下料问题
- 格式:doc
- 大小:247.00 KB
- 文档页数:13
钢管下料问题总结汇报钢管下料问题总结汇报尊敬的领导:我在本次工作中主要负责钢管下料问题的解决和总结。
经过一段时间的调研和实践,我对钢管下料问题有了更深入的了解,并对解决方案进行了总结。
在此将我的研究过程和结果向您做汇报。
一、问题描述钢管下料是钢铁行业的一个常见工序,也是整个生产过程中的一环。
然而,在实际操作中,我们经常会遇到以下问题:1. 传统的下料方法效率低下,操作繁琐。
2. 下料过程中存在较大的浪费,导致资源的浪费和成本的提高。
3. 出现下料尺寸不准确的情况,导致后续工序的延误。
以上问题直接影响了工作效率和产品质量,需要我们寻找合适的解决方案。
二、调研过程在调研过程中,我首先对我们公司的现有下料方法进行了分析。
发现传统的下料方法主要是通过人工测量和切割,过程繁琐,且存在较大的误差。
所以,我开始寻找替代方案。
在调研过程中,我了解到了数字化下料技术的发展,即利用计算机和数控设备实现下料过程。
这种新技术可以提高下料效率,减少浪费,并且可以准确控制下料尺寸。
所以,我决定调研该技术是否适用于我们的生产。
通过与相关行业的专家和厂家的沟通,我获得了数字化下料技术的详细信息,包括设备的选择、安装和维护等方面。
同时,我也了解到了该技术的优点和限制。
在与公司的生产部门和技术成员的讨论中,我们一致认为数字化下料技术可以解决我们现有的问题。
三、解决方案基于以上的调研和讨论,我提出以下解决方案:1. 引入数字化下料技术:购买适用于我们生产的数控设备,进行钢管的数字化下料。
可以采用CAD设计和CAM加工的方式,通过计算机自动控制设备实现精确的下料,提高效率和减少浪费。
2. 培训和技术支持:为相关员工提供培训,使其掌握数字化下料技术的操作和维护知识。
并建立与供应商的合作关系,以获得及时的技术支持和设备维修。
3. 过程优化:通过数字化下料技术,我们可以记录和分析每次下料的数据,进一步优化下料过程。
可以根据实际情况调整切割速度、刀具角度等参数,以提高下料的准确性和效率。
实用下料问题一.问题的重述“下料问题(cutting stock problem)”是把相同形状的一些原材料分割加工成若干个不同规格大小的零件的问题,此类问题在工程技术和工业生产中有着重要和广泛的应用. 这里的“实用下料问题”则是在某企业的实际条件限制下的单一材料的下料问题。
现考虑单一原材料下料问题. 设这种原材料呈长方形,长度为L ,宽度为W ,现在需要将一批这种长方形原料分割成m 种规格的零件, 所有零件的厚度均与原材料一致,但长度和宽度分别为),(,),,(11m m w l w l ,其中w i <m i W w L l i i ,,1,, . m 种零件的需求量分别为m n n ,,1 .下料时,零件的边必须分别和原材料的边平行。
这类问题在工程上通常简称为二维下料问题。
特别当所有零件的宽度均与原材料相等,即m i W w i ,,1, ,则问题称为一维下料问题。
一个好的下料方案首先应该使原材料的利用率最大,从而减少损失,降低成本,提高经济效益。
其次要求所采用的不同的下料方式尽可能少,即希望用最少的下料方式来完成任务。
因为在生产中转换下料方式需要费用和时间,既提高成本,又降低效率。
此外,每种零件有各自的交货时间,每天下料的数量受到企业生产能力的限制。
因此实用下料问题的目标是在生产能力容许的条件下,以最少数量的原材料,尽可能按时完成需求任务, 同时下料方式数也尽量地小。
现在我们要为某企业考虑下面两个问题。
1.建立一维单一原材料实用下料问题的数学模型, 并用此模型求解下列问题,制定出在生产能力容许的条件下满足需求的下料方案, 同时求出等额完成任务所需的原材料数,所采用的下料方式数和废料总长度. 单一原材料的长度为 3000mm, 需要完成一项有53种不同长度零件的下料任务. 具体数据见表一(略),其中 i l 为需求零件的长度,i n 为需求零件的数量. 此外,在每个切割点处由于锯缝所产生的损耗为5mm. 据估计,该企业每天最大下料能力是100块 ,要求在4天内完成的零件标号(i )为: 5,7,9,12,15,18,20,25, 28,36,48;要求不迟于6天完成的零件标号(i )为:4,11,24,29,32,38,40,46,50。
下料问题-1生产中需要的型材都是从标准长度的材料上切割下来的。
合理的安排下料切割方案在制造业生产中十分重要,可以节约原材料,降低生产成本。
下料问题可以用数学模型来描述,请构造一个数学模型,并用EXCEL求解。
