参数的图象问题(多选题)例13.(2022·全国·高三专题练习)函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .【答案】ABD 【解析】 【分析】讨论0,0,0a b c >=>、0,0,0a b c <=<、0,0,0a b c =><、0,0,0a b c =<<四种情况下,()f x 的奇偶性、单调性及函数值的正负性判断函数图象的可能性. 【详解】当0,0a b ≠=时,22()()()ax axf x f x x c x c--==-=--++;当0,0a c >>时,()f x 定义域为R 且为奇函数,在(0,)+∞上()0f x >,在上递增,在)+∞上递减,A 可能;当0,0a c <<时,()f x 定义域为{|x x ≠且为奇函数,在上()0f x >且递增,在)+∞上()0f x <且递增,B 可能;当0,0,0a b c =≠<时,22()()()b bf x f x x c x c-===-++且定义域为{|x x ≠,此时()f x 为偶函数,若0b >时,在(上()0f x <(注意(0)0f <),在(,)-∞+∞上()0f x >,则C 不可能;若0b <时,在(上()0f x >,在(,)-∞+∞上()0f x <,则D 可能; 故选:ABD(多选题)例14.(2022·福建·莆田二中高三开学考试)函数2||()x f x x a=+的大致图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】先判断函数的奇偶性,可排除D 选项,然后对a 的取值进行分类讨论,比如0a =,可判断A 可能,再对a 分大于零和小于零的情况讨论,结合求导数判断函数单调性,即可判断B,C 是否可能. 【详解】 因为2||()x f x x a=+为定义域上的偶函数, 图象关于y 轴对称,所以D 不可能.由于()f x 为定义域上的偶函数,只需考虑,()0x ∈+∞的情况即可. ①当0a =时,函数2||11()||x f x x x x===,所以A 可能; ②当0a >时,2()xf x x a =+,()222()a x f x x a '-=+,所以()f x 在单调递增,在)+∞单调递减,所以C 可能; ③当0a <时,2()x f x x a =+,()222()0a x f x x a -'=<+,所以()f x 在单调递减,在)+∞单调递减,所以B 不可能; 故选:AC.(多选题)例15.(2021·河北省唐县第一中学高一阶段练习)已知()2xf x x a=-的图像可能是( )A .B .C .D .【答案】ABC 【解析】 【分析】根据a 的取值分类讨论函数f (x )的单调性、奇偶性、值域,据此判断图像即可. 【详解】 若a =0,则f (x )=1x,图像为C ;若a >0,则f (x )定义域为{x |x ,f (0)=0,f (-x )=-f (x ),f (x )为奇函数,x ∈(-∞,时,f (x )<0,x ∈(0)时,f (x )>0,x ∈(0,f (x )<0,x ∈+∞)时,f (x )>0,又x ≠0时,f (x )=1a x x-,函数y =x -ax 在(-∞,0)和(0,+∞)均单调递增,∴f (x )在(-∞,(0),(0,∞)均单调递减,综上f (x )图像如A 选项所示; 若a <0,则f (x )定义域为R ,f (x )为奇函数,f (0)=0, 当x >0时,f (x )>0,当x <0时,f (x )<0,当x ≠0时,f (x )=1a x x-+,函数y =x +ax-时双勾函数,x ∈((),时,y 均单调递减,x ∈)(,,+∞-∞时,y 均单调递增,∴f (x )在((),单调递增,在)(,,+∞-∞单调递减,结合以上性质,可知B 图像符合.故选:ABC.(多选题)例16.(2022·湖北武汉·高一期末)设0a >,函数21axx y e ++=的图象可能是( )A .B .C .D .【答案】BD 【解析】令()21,0g x ax x a =++>,得到抛物线的开口向上,对称轴的方程为12x a=-,再根据0,0∆=∆<和0∆>三种情形分类讨论,结合复合函数的单调性,即可求解. 【详解】由题意,函数21axx y e ++=,令()21,0g x ax x a =++>,可得抛物线的开口向上,对称轴的方程为102x a=-<, 当140a ∆=-=时,即14a =时,可得()21104g x x x =++≥, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增,且(2)0g -= 可得21axx y e ++=在1(,]2a -∞-递减,在1[,)2a -+∞上递增,且(2)1g e -=; 当140a ∆=-<时,即14a >时,可得()0g x >, 此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 由复合函数的单调性,可得21ax x y e ++=在1(,]2a -∞-递减,在1[,)2a-+∞上递增,且1y >, 此时选项B 符合题意; 当当140a ∆=->时,即104a <<时,此时函数()21g x ax x =++有两个零点, 不妨设另个零点分别为12,x x 且1212x x a<-<,此时函数()y g x =在1(,]2a -∞-单调递减,在1[,)2a-+∞上单调递增, 可得()y g x =在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()0g x g x ==,则21axx y e ++=在121(,],[,]2x x a-∞-递减,在121[,],[,)2x x a -+∞上递增,且12()()1g x g x e e ==,此时选项D 符合题意.综上可得,函数的图象可能是选项BD. 故选:BD.(多选题)例17.(2022·广东东莞·高一期末)已知函数()af x x x=+()a R ∈,则其图像可能为( ) A . B .C .D .【答案】BC 【解析】 【分析】按照0a =,0a >,0a <讨论a 的取值范围,利用排除法解决. 【详解】 0a =,()(0)af x x x x x=+=≠,定义域需要挖去一个点,不是完整的直线,A 选项错误;0a <时,y x =在(,0),(0,)-∞+∞上递增,ay x=也在(,0),(0,)-∞+∞递增,两个增函数相加还是增函数,即()f x 在(,0),(0,)-∞+∞上递增,故D 选项错误,C 选项正确.;0a >时,由对勾函数的性质可知B 选项正确. 故选:BC.(多选题)例18.(2021·山西省长治市第二中学校高一阶段练习)在同一直角坐标系中,函数()()()10,1,x f x a a a g x a x =->≠=-且的图象可能是( )A .B .C .D .【答案】AC 【解析】 【分析】根据给定条件对a 值进行分类讨论函数()f x 的单调性及0一侧的函数值,再结合()g x a x =-图象与y 轴交点位置即可判断作答. 【详解】依题意,当1a >时,函数()g x a x =-图象与y 轴交点在点(0,1)上方,排除B ,C ,而()1,011,0x xxa x f x a a x ⎧-≥=-=⎨-<⎩,因此,()f x 在(,0)-∞上递减,且x <0时,0<f (x )<1,D 不满足,A 满足; 当01a <<时,函数()g x a x =-图象与y 轴交点在原点上方,点(0,1)下方,排除A ,D ,而()1,011,0x xxa x f x a a x ⎧-<=-=⎨-≥⎩,因此,f (x )在(0,)+∞上递增,且x >0时,0<f (x )<1,B 不满足,C 满足, 所以给定函数的图象可能是AC. 故选:AC(多选题)例19.(2021·河北·高三阶段练习)函数()211ax f x x +=+的大致图象可能是( ) A . B .C .D .【答案】ABD 【解析】 【分析】对a 的取值进行分类讨论,利用导数对函数的单调性进行分析即可判断函数的大致图象. 【详解】当0a =时,()01f =,令21y x =+,易知,其在(),0-∞上为减函数,()0,∞+上为增函数,所以()211f x x =+在(),0-∞上为增函数,在()0,∞+上为减函数,故D 正确; 当0a <时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y <,当0x >且0x →时,0y <,所以()'0f x <,故A 正确;当0a >时,()01f =,()()2'2221ax x afx x--+=+,令22y ax x a =--+,当0x <且0x →时,0y >,当0x >且0x →时,0y >,所以()'0f x >,故B 正确;综上,()f x 的图象不可能为C. 故选:ABD.(多选题)例20.(2022·全国·高三专题练习)已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD【解析】 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()x x f x e e -=+为偶函数,当1k =-时,()x x f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x e e -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增,故函数()x x f x e e -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误; 当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减,故函数()x x f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误. 