生产中需要10种长度不同的原材料是从10米长的进料中切割下来的,现需要6米长的型材50件,4.5米长的型材97件,3.6米的610件,3.1米的395件,2.8米的420件,2.5米的410件,2.1米的900件,1.8米的460件,1.5米的695件,1.2米的210件,如何下料可以使使用的原料最省。
求解一般下料问题可以假设一些下料切割方案,然后再从这些方案中找出最优组合。
例如在本例中,一些可行的切割方案如下:方案1:切割6米料1个,3.6米料一个;方案2:切割6米料1个,2.8米料一个,1.2米料一个;方案3:切割6米料1个,2.5米料一个,1.5米料一个;方案4:切割6米料1个,2.1米料一个,1.8米料一个;等等…;显而易见,本例可以有很多切割方案,如果令j 为切割方案的下标,i 为产品的下标,a ij为第j 个切割方案中i 产品的切割数量(a ij应为整数),b i为i产品的需求数量。
令x j 为按第个方案下料的数量,则下料问题的数学模型为:min ∑j x js.t. ∑j a ij x j= b i∀ix j≥0 ∀j请用EXCEL求解本例给出的下料问题。
思考题:1.上述模型的变量应该是连续变量?还是整数变量?哪个更合理,各有什么优缺点?2.如果可供使用的原料不是一种,而是两种(长度不同)或更多,模型会如何变化?3.显然、寻找合适数量的切割方案是求解本问题的关键,而切割方案的数量又很多,有没有更有效的寻找下料方案的方法?。
下料问题的优化设计 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT题1、[下料问题的优化设计]某车间有一大批长130cm的棒料,根据加工零件的要求,需要从这批棒料中成套截取70cm长的毛坯不少于100根,32cm 长的毛坯不少于100根,35cm长的毛坯不大于100根。
要求合理设计下料方案,使剩下的边角料总长最短。
根据题目意义,运用优化设计理论和方法,完成设计全过程;工程问题分析:数学模型建立及特征分析:优化方法选择;优化程序设计(解析优化);计算结果分析;结论及体会。
基于MATLAB一维优化下料问题分析0 前言生产中常会通过切割、剪裁、冲压等手段,将原材料加工成所需大小零件,这种工艺过程,称为原料下料问题。
在生产实践中,毛坯下料是中小企业的一个重要工序。
怎样减少剩余料头损失是节约钢材、降低产品成本、提高企业经济效益的一个重要途径。
在毛坯下料中我们常会遇到毛坯种类多、数量大的情况,如不进行周密计算则因料头而造成的钢材损失是相当可观的。
为使料头造成的钢材损失减少到最小程度,我们可依据预定的目标和限制条件统筹安排,以最少的材料完成生产任务。
1 一维优化下料问题的具体模型分析设原材料长度为L,数量充足。
需要切割成n(n≥0)种不同规格的零件,根据既省材料容易操作的原则,人们已经设计好了n种不同的下料方式,设第j种下料方式中可下得第i种零件ij a个,又已知第i种零件得需要量为i b个, j x表示第B种下料方式所消耗得零件数目, j c表示第j B种下料方式所得余料(j=1, j2 , , n, j x∈ Z)。
满足条件的切割方案有很多种,现在要求既满足需要又使所用原材料数量最少,即最优下料方案满足:μp=min (∑j c j x)约束条件:∑ij a j x=i b,j x∈Z。
线性规划数学模型根据线性规划算法,约束条件包括两部分:一是等式约束条件,二是变量的非负性。
板材下料问题 Prepared on 22 November 2020板材玻璃的下料问题摘要“下料问题(cutting stock problem)”就是指在给定板材宽度和长度的情况下,如何将具有一定种类和数量的矩形件排放到板材上,使所需的板材数量最少的问题,该问题广泛存在于工业生产中。
本文运用优化理论,建立了矩形件优化排样数学模型,并提出了基于启发式算法的一刀切约束条件下二维板材下料算法。
关键词下料二维下料问题优化启发式算法矩形件排样一刀切一、问题的重述在大型建筑工程中,需要大量使用玻璃材料,如门窗等。
在作材料预算时,需要求出原材料的张数。
已知板材玻璃原材料和下料后的成品均为矩形。
由于玻璃材料的特点,切割玻璃时,刀具只能走直线,且中间不能拐弯或者停顿,即每切一刀均将玻璃板一分为二。
切割次序和方法的不同、各种规格搭配(即下料策略)不同,材料的消耗将不同。
工程实际需要解决如下问题,在给定一组材料规格尺寸后:(1)在原材料只有一种规格的情况下(例如长为2100cm,宽为1650㎝),给出最优下料策略,此时所需要材料张数最小。