故选:AD .【方法技巧与总结】根据函数的解析式识别函数的图象,其中解答中熟记指数幂的运算性质,二次函数的图象与性质,以及复合函数的单调性的判定方法是解答的关键,着重考查分析问题和解答问题的能力,以及分类讨论思想的应用.题型四:函数图象应用题例21.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】根据题意,结合图形,分析区间(0,2π)和(2π,π)上f (x )的符号,再分析f (x )的对称性,排除BCD ,即可得答案. 【详解】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x . 在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A例22.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】设出圆锥底面圆半径r ,高H ,利用圆锥与其轴垂直的截面性质,建立起盛水的高度h 与注水时间t 的函数关系式即可判断得解. 【详解】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H =⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅,令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得22332233r H vt h vt h h H r ππ⋅=⇒=⇒=而,,r H v 是常数,所以盛水的高度h 与注水时间t 的函数关系式是h =203r H t v π≤≤,23103h t -'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓, A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同. 故选:A例23.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据时间和h 的对应关系分别进行排除即可. 【详解】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 【点睛】本题主要考查函数与图象的应用,结合函数的变化规律是解决本题的关键.例24.(2021·山东济南·高三阶段练习)如图,公园里有一处扇形花坛,小明同学从A 点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB BO OA →→),则小明到O 点的直线距离y 与他从A 点出发后运动的时间t 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】根据距离随与时间的增长的变化增减情况即可判定.【详解】小明沿AB走时,与О点的直线距离保持不变,沿BO走时,随时间增加与点О的距离越来越小,沿OA走时,随时间增加与点О的距离越来越大.故选:D.例25.(2021·江苏·常州市西夏墅中学高三开学考试)如图,△AOD是一直角边长为1的等腰直角三角形,平面图形OBD是四分之一圆的扇形,点P在线段AB上,PQ⊥AB,且PQ交AD或交弧DB于点Q,设AP =x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y=f(x)的大致图像是A.B.C.D.【答案】A【解析】【分析】分两段,当P点在AO之间时,当P点在OB之间时,再由二次函数的性质及增长趋势可知.【详解】当P 点在AO 之间时,f (x )12=x 2(0<x ≤1),排除B,D 当P 点在OB 之间时,y 随x 的增大而增大且增加速度原来越慢,故只有A 正确 故选A . 【点睛】本题主要考查了函数图像的识别的性质,考查分类讨论思想及排除法应用,属于基础题.【方法技巧与总结】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.题型五:函数图像的综合应用例26.(2022·四川·宜宾市教科所三模(理))定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1xf x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫⎪⎝⎭ C .e 1e 1,86--⎛⎫⎪⎝⎭ D .()0,e 1-【答案】B 【解析】 【分析】由题可知函数()y f x =与直线()1y m x =+有5个交点,利用数形结合即得. 【详解】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数, 故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解,则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<. 故选:B.例27.(2022·北京丰台·一模)已知函数()32,,3,x x a f x x x x a -<⎧=⎨-≥⎩无最小值,则a 的取值范围是( )A .(,1]-∞-B .(,1)-∞-C .[1,)+∞D .(1,)+∞【答案】D 【解析】 【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得. 【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增, ∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-, 作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值12f ,当1a >时,函数()f x 没有最小值.故选:D.例28.(2022·全国·高三专题练习)已知函数()2ln ,0,43,0x x f x x x x >⎧=⎨---≤⎩若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】利用数形结合可得210t mt ++=在[)3,1-上有两个不同的实数根,然后利用二次函数的性质即得. 【详解】设()t f x =,则()21y g t t mt ==++,作出函数()f x 的大致图象,如图所示,则函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点等价于()0g t =在[)3,1-上有两个不同的实数根, 则()()24039310,1110,31,2m g m g m m ⎧->⎪-=-+≥⎪⎪⎨=++>⎪⎪-<-<⎪⎩解得1023m <≤.故选:D. 【点睛】关键点点睛:本题的关键是利用数形结合,把问题转化为方程210t mt ++=在[)3,1-上有两个不同的实数根,即二次方程根的分布问题,利用二次函数的性质即解.例29.(2022·甘肃省武威第一中学模拟预测(文))已知函数()221xf x =--,则关于x 的方程()()20f x mf x n ++=有7个不同实数解,则实数,m n 满足( ) A .0m >且0n > B .0m <且0n > C .01m <<且0n = D .10m -<<且0n =【答案】C 【解析】 【分析】令()u f x =,利用换元法可得20u mu n ++=,由一元二次方程的定义知该方程至多有两个实根1u 、2u ,作出函数()f x 的图象,结合题意和图象可得10u =、2u m =-,进而得出结果. 【详解】令()u f x =,作出函数()u f x =的图象如下图所示:由于方程20u mu n ++=至多两个实根,设为1u u =和2u u =,由图象可知,直线1u u =与函数()u f x =图象的交点个数可能为0、2、3、4,由于关于x 的方程()()20f x mf x n ++=有7个不同实数解,则关于u 的二次方程20u mu n ++=的一根为10u =,则0n =,则方程20u mu +=的另一根为2u m =-,直线2u u =与函数()u f x =图象的交点个数必为4,则10m -<-<,解得01m <<. 所以01m <<且0n =. 故选:C.例30.(2022·天津市滨海新区塘沽第一中学模拟预测)已知函数21244,1(),1x x x x f x e x x -⎧-+>=⎨+≤⎩,若不等式1()||022mf x x --<的解集为∅,则实数m 的取值范围为( ) A .1,52ln 34⎡⎤-⎢⎥⎣⎦B .1,53ln 33⎡⎤-⎢⎥⎣⎦C .1,62ln 34⎡⎤-⎢⎥⎣⎦D .1,63ln 32⎡⎤-⎢⎥⎣⎦【答案】D 【解析】 【分析】由不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立.根据相切找临界位置,结合函数的单调性以及图像特征,即可求解. 【详解】 不等式1()||022mf x x --<的解集为∅,等价于()|2|f x x m ≥-在R 上恒成立. 当1x >时,2()=244,f x x x -+此时()f x 在1x >上单调递增,当11,()=,x x f x e x -≤+则1()=-1,x f x e -'+当<1x 时,0()<f x ',故()f x 在<1x 上单调递减.当2-y x m =与2()=244f x x x -+相切时,设切点为()00,x y ,所以00()4-4=2f x x '=,解得032x =,35()22f =,此时切线方程为35y=2x-+22⎛⎫ ⎪⎝⎭,该切线与x 轴的交点为1,04A ⎛⎫⎪⎝⎭,同理可得当-2+y x m =与1()=x f x e x -+相切时,切线与x 轴的交点为33-ln 3,02B ⎛⎫⎪⎝⎭,又因为=|2|y x m -与x 轴的交点为,02mC ⎛⎫⎪⎝⎭要使()|2|f x x m ≥-在R 上恒成立,则点C 在,A B 之间移动即可.故133-ln 3422m ≤≤,解得16-3ln 32m ≤≤故选:D例31.(2022·安徽·巢湖市第一中学高三期中(理))已知函数()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩,若函数()()()1g x f x k x =--有4个零点,则实数k 的取值范围为_______________. 【答案】1(0,)4【解析】 【分析】转化求()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像与()1y k x =-图像交点,求出直线与1()11f x x =--相切时的k ,进而得到有4个交点时k 的范围即可 【详解】因为()()()1g x f x k x =--有4个零点, 所以方程()()1f x k x =-有4个实数根,画出()11,11ln ,1x f x x x x ⎧-<⎪=-⎨⎪≥⎩的图像,以及()1y k x =-,则两函数的图象有4个公共点.其中直线()1y k x =-经过定点(1,0),斜率为k当直线与()f x 相切时,联立111(1)y x y k x ⎧=-⎪-⎨⎪=-⎩,22(12)40k k ∆=--=,可求出14k =,由图可知,当104x <<时,方程()()1f x k x =-有4个交点,故k 的取值范围为1(0,)4故答案为1(0,)4.【点睛】方法点睛:根据函数零点个数求参数取值范围的注意点:(1)结合题意构造合适的函数,将函数零点问题转化成两函数图象公共点个数的问题处理; (2)在同一坐标系中正确画出两函数的图象,借助图象的直观性进行求解;(3)求解中要注意两函数图象的相对位置,同时也要注意图中的特殊点,如本题中直线(1)y k x =-经过定点(1,0)等.例32.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e 8⎛⎤--⎥⎝⎦【解析】 【分析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意转化为函数()g x 与直线y m =的图象有3个公共点,利用导数求得函数()g x 的极值,画出函数()g x 的图象,结合图象,即可求解. 【详解】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点,即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦. 故答案为:1ln 2,(0,1)3e 8⎛⎤-- ⎥⎝⎦.例33.(2022·全国·高三专题练习)已知函数f (x )=244,01,43,1x x x x x -<≤⎧⎨-+>⎩和函数g (x )=2log x ,则函数h (x )=f (x )-g (x )的零点个数是________. 【答案】3 【解析】 【分析】函数零点个数可转化为()y g x =与()y f x =图象交点的个数问题,作出图象,数形结合即可求解. 【详解】在同一直角坐标系中,作出()y g x =与()y f x =的图象如图,由()()()0h x f x g x =-=可得,()()f x g x =,即函数的零点为(),()y f x y g x ==图象交点的横坐标, 由图知()y f x =与()y g x =的图象有3个交点,即()h x 有3个零点. 故答案为:3例34.(2022·全国·高三专题练习(理))如图,在等边三角形ABC 中, AB =6.动点P 从点A 出发,沿着此三角形三边逆时针运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为f (x ),给出下列三个结论:①函数f (x )的最大值为12;②函数f (x )的图象的对称轴方程为x =9; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是____. 【答案】①② 【解析】写出P 分别在,,AB BC CA 上运动时的函数解析式2()f x OP =,利用分段函数图象可解. 【详解】P 分别在AB 上运动时的函数解析式22()3(3),(06)f x OP x x ==+-≤≤, P 分别在BC 上运动时的函数解析式22()3(9),(612)f x OP x x ==+-≤≤, P 分别在CA 上运动时的函数解析式22()3(15),(1218)f x OP x x ==+-≤≤,22223(3),(06)()||3(9),(612)3(15),(1218)x x f x OP x x x x ⎧+-≤≤⎪==+-≤≤⎨⎪+-≤≤⎩,由图象可得,方程()3f x kx =+最多有6个实数根 故正确的是①②. 故答案为:①② 【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.【方法技巧与总结】1.利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解。
函数图像及综合应用训练题知识归纳:一、图象变换:①、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到.②、对称变换:(1)函数()y f x =-的图像与函数()y f x =的图像关于y 轴对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于x 轴对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于原点对称; (4)函数1()y f x -=的图像与函数()y f x =的图像关于直线y x =对称; (5)函数()y f x =的图像与函数)2(x a f y -=的图像关于直线a x =称.③、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. ④、伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到.二.对称性与周期性①、函数()x f y =与函数()x f y -=的图像关于直线0=x (y 轴)对称.推广一:如果函数()x f y =对于一切x ∈R ,都有()()f a x f b x +=-成立,那么()x f y =的图像关于直线2a b x +=(由“x 和的一半()()2a x b x x ++-=确定”)对称.推广二:函数()x a f y +=,()y f b x =-的图像关于直线2b ax -=(由a x b x +=-确定)对称. ②、函数()x f y =与函数()x f y -=的图像关于直线0=y (x 轴)对称.推广:函数()x f y =与函数()y A f x =-的图像关于直线2A y =对称(由“y 和的一半[()][()]2f x A f x y +-=确定”).③、函数()x f y =与函数()y f x =--的图像关于坐标原点中心对称.推广:函数()x f y =与函数()y m f n x =--的图像关于点(,)22n m 中心对称.特别地:若()()(0)f x a f x a +=-≠恒成立,则2T a =.若1()(0)()f x a a f x +=≠恒成立,则2T a =.若1()(0)()f x a a f x +=-≠恒成立,则2T a =.一、选择题:1.函数)32(-x f 的图象,可由)32(+x f 的图象经过下述变换得到( )A .向左平移6个单位B .向右平移6个单位C .向左平移3个单位D .向右平移3个单位2.函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴是( ) A 、0x = B 、1x =- C 、12x =D 、12x =- 3.下述函数中,单调递增区间是]0,(-∞的是( ) A .y=-x1B .y=-(x -1)C .y=x 2-2D .y=-|x |4.函数f (x )、f (x +2)均为偶函数,且当x ∈[0,2]时,f (x )是减函数,设),21(log 8f a =b= f (7.5),c= f (-5),则a 、b 、c 的大小是( ) A .a >b>c B .a > c > b C .b>a > c D .c> a >b5.已知函数24()log (3)f x x ax a =-+在区间[)2,+∞上是增函数,则实数a 的取值范围是( )A 、(),4-∞B 、(]4,4-C 、()[),42,-∞-+∞ D 、[)4,2-6.设{}{}(,),,(,)20U x y xR y R A x y x ym =∈∈=-+>,{}(,)0B x y x y n =+-≤,那么点23U P A C B ∈(,)()的充要条件是( ) 1,51,51,51,5A m n B m n C m n D m n >-<<-<<->>->、、、、 7.