(2)在原材料为两种规格的情况下(例如2100cm*1650cm和2000cm×1500cm),给出最优下料策略,使所需材料的张数最小,且利用率(实际使用总面积与原材料总面积之比)尽量高。
(3)下表是一些成品料及所需块数(长×宽×块数)分别以一种原材料2100cm×1650cm及两种原材料规格2100cm×1650cm,2000cm×1500cm为例,分别给出(1)和(2)的算法及数字结果,并给出两种情况下的利用率。
二、问题的分析本问题属于二维下料问题,该问题已被证明为是NP完全问题。
由于任何NP完全问题都不能用任何已知的多项式算法求解,所以我们建立一个排样的算法模型。
由题目要求该算法首先要满足生产工艺,即要满足“一刀切”,即从板材的一端,沿直线方向切割到另一端。
题1、[下料问题的优化设计]某车间有一大批长130cm的棒料,根据加工零件的要求,需要从这批棒料中成套截取70cm长的毛坯不少于100根,32cm 长的毛坯不少于100根,35cm长的毛坯不大于100根。
要求合理设计下料方案,使剩下的边角料总长最短。
根据题目意义,运用优化设计理论和方法,完成设计全过程;工程问题分析:数学模型建立及特征分析:优化方法选择;优化程序设计〔解析优化〕;计算结果分析;结论及体会。
基于MATLAB一维优化下料问题分析0 前言生产中常会通过切割、剪裁、冲压等手段,将原材料加工成所需大小零件,这种工艺过程,称为原料下料问题。
在生产实践中,毛坯下料是中小企业的一个重要工序。
怎样减少剩余料头损失是节约钢材、降低产品本钱、提高企业经济效益的一个重要途径。
在毛坯下料中我们常会遇到毛坯种类多、数量大的情况,如不进展周密计算那么因料头而造成的钢材损失是相当可观的。
为使料头造成的钢材损失减少到最小程度,我们可依据预定的目标和限制条件统筹安排,以最少的材料完成生产任务。
++1 一维优化下料问题的具体模型分析设原材料长度为L,数量充足。
需要切割成n (n≥0)种不同规格的零件,根据既省材料容易操作的原那么,人们已经设计好了n 种不同的下料方式,设第j 种下料方式中可下得第i 种零件ija 个,又第i 种零件得需要量为ib 个, j x表示第jB 种下料方式所消耗得零件数目, j c表示第jB 种下料方式所得余料(j=1, 2 , ⋯,n, j x∈ Z)。
满足条件的切割方案有很多种,现在要求既满足需要又使所用原材料数量最少,即最优下料方案满足:μp=min (∑j c jx )约束条件:∑ij a j x =ib ,jx ∈Z 。
1.2 线性规划数学模型根据线性规划算法,约束条件包括两局部:一是等式约束条件,二是变量的非负性。
出变量的非负要求外,还有其他不等式约束条件,可通过引入松弛变量将不等式约束化成等式约束形式。
3.下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出.从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。
此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料?。
实用下料问题优化模型摘要关键字:整数规划模型多目标决策优化NP问题下料方案分支定界法1.问题的重述“下料问题(cutting stock problem)”是把相同形状的一些原材料分割加工成若干个不同规格大小的零件的问题,此类问题在工程技术和工业生产中有着重要和广泛的应用. 这里的“实用下料问题”则是在某企业的实际条件限制下的单一材料的下料问题。
现考虑单一原材料下料问题. 设这种原材料呈长方形,长度为L ,宽度为W ,现在需要将一批这种长方形原料分割成m 种规格的零件, 所有零件的厚度均与原材料一致,但长度和宽度分别为),(,),,(11m m w l w l ,其中w i <m i W w L l i i ,,1,, =<<.m 种零件的需求量分别为m n n ,,1 .下料时,零件的边必须分别和原材料的边平行。
这类问题在工程上通常简称为二维下料问题。
特别当所有零件的宽度均与原材料相等,即m i W w i ,,1, ==,则问题称为一维下料问题。
一个好的下料方案首先应该使原材料的利用率最大,从而减少损失,降低成本,提高经济效益。
其次要求所采用的不同的下料方式尽可能少,即希望用最少的下料方式来完成任务。
因为在生产中转换下料方式需要费用和时间,既提高成本,又降低效率。
此外,每种零件有各自的交货时间,每天下料的数量受到企业生产能力的限制。