设2()|2|f x x =-,若0a b <<,且()()f a f b =,则ab 的取值范围是( )A .(0,2)B .(0,2]C .(0,4] D.(0,8.偶函数 ()||a f x log x b =-在 (,0)-∞上单调递增,则 (1)f a +与(2)f b +的大小 关系是 ( ) A .)2()1(+≥+b f a f B .)2()1(+<+b f a f C .)2()1(+≤+b f a f D .)2()1(+>+b f a f 9.已知函数)(x f y =满足:①是偶函数)1(+=x f y ;②在[)+∞,1上为增函数.若0,021><x x ,且221-<+x x ,则)(1x f -与)(2x f -的大小关系是( )A . )()(21x f x f ->-B . )()(21x f x f -<-C . )()(21x f x f -=-D .不能确定10.已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,对任意实数x 都有(1)(1)f x f x -=+成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是( )A .10b -<<B .2b >C .1b <-或 2b >D .不能确定11.已知21[1,0)()1[0,1]x x f x x x +∈-⎧=⎨+∈⎩,,,则下列函数的图象错误..的是( )12.某工厂六年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂六年来这种产品的总产量C 与时间t 的函数关系可用图象表示的是( )A 、B 、C 、D 、13.已知函数()x f 是定义域为R 的偶函数,且()()x f x f =+2.若()x f 在[]0,1-上是减函数,则()x f 在[]3,2上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数二、填空题:14.将下列变换的结果填在横线上:(1)将函数x y -=3的图象向右平移2个单位,得到函数 的图象; (2)将函数||tan x y =的图象向右平移3个单位,得到函数 的图象; (3)将函数)13(log 2-=x y 的图象向左平移2个单位,得到函数 的图象;(4)将函数3)2(-=x y 的图象各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数 的图象;15. {}{}2(),|()()()6,()246,()(),|()()g x x x f x g x f x x g x x x h x f x x x f x g x ⎧∈≥⎪=-+=-++=⎨∈<⎪⎩,则()h x 的最大值为 . 16.已知f (x )与g (x )的定义域是{x|x ∈R ,且x ≠±1},若f (x )是偶函数,g(x )是奇函 数,且f (x )+g(x )=x-11,则f (x )= ,g(x )= . 17.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 18.已知定义域为R 的函数()f x 满足:对任意实数,a b 有()()()f a b f a f b ⋅+=,且()0f x >,若1(1)2f =,则(2)f -=_ ___. 19.定义在R 上的函数()f x 满足11()()222f x f x ++-=,则127()()()888f f f +++=__ _.20.若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围是____三、解答题:21.作出下述函数图象:(1)1|2|2+-=x x y ;(2)32--=x x y ;(3)|)1|(|log |2-=x y ;(3)xy -=21lg ; 22. 作出下述函数图象:(1).|12|2--=x x y (2).1||1-=x y (3).|1)21(|1||-=-x y(4)y =10|lg x |; (5)y =x -|x -1|; (6)y = |x 2-4x +3|.函数图像及综合应用训练题参考答案一、 选择题:二、7.保留函数22x y -=在x 轴上方的图像,将其在x 轴下方的图像翻折到x 轴上方区即可得到函数2()|2|f x x =-的图像。
高考数学一轮复习第10讲:函数的图像学习目标:1.会运用函数图像理解和研究函数的性质.2.熟记基本初等函数的图像,掌握函数作图的基本方法及函数图像的基本变换,能结合图像研究函数的性质学习方法:观察归纳;类比,转化教学重点:会运用函数图像理解和研究函数的性质.教学难点:应用函数图像求参数范围课前准备:1.教师准备:三角板、多媒体课件2.学生自备:笔、三角板考情分析:函数的图像作为函数性质的研究工具,频频在高考题中出现.主要考点及考查方向如下表:教学过程知识聚焦:(自主学习以下知识点)1.作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2.三种图象变换:平移变换、对称变换和伸缩变换等等3.识图:分布范围、变化趋势、对称性、周期性等等方面.4.平移变换:(1)水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到.① y=f(x)y=f(x+h); ② y=f(x) y=f(x -h);③y=f(x) y=f(x)+h; ④y=f(x) y=f(x)-h.5.对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到; 6.翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;(2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到.7.伸缩变换:(1)函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;()y f x a =+()y f x =x (0)a >(0)a <||a ()y f x a =+()y f x =x (0)a >(0)a <||a h 左移→h 右移→h 上移→h 下移→()y f x =-()y f x =y ()y f x =-()y f x =x ()y f x =--()y f x =|()|y f x =()y f x =x x x x ()y f x =x (||)y f x =()y f x =y y y ()y f x =y ()y af x =(0)a >()y f x =(1)a >01a <<a(2)函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到. ①y=f(x)y=f();②y=f(x)y=ωf(x). 链接教材:(学生自主回答)例题教学:考点一 函数图象的辨识【例1】函数y =x cos x +sin x 的图象大致为( ).规律方法 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.【练习1】 (1)函数y =x sin x 在[-π,π]上的图象是( ).(2)函数y =x +cos x 的大致图象是( ).考点二 函数图象的变换【例2】函数f (x )=⎩⎪⎨⎪⎧3x (x ≤1),log 13x (x >1),则y =f (1-x )的图象是( ). ()y f ax =(0)a >()y f x =(1)a >01a <<1a ω⨯→x ωxω⨯→y规律方法 作图象平移时,要注意不要弄错平移的方向,必要时,取特殊点进行验证;平移变换只改变图象的位置,不改变图象的形状.【练习2】设函数f(x)的定义域为R ,则函数y=f(x-1)与y=f(1-x)的图像关系为( )A .直线y=0对称B .直线x=0对称C .直线y=1对称D .直线x=1对称 考点三 函数图象的应用【例3】已知函数y =f (x )的周期为2,当x ∈[-1,1]时,f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ).A .10个B .9个C .8个D .1个练习3:设f(x)是定义在R 上的偶函数,对任意的x ∈R ,f (2-x )=f (x+2)且当x ∈[-2,0]时,f(x)=x )21(-1,若关于x 的方程f(x)-log a (x+2)=0(a>1)在区间(-2,6]内恰有三个不同的实根,则实数a 的取值范围是【例4】已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 练习4:设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________ . 规律方法 (1)利用函数的图象可解决方程和不等式的求解问题,如判断方程是否有解,有多少个解.数形结合是常用的思想方法.(2)利用图象,可观察函数的对称性、单调性、定义域、值域、最值等性质.课堂小结1.掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程.2.识图的要点:重点根据图象看函数的定义域、值域、奇偶性、单调性、特殊点(与x 、y 轴的交点,最高、最低点等).3.识图的方法(1)定性分析法:对函数进行定性分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决;(2)定量计算法:通过定量的计算来分析解决;(3)排除法:利用本身的性能或特殊点进行排除验证.4.研究函数性质时一般要借助于函数图象,体现了数形结合思想;5.方程解的问题常转化为两熟悉的函数图象的交点个数问题来解决.。