因此实用下料问题的目标是在生产能力容许的条件下,以最少数量的原材料,尽可能按时完成需求任务, 同时下料方式数也尽量地小.就某企业考虑下面两个问题:1. 建立一维单一原材料实用下料问题的数学模型, 并用此模型求解下列问题,制定出在生产能力容许的条件下满足需求的下料方案, 同时求出等额完成任务所需的原材料数,所采用的下料方式数和废料总长度. 单一原材料的长度为 3000mm, 需要完成一项有53种不同长度零件的下料任务. 具体数据见表一,其中 i l 为需求零件的长度,i n 为需求零件的数量. 此外,在每个切割点处由于锯缝所产生的损耗为5mm. 据估计,该企业每天最大下料能力是100块 ,要求在4天内完成的零件标号(i )为: 5,7,9,12,15,18,20,25, 28,36,48;要求不迟于6天完成的零件标号(i )为:4,11,24, 29,32,38,40,46,50. (提示:可分层建模。
下料工作总结存在问题
近年来,随着社会的发展和进步,以下料工作在各行各业中扮演着越来越重要
的角色。
然而,随之而来的问题也日益凸显,以下料工作存在着一些不容忽视的问题。
首先,以下料工作中存在着信息不准确的情况。
一些从业人员在进行以下料工
作时,往往没有对数据进行充分的核实和验证,导致所得到的信息存在误差,给企业的决策和发展带来了不小的隐患。
其次,以下料工作中存在着数据保护不严密的问题。
一些企业在进行以下料工
作时,对于敏感数据的保护措施不够完善,容易导致数据泄露的风险,给企业的安全带来了威胁。
此外,以下料工作中存在着缺乏专业人才的问题。
一些企业在进行以下料工作时,往往缺乏专业的数据分析人才,导致对数据的分析和利用不够充分,影响了企业的发展和竞争力。
针对以上问题,我们应该采取一系列的措施来加以解决。
首先,加强对以下料
工作的监管和规范,确保信息的准确性和真实性。
其次,加强对数据的保护和安全措施,防范数据泄露的风险。
最后,加大对以下料工作人才的培养和引进力度,提高企业的数据分析和利用水平。
总之,以下料工作在发展的过程中存在着一些问题,需要我们共同努力去解决。
只有通过不断的改进和完善,才能更好地发挥以下料工作的作用,推动企业的发展和进步。
合理下料问题的线性规划模型合理下料问题的线性规划模型____________________________________________________合理下料问题是指从一定数量的原材料中切割出满足需求的最少数量的材料,以达到节约成本的目的。
传统的求解方法主要有剪切原理、贪心算法、动态规划等,这些方法无法很好地解决复杂的合理下料问题,而线性规划模型则能够有效解决。
一、线性规划模型的基本概念线性规划模型(Linear Programming Model, 简称LPM)是指一类用线性函数表示目标函数与约束条件的数学模型,其目标是最大化或最小化模型中的目标函数值。
线性规划模型可以用来求解工业生产中各种优化问题,其优化问题的特点是变量之间存在着线性关系。
二、合理下料问题的线性规划模型1、目标函数在合理下料问题中,我们的目标是要使用最少的原材料切割出所需要的部件,因此我们可以将目标函数定义为原材料的总数。
即:Min Z=∑X<sub>i</sub>其中X<sub>i</sub>表示第i件原材料的数量。
2、约束条件在合理下料问题中,由于需要满足一定的需求量,因此必须将原材料切割成满足需求量的部件,才能够实现合理下料。
因此,在定义约束条件时,必须包含满足需求量的要求。
即:∑X<sub>i</sub>*Y<sub>i</sub>≥C (i=1,2,...n)其中Y<sub>i</sub>表示第i件原材料可以切割出来的部件数量,C表示部件的总需求量。
三、线性规划模型的应用合理下料问题是工业生产中常见的优化问题,通过线性规划模型可以很好地求解这一问题。
例如,对于一个具体的合理下料问题,已知有4件原材料,其切割情况如下表所示:| 原材料 | 长度/m | 可切割出部件数量 | 单价/元 || :------: | :-----: | :--------------------: | :-------: || X<sub>1</sub> | 6 | 5 | 15 || X<sub>2</sub> | 4 | 3 | 20 || X<sub>3</sub> | 2 | 2 | 30 || X<sub>4</sub> | 8 | 8 | 10 |已知部件的总需求量为20件,则该合理下料问题可用如下线性规划模型表示:Min Z=15X<sub>1</sub>+20X<sub>2</sub>+30X<sub>3</sub>+10X<sub>4</sub> Subject to5X<sub>1</sub>+3X<sub>2</sub>+2X<sub>3</sub>+8X<sub>4</sub>≥20(X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>≥0)根据上述模型,通过数学软件可得到最优解X<sub>1</sub>=1.4, X<sub>2</sub>=0,X<sub>3</sub>=0, X<sub>4</sub>=2.5,此时目标函数值Z=45。
下料问题的基本建模方法下料问题,这个听起来似乎有点复杂的名词,其实在我们的日常生活中随处可见。
想象一下,厨房里你准备做一顿大餐,冰箱里有各式各样的食材,你得想办法把这些食材分配好,才能做出美味的菜肴。
下料问题就是类似于这样的一种情况——如何合理分配和利用资源,以达到最优的效果。
1. 什么是下料问题?下料问题,说白了就是在资源有限的情况下,怎么把这些资源用到刀刃上。
就像我们去市场买菜,预算有限,想吃的东西又不少,这时候就得做个计划,选择最重要的食材,确保一顿饭能色香味俱全。
说到这儿,大家可能就会想,为什么要研究这个问题呢?其实,这个问题不仅在厨房里,在工厂、物流、甚至建筑行业中都能找到它的身影。
1.1 实际应用比如说,在家具厂,工人们要从大块木料中切出各种家具部件。
这时候就得考虑如何切割才能最大限度地利用木料,减少浪费。
再说物流行业,运输车上装载货物时,得安排好每件货物的位置,才能确保车的载重合理,同时也得保证卸货方便。
这个下料问题就像是一个拼图游戏,你得把所有的块拼在一起,才能完成一幅完整的画。
1.2 建模的必要性那么,建模在这个过程里起到什么作用呢?简单来说,建模就是用一种简单的方式把复杂的问题抽象出来,让我们能够更清楚地看到全局。
就好比是画地图,地图把复杂的地形变得一目了然,让你能轻松找到方向。
通过建模,我们可以用数学的方法分析资源分配,找到最佳解决方案。
就像打麻将,牌打得好,赢得快,心情自然也好。
2. 下料问题的建模方法下料问题的建模方法其实有很多,常见的有线性规划、动态规划等。
听起来像是数学课上那些让人头疼的公式,但其实它们都能帮助我们找到最佳的解决方案。
2.1 线性规划先说线性规划吧。
这是一个非常经典的建模方法。
简单地说,线性规划就是把我们的资源和需求用数学式子表示出来,然后通过求解这些方程,找出最优解。
就像是给自己定了一个目标,要在最短的时间内把所有的食材都切好。
只要好好规划,你就能把厨房变成一个高效的“生产线”。
下料问题(cutting stock problem) 实用下料问题摘要针对一维下料优化问题,由于使用传统的规划求解,计算量很大,而且很难求出最终结果,所以我们采用种新的优化思想方法——启发式多层次逐层优化方法,并结合贪心算法解决此问题, 基本思想是在求解时,尽可能多的重复使用最优的一种方法进行下料,直到所涉及到的某种零件需求加工完;然后对剩余的零件重复上步的操作,直到所有剩余的零件数目均减小至零为止。
原问题的最优解就是各个序列优化问题所求得的最优下料方式的总和,由于题目中有四天和六天的时间约束,所以分为两个阶段:无时间约束搜寻下料方式和有交货时间限制的下料方式逐步优化,利用Mathematica求得结果:完成任务所需原材料数:811,利用率:97.60%,废料总长度为:58012.5mm此时所用方案64种,具体见附录。
最终求得只需9天便可完成全部53套零件的加工任务。
具体的一维下料问题的下料方式数,耗材量,废料长度,利用率如下表所示:对于二维下料问题,下料方式要满足零件长,宽方向上的套裁,我们通过降维启发式方法即根据题目中宽度单一的特点,我们将原料按照组合50、50,组合50、30、20,组合35、35、30,组合30、30、20、20,以及组合20、20、20、20、20方案将原料切割成3000*50,3000*35,3000*30,3000*20四种“标准件”,转化成了等宽度单一料长的一维下料优化问题,即可通过使用第一题中的启发式多层次逐层优化方法,首先考虑无时间条件约束的情况,我们将这一过程分为两个阶段来实现。
同一维下料问题类似,在有时间约束时,我们将交货时间紧促的零件排在优先位置加工,如此得到结果:所需原料数:458,下料方式数为:66,利用率为:97.71%一、题的重述1. 背景“下料问题(cutting stock problem)”是把相同形状的一些原材料分割加工成若干个不同规格大小的零件的问题,此类问题在工程技术和工业生产中有着重要和广泛的应用。