高三数学一轮复习 第12课时 函数的图像学案【学习目标】1.掌握作函数图像的两种基本方法:描点法和图像变换法.2.了解图像的平移变换、伸缩变换、对称变换,能利用函数的图像研究函数的性质,以达到识图、作图、用图的目的. 【课本导读】1.函数图像的三种变换 (1)平移变换y =f (x )的图像向左平移a (a >0)个单位,得到 的图像;y =f (x -b )(b >0)的图像可由y =f (x )的图像 而得到;y =f (x )的图像向下平移b (b >0)个单位,得到 的图像;y =f (x )+b (b >0)的图像可由y =f (x )的图像 而得到.总之,对于平移变换,记忆口诀为:左加右减,上加下减.(2)对称变换y =f (-x )与y =f (x )的图像关于 对称; y =-f (x )与y =f (x )的图像关于 对称; y =-f (-x )与y =f (x )的图像关于 对称;y =|f (x )|的图像可将y =f (x )的图像在x 轴下方的部分 ,其余部分不变而得到; y =f (|x |)的图像可先作出y =f (x )当x ≥0时的图像,再作关于y 轴的对称. (3)伸缩变换y =f (ax )(a >0)的图像,可将y =f (x )的图像上所有点的 坐标变为原来的 倍, 坐标 而得到.y =af (x )的图像,可将y =f (x )的图像上所有点的 坐标不变, 坐标伸长为原来的 .2.几个重要结论(1)若f (m +x )=f (m -x )恒成立,则y =f (x )的图像关于直线 对称. (2)设函数y =f (x )定义在实数集上,则函数y =f (x -m )与y =f (m -x )(m >0)的图像关于直线 对称.(3)若f (a +x )=f (b -x ),对任意x ∈R 恒成立,则y =f (x )的图像关于x =a +b2对称.(4)函数y =f (a +x )与函数y =f (b -x )的图像关于x =b -a2对称.【教材回归】1.函数y =lg|x -1|的图像大致为 ( )2.函数y =1-1x -1的图像是( )3.当0<a <1时,在同一坐标系中,函数y =a -x与y =log a x 的图像是 ( )4.要得到函数y =8·2-x的图像,只需将函数y =⎝ ⎛⎭⎪⎫12x的图像( )A .向右平移3个单位B .向左平移3个单位C .向右平移8个单位D .向左平移8个单位5.设函数f (x )=|x +1|+|x -a |的图像关于直线x =1对称,则a 的值为 ( )A .3B .2C .1D .-1题型一 利用变换作图例1 作出下列函数的图像.(1)f (x )=x1+|x |; (2)f (x )=|lg|x -1||.探究1 (1)一些函数的图像可由基本初等函数的图像通过变换而得,常见图像变换有平移变换,对称变换,伸缩变换,用x +m 替换x ,图像发生左、右平移.用y +n 替换y ,图像发生上、下平移,用kx 替换x ,图像发生伸缩变化,用-x 、-y 替换x 、y 图像分别关于y 轴、x 轴对称.(2)作函数图像时应结合函数的性质,如f (x )=x1+|x |为奇函数,f (x )=lg|x |为偶函数等.(3)多步变换时,应确定好变换顺序.思考题1 作出下列函数的图像.(1)y =2x +2; (2)y =x +2x -1; (3)y =(12)|x | ; (4)y =|log 2x-1|.题型二 知式选图或知图选式问题例2 函数f (x )的部分图像如图所示,则函数f (x )的解析式是A .f (x )=x +sin xB .f (x )=cos xxC .f (x )=x cos xD .f (x )=x ·(x -π2)·(x -3π2)探究 2 对于给定函数的图像,要能从图像的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域(最值)、单调性、奇偶性、周期性,注意图像与函数解析式中参数的关系,常用的方法有:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题.思考题2(1)函数y =x2-2sin x 的图像大致是()(2)(2013·衡水调研卷)函数y =x +sin|x |,x ∈[-π,π]的大致图像是 ( )题型三 函数图像的对称性例3 (1)已知f (x )=ln(1-x ),函数g (x )的图像与f (x )的图像关于点(1,0)对称,则g (x )的解析式为______.(2)设函数y =f (x )的定义域为实数集R ,则函数y =f (x -1)与y =f (1-x )的图像关于 ( )A .直线y =0对称B .直线x =0对称C .直线y =1对称D .直线x =1对称 探究3 (1)求一曲线关于一点或一直线对称曲线方程.一般运用相关点求轨迹的方法. (2)下列结论需记住:①f (x ,y )=0与f (-x ,y )=0的图像关于y 轴对称; ②f (x ,y )=0与f (x ,-y )=0的图像关于x 轴对称; ③f (x ,y )=0与f (-x ,-y )=0的图像关于原点对称; ④f (x ,y )=0与f (y ,x )=0的图像关于y =x 对称;⑤f (x ,y )=0与f (2m -x ,y )=0的图像关于直线x =m 对称.思考题3 (1)已知函数f (2x +1)是奇函数,则函数y =f (2x )的图像关于下列哪个点成中心对称 ( )A .(1,0)B .(-1,0)C .(12,0)D .(-12,0) ( )(2)求证:函数f (x )满足对任意x ,都有f (a -x )=f (a +x ),则函数f (x )的图像关于直线x =a 对称.题型四 函数图像的应用例4 (1)函数f (x )=|4x -x 2|-a 恰有三个零点,则a =________. (2)不等式log 2(-x )<x +1的解集为__________.探究 4 函数、方程、不等式三者之间有着密切的联系,它们之间的相互转化有时能使问题迎刃而解,本题利用函数的图像来解决方程根的个数问题及不等式求解问题.思考题4 若直线y =x +m 和曲线y =1-x 2有两个不同的交点,则m 的取值范围是________. 【本课总结】1.作图的基本方法是描点法,某些函数的图像也可通过已知图像进行变换而得. 2.识图问题的关键是通过函数的性质进行排除确定. 3.函数图像能直观反映函数的性质,通过图像可以解决许多问题,如不等式问题、方程问题、函数的值域等. 【自助餐】1.已知定理:“若,a b 为常数,()g x 满足()()2g a x g a x b ++-=,则函数()y g x =的图像关于点(,)a b 中心对称”.设函数1()x af x a x+-=-,定义域为A .(Ⅰ)试证明()y f x =的图像关于点(,1)a -成中心对称;(Ⅱ)当[2,1]x a a ∈--时,求证:1()[,0]2f x ∈-;(Ⅲ)对于给定的i x A ∈,设计构造过程:21()x f x =,32()x f x =,…,1()n n x f x +=.如果(2,3,)i x A i ∈=,构造过程将继续下去;如果i x A ∉,构造过程将停止.若对任意i x A ∈,构造过程可以无限进行下去,求a 的值.。
专题八 函数的图象一、题型全归纳题型一 作函数的图象【题型要点】函数图象的画法【例1】分别作出下列函数的图象. (1)y =|lg x |;(2)y =2x +2;(3)y =x 2-2|x |-1.【解析】(1)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图①所示.(2)将y =2x 的图象向左平移2个单位,图象如图②所示.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图③所示.【反思总结】(1)画函数的图象一定要注意定义域.(2)利用图象变换法时要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【题型要点】(1)抓住函数的性质,定性分析:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象上下位置; ②从函数的单调性,判断图象的变化趋势; ③从周期性,判断图象的循环往复; ④从函数的奇偶性,判断图象的对称性. (2)抓住函数的特征,定量计算:利用函数的特征点、特殊值的计算,分析解决问题【例1】(2019·高考全国卷Ⅰ)函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为( )【解析】显然f (x )=-f (-x ),所以f (x )为奇函数,排除A ;124221222>+=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛πππππf ,观察题图可知D正确.故选D.【例2】已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e x xC .f (x )=1x 2-1D .f (x )=x -1x【解析】由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A.命题角度一 研究函数的性质【题型要点】对于已知解析式或易画出其在给定区间上图象的函数,其性质常借助图象研究: ①从图象的最高点、最低点,分析函数的最值、极值;②从图象的对称性,分析函数的奇偶性; ③从图象的走向趋势,分析函数的单调性、周期性. 【例1】对于函数f (x )=lg(|x +1|),给出如下三个命题:①f (x )是偶函数;②f (x )在区间(-∞,0)上是减函数,在区间(0,+∞)上是增函数;③f (x )没有最小值.其中正确的个数为( )A .1B .2C .3D .0【解析】 作出f (x )的图象可知f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确. 【例2】已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)【解析】:将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的大致图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.命题角度二 解不等式【题型要点】利用函数的图象研究不等式的思路当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上下关系问题或函数图象与坐标轴的位置关系问题,从而利用数形结合法求解.【例3】函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( ) A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)【解析】 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0);当x ∈(0,1)时,由xf (x )>0得x ∈∅;当x ∈(1,3)时,由xf (x )>0得x ∈(1,3).所以x ∈(-1,0)∪(1,3).【例4】已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎪⎭⎫ ⎝⎛210, B.⎪⎭⎫⎝⎛121,C .(1,2)D .(2,+∞)【解析】:先作出函数f (x )=|x -2|+1的图象,如图所示当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为⎪⎭⎫ ⎝⎛121,命题角度三 求参数的取值范围【题型要点】求解函数图象的应用问题,其实质是利用数形结合思想解题,其思维流程一般是:【例5】已知函数f (x )=⎩⎪⎨⎪⎧-x 2+1,x <1,log 2x ,x ≥1,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是 .【解析】 画出函数y =f (x )与y =k 的图象,如图所示.由图可知,当0<k <1时,y =k 和y =f (x )的图象有3个交点,即方程f (x )=k 有三个不同的实根.【例6】函数f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数,在(0,+∞)上单调递增,f (3)=0,若x ·[f (x )-f (-x )]<0,则x 的取值范围为 . 【解析】:函数f (x )的图象大致如图所示.因为f (x )为奇函数,且x ·[f (x )-f (-x )]<0,所以2xf (x )<0. 由图可知,不等式的解集为(-3,0)∪(0,3).二、高效训练突破 一、选择题1.甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④【解析】:由题知速度v =st 反映在图象上为某段图象所在直线的斜率.由题知甲骑自行车速度最大,跑步速度最小,甲与图①符合,乙与图④符合.2.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A .y =ln(1-x ) B .y =ln(2-x ) C .y =ln(1+x )D .y =ln(2+x )【解析】:解法一:设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ),故选B.解法二:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A 、C 、D ,故选B.3.(2020·湖北省部分重点中学4月联考)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,1x ,x <0,,g (x )=-f (-x ),则函数g (x )的图象大致是( )【解析】:先画出函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,1x ,x <0的图象,如图(1)所示,再根据函数f (x )与-f (-x )的图象关于坐标原点对称,即可画出函数-f (-x )的图象,即g (x )的图象,如图(2)所示.故选D.4.(2019届太原模拟)已知函数f (x )=|x 2-1|,若0<a <b 且f (a )=f (b ),则b 的取值范围是( ) A .(0,+∞) B .(1,+∞) C .(1,2)D .(1,2)【解析】:作出函数f (x )=|x 2-1|在区间(0,+∞)上的图象如图所示作出直线y =1,交f (x )的图象于点B ,由x 2-1=1可得x B =2,结合函数图象可得b 的取值范围是(1,2). 5.(2020·济南市学习质量评估)函数y =x 28-ln|x |的图象大致为( )【答案】D.【解析】:令f (x )=y =x 28-ln|x |,则f (-x )=f (x ),故函数f (x )为偶函数,排除选项B ;当x >0且x →0时,y →+∞,排除选项A ;当x =22时,y =1-ln 22<1-ln e =0,排除选项C.故选D.6.(2020·河北衡水中学第二次调研)函数y =(2x -1)e x 的图象大致是( )【解析】:.因为x 趋向于-∞时,y =(2x -1)e x <0,所以C ,D 错误;因为y ′=(2x +1)e x ,所以当x <-12时,y ′<0,y =(2x -1)e x 在(-∞,-12)上单调递减,所以A 正确,B 错误,故选A.7.(2020·江西七校第一次联考)设f (x )是定义在R 上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图象,则f (2 018)+f (2 019)=( )A .2B .1C .-1D .0【解析】:.因为函数f (x )是定义在R 上的周期为3的周期函数,所以f (2 018)=f (2 018-673×3)=f (-1),f (2 019)=f (2 019-673×3)=f (0),由题图知f (-1)=-1,f (0)=0,所以f (2 018)+f (2 019)=f (-1)+f (0)=-1. 8.(2020·甘肃酒泉敦煌中学一诊)已知奇函数f (x )在x ≥0时的图象如图所示,则不等式xf (x )<0的解集为( )A .(1,2)B .(-2,-1)C .(-2,-1)∪(1,2)D .(-1,1)【解析】:因为函数f (x )是奇函数,所以图象关于原点对称,补全当x <0时的函数图象,如图对于不等式xf (x )<0,当x >0时,f (x )<0,所以1<x <2;当x <0时,f (x )>0,所以-2<x <-1,所以不等式xf (x )<0的解集为(-2,-1)∪(1,2),故选C.9.(2020届安徽江淮十校联考)若直角坐标系内A 、B 两点满足:(1)点A 、B 都在f (x )图象上;(2)点A 、B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2ex (x ≥0),则f (x )的“和谐点对”有( )A .1个B .2个C .3个D .4个 【解析】:作出函数y =x 2+2x (x <0)的图象关于原点对称的图象看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.10.已知函数f (x )=dax 2+bx +c(a ,b ,c ,d ∈R )的图象如图所示,则( )A .a >0,b >0,c <0,d <0B .a <0,b >0,c <0,d >0C .a <0,b >0,c >0,d >0D .a >0,b <0,c >0,d >0【解析】:由题图可知,x ≠1且x ≠5,则ax 2+bx +c =0的两根为1,5, 由根与系数的关系,得-b a =6,ca =5,∴a ,b 异号,a ,c 同号,排除A 、C ;又∵f (0)=dc <0,∴c ,d 异号,排除D ,只有B 项适合.11.(2019届沈阳市质量监测)函数f (x )=x 2-1e|x |的图象大致为( )【解析】:因为y =x 2-1与y =e |x |都是偶函数,所以f (x )=x 2-1e |x |为偶函数,排除A 、B ;又f (2)=3e2<1,排除D ,故选C.12.函数y =2x ln|x |的图象大致为( )【解析】:函数y =2xln|x |的定义域为{x |x ≠0且x ≠±1},排除A 项;∵f (-x )=-2x ln|x |=-f (x ),f (x )是奇函数,排除C 项;当x =2时,y =4ln 2>0,排除D 项.二、填空题1.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则()⎪⎪⎭⎫⎝⎛31f f 的值等于 .【解析】:由图象知f (3)=1,所以1f (3)=1.所以()⎪⎪⎭⎫ ⎝⎛31f f =f (1)=2. 2.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)= .【解析】:由题图可得a (-1)+b =3,ln(-1+a )=0,得a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.3.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是 .【解析】:如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,所以a 的取值范围是[-1,+∞).4.(2020届石家庄模拟)在同一平面直角坐标系中,函数y =g (x )的图象与y =e x 的图象关于直线y =x 对称.而函数y =f (x )的图象与y =g (x )的图象关于y 轴对称,若f (m )=-1,则m =________.【解析】:由题意知g (x )=ln x ,则f (x )=ln(-x ),若f (m )=-1,则ln(-m )=-1,解得m =-1e. 5.函数f (x )=x +1x的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________. 【解析】:因为f (x )=x +1x =1x+1,所以f (x )的图象关于点(0,1)对称,而直线y =kx +1过(0,1)点,故两图象的交点(x 1,y 1),(x 2,y 2)关于点(0,1)对称,所以y 1+y 22=1,即y 1+y 2=2. 6.已知函数f (x )=x +1|x |+1,x ∈R ,则不等式f (x 2-2x )<f (3x -4)的解集是 . 【解析】:由已知得,f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1-2x -1,x <0.其图象如图所示:由图可知,不等式f (x 2-2x )<f (3x -4)等价于⎩⎪⎨⎪⎧3x -4≥0,x 2-2x <0或⎩⎪⎨⎪⎧3x -4<0,x 2-2x <0,x 2-2x <3x -4,解得43≤x <2或1<x <43,所以所求的解集为(1,2).7.(2019·绵阳诊断)已知函数y =f (x )及y =g (x )的图象分别如图所示,方程f (g (x ))=0和g (f (x ))=0的实根个数分别为a 和b ,则a +b =________.【解析】 由图象知f (x )=0有3个根,分别为0,±m (m >0),其中1<m <2,g (x )=0有2个根,设为n ,p ,则-2<n <-1,0<p <1,由f (g (x ))=0得g (x )=0或±m ,由图象可知当g (x )所对应的值为0,±m 时,其都有2个根,因而a =6;由g (f (x ))=0知f (x )=n 或p ,由图象可以看出当f (x )=n 时,有1个根,而当f (x )=p 时,有3个根,即b =1+3=4.所以a +b =6+4=10.8.如图所示,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________________.【解析】:当-1≤x ≤0时,设解析式为y =kx +b (k ≠0).则⎩⎪⎨⎪⎧-k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1,∴y =x +1; 当x >0时,设解析式为y =a (x -2)2-1(a ≠0).∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 综上,f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0.。
函数的图象 函数的图象【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1、描点法作图其基本步骤是列表、描点、连线,具体为:(1) ① 确定函数的定义域;② 化简函数的解析式;③ 讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(2) 列表(注意特殊点、零点、最大值点、最小值点、与坐标轴的交点); (3) 描点、连线,画出函数的图象. 2、图象变换 (1)平移变换(2)对称变换 ① y =f (x )的图象 −−−−−→−轴对称关于x y =-f (x )的图象; ② y =f (x )的图象 −−−−−→−轴对称关于y y =f (-x )的图象; ③ y =f (x )的图象−−−−→−对称原点关于y =-f (-x )的图象;④ y =a x (a >0且a ≠1)的图象 −−−−−−→←=轴对称关于x y y =log a x (a >0且a ≠1)的图象. (3)伸缩变换① y =f (x )的图象 y =f (ax )的图象.② y =f (x )的图象 y =af (x )的图象.3、翻转变换 ⑤ y =f (x )的图象 −−−−−−−−−−−−−→−轴下方图象翻折上去轴上方图象,将保留x x y =|f (x )| 的图象. ⑥ y =f (x )的图象 −−−−−−−−−−−−−→−对称的图象于轴右边图象,并作其关保留y y y =f (|x |) 的图象.方法规律总结1、(1) 常见的几种函数图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx (m>0)的函数是图象变换的基础,需要严格掌握;(2) 掌握平移变换、伸缩变换、对称变换、翻转变换等常用方法技巧,可以帮助我们简化作图过程. 2、识图、作图常用的方法如下.(1) 定性分析法:通过对问题进行定性分析,结合函数的单调性、对称性等解决问题. (2) 定量计算法:通过定量(如特殊点、特殊值)的计算,来分析解决问题.(3) 函数模型法:由所提供的图象特征,结合实际问题的含义以及相关函数模型分析解决问题. 1>a ,横坐标缩短为原来的a 1倍,纵坐标不变10<<a ,横坐标伸长为原来的a 1倍,纵坐标不变 1>a ,纵坐标伸长为原来的a 1倍,横坐标不变 10<<a ,纵坐标缩短为原来的a1倍,横坐标不变3、(1) 函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.(2) 有关方程解的个数或函数零点个数的问题常常转化为两个熟悉的函数的图象交点个数. (3) 在运用函数图象处理问题时要保证函数图象的准确性.【指点迷津】【类型一】作函数图象【例1】:作出下列函数的图象:(1) y =2-x x +1; (2) y =|1|)21(+x ; (3) y =|log 2x -1|. 【解析】:(1)易知函数的定义域为{x ∈R |x ≠-1}.y =2-x x +1=-1+3x +1,因此由y =3x 的图象向左平移1个单位长度,再向下平移1个单位长度即可得到函数y =2-xx +1的图象,如图①所示. (2)先作出y =(12)x ,x ∈[0,+∞)的图象,然后作其关于y 轴的对称图象,再将整个图象向左平移1个单位长度,即得到y =(12)|x +1|的图象,如图②所示.(3)先作出y =log 2x 的图象,再将图象向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方来,即得到y =|log 2x -1|的图象,如图③所示.答案:【例2】:作出下列函数的图象:(1))(1|2|+-=x x y ; (2) ⎩⎨⎧<+≥+=0,10,123x x x x y . 【解析】:(1)⎩⎨⎧<+-≥+-=+-=2),1)(2(2),1)(2(1|2|x x x x x x x x y )(,可作图①;(2) ⎩⎨⎧<+≥+=0,10,123x x x x y ,可作图②.① ② 答案:(1)(2)【类型二】识图与辨图【例1】:函数y =1-1x -1的图象是( ).【解析】:将y =-1x 的图象向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图象. 答案:B【例2】:已知图①中的图象对应的函数为y =f (x ),则图②的图象对应的函数为( ).A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)【解析】:y =f (-|x |)=⎩⎨⎧f (-x ),x ≥0,f (x ),x <0.答案:C【例3】:现有四个函数:① x x y sin =,② x x y cos =,③ |cos |x x y =,④xx y 2⋅=的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组为 ( )A .④①②③B .①④③②C .③④②①D .①④②③ 【解析】:x x y sin =为偶函数,对应第一个图象;x x y cos =为奇函数,且当π=x 时, 0<y ,对应第三个图象;|cos |x x y =为奇函数,对应第四个图象;xx y 2⋅=为非奇非偶函数,对应第二个图象.答案:D【类型三】函数图象的应用【例1】:如图所示,下面的四个容器高度都相同,将水从容器顶部的一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面高度h 和时间t 之间的关系,其中不正确的个数为( )A .1 B.2C .3D .4【解析】:①中应该是匀速的,故对应的图象不正确;②中的变化率应该是越来越慢的,故对应的图象正确;③中的变化规律是先快后慢再快,故对应的图象正确;④中的变化规律是先慢后快再慢,故对应的图象正确. 答案:A【例2】:函数f (x )是定义在区间[-4,4]上的偶函数,其在区间[0,4]上的 图象如图所示,则不等式f (x )cos x<0的解集为________.【解析】:在区间(0,π2)上,y =cos x >0,在区间(π2,4)上,y =cos x <0.由f (x )的图象知,在区间(1,π2)上,f (x )<0,所以f (x )cos x <0.因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f (x )cos x 为偶函数,所以f (x )cos x <0的解集为(-π2,-1)∪(1,π2). 答案:解集为(-π2,-1)∪(1,π2).【例3】:某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数)(x f y =的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为A .上午10:00B .中午12:00C .下午4:00D .下午6:00【解析】:由图可得⎩⎨⎧≤<-≤≤=204,20400,40,80)(x x x x x f ,由≥)(x f 240,可解得83≤≤x ,故选C .答案:C.【同步训练】【一级目标】基础巩固组 一、选择题1.函数y =log 2(|x |+1)的大致图象是 ( )A B C D【解析】:首先判断函数的定义域为R ,又=)-(x f )(x f ,所以y =log 2(|x |+1)为偶函数, 当>x 0时,y =log 2(x +1).结合选项知选B.答案:B .2.函数133-=x x y 的图象大致是( )【解析】:函数的定义域是{x ∈R |x ≠0},排除选项A ;当x <0时,x 3<0,x 3-1<0,故y >0,排除选项B ;当x →+∞时,y >0且y →0,故为选项C 中的图象. 答案:C.3.函数f (x )=x ln |x ||x |的图象可能是( )A B C D 【解析】:易知函数f (x )是奇函数,当x >0时,f (x )=ln x . 答案:B .4.函数y =|x |a xx(a >1)的图象的大致形状是 ( )A B C D【解析】:由题意知,y =|x |a x x ⎪⎩⎪⎨⎧<->=0,0,x a x a x x ,又a >1,所以由 y =x a 的图象可知,B 选项符合题意 答案:B .5.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的是( )【解析】:由函数y =log a x 的图象过点(3,1),得a =3.选项A 中函数为y =x)31(,则其函数图象不正确;选项B 中函数为y =x 3,则其函数图象正确;选项C 中函数为y =(-x )3,则其函数图象不正确;选项D 中函数为y =log 3(-x ),则其函数图象不正确. 答案:B.6.如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线1l ,2l 之间,1l ∥2l ,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x (0<x <π),y =EB +BC +CD ,若l 从1l 平行移动到2l ,则函数y =f (x )的图象大致是()【解析】:设l 、2l 距离为t ,cos x =2t 2-1,得t =21cos +x .△ABC 的边长为23,BE 23=11t-,得BE =23(1-t ),则y =2BE +BC =2×23(1-t )+23=23-43321cos +x ,当x ∈(0,π)时,非线性单调递增,排除A ,B ,求证x =π2的情况可知选D.答案:D. 二、填空题7.已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是__________________.【解析】:依题意,设存在P (-m ,n )在f (x )的图象上,则Q (m ,n )在g (x )的图象上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m -12-m (m >0),可得a ∈(-∞,e). 答案:a ∈(-∞,e).8.函数f (x )=⎩⎨⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________________.【解析】:因为y =cos x π是偶函数,图象关于y 轴对称,所以本题可转化成求函数x y 3log =与y =cos x π的图象的交点个数.作函数图象如图所示,可知有三个交点,即函数f (x )的图象上关于y 轴对称的点共有3对.答案:3对. 三、解答题9.分别画出下列函数的图象:(1) y =x 2-2|x |-1; (2) y =x +2x -1; (3) f (x )=⎪⎩⎪⎨⎧>+≤+,0),1(log ,0,3311x x x x .【解析】:(1) y =⎪⎩⎪⎨⎧<-+≥--)0(,12)0(,1222x x x x x x . 图象如图①.(2) 因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y=x +2x -1的图象,如图②. (3) 作出f (x )=⎪⎩⎪⎨⎧>≤,1,log ,1,331x x x x ⎩⎨⎧3x,x ≤1,log 13x ,x >1的图象如图所示,再把f (x )的图象向左平移一个单位长度,可得到函数y =f (x +1)的图象.如图③.① ② ③ 答案:① ② ③【二级目标】能力提升题组一、选择题 1.函数xx xy --=226cos 的图象大致为( )【解析】:可知,函数)(x f 为奇函数,又因为当)61,0(时,06cos >x ,022>--x x ,即0)(>x f ,D 正确. 答案:D2.已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A、)(21,0 B 、)(1,21C 、)(2,1D 、)(+∞,2 2-2【解析】:画出函数f (x )的图象,如图所示.若方程f (x )=g (x )有两个不相等的实数,则函数f (x ),g (x )有两个交点,则k >12,且k <1.故选B.答案:B 二、填空题3.已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________________. 【解析】:在同一坐标系内分别作出y =f (x )与y =a |x -1|的图象如图所示.当y =a |x -1|与y =f (x )的图象相切时, 由⎩⎨⎧-ax +a =-x 2-3x ,a >0,整理得x 2+(3-a )x +a =0, 则Δ=(3-a )2-4a =a 2-10a +9=0,解得a =1或a =9. 故当y =a |x -1|与y =f (x )的图象有四个交点时,0<a <1或a >9. 答案:(0,1)∪(9,+∞). 三、解答题4. 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=||x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),求实数a 的取值范围.【解析】:先画出y =x 2-2x +12在区间[0,3)上的图象,再将x 轴下方的图象对称到x 轴上方,利用周期为3,将图象平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图象如图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5. 函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图象与直线y =a 有10个不同的交点,由图象可得a ∈(0, 12).答案:a ∈(0, 12).【高考链接】1. (2016年全国I 卷理科第7题)函数xe x y -=22在[2,2-]的图象大致为 ( )A BC D【解析】:08.288)2(22>->-=e f ,排除A ;17.288)2(22<-<-=e f ,排除B ;0>x 时,x e x x f -=22)(,x e x x f -='4)(,当)41,0(∈x 时,0441)(0=-⨯<'e x f , 因此)(x f 在)41,0(单调递减,排除C ;故选D. 答案:D.2.(2013年湖北卷省理科第10题)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )【解析】:由题意可知函数图象最开始为“斜率为负的线段”,接着为“与x 轴平行的线段”,最后为“斜率为负值,且小于之前斜率的线段”.观察选项中图象可知,C 项符合. 答案:C .3.(2014年湖北卷省理科第10题)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x-2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.]61,61[-B.]66,66[-C.]31,31[-D.]33,33[- 【解析】:因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ;当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B. 答案:B.。