GPS 基线向量网平差
- 格式:pdf
- 大小:46.82 KB
- 文档页数:6
GPS基线向量解算及平差处理技巧基线向量解算及平差软件特点与问题一、基本方法:1、基线清理数据量大的时候,基线解算比较耗时。
GPS观测接收机数量较多时,会因为自然同步产生许多长基线,即许多相距较远的点连接而成的基线。
这些长基线往往同步观测时间不长,属于不必要的基线,对于控制网质量也无多大益处,所以为了节省计算时间,应在基线解算前将其清理删除。
删除时可在图上选择,也可以在基线表中根据距离选择删除。
2、处理超限闭合环基线解算完成后,首先要检查环闭合差(同步或异步环),对于闭合差大的环,应该进行处理。
一般按相对精度≤1/20000估算,相对闭合差应小于50ppm。
所以大于50 ppm的环应进行处理。
闭合环超限处理是一项繁琐、耗时的工作,也是GPS控制网数据处理的主要内容,主要的技巧和方法可以归纳为:(1)、超限基线处理过程中一些基线要重新解算,解算后会影响到相关环闭合差,所以处理需要反复进行。
作为一般的原则,首先处理相对闭合差较大的环,然后处理环闭合差较小的环。
(2)、整理归纳超限闭合环,分析是否涉及到一条共同基线,例如几组超限闭合环(J012,J015,J016)、(J013,J015,J102)、…,(J012,J020,J015)就涉及到共同基线J012→J015,这条基线有问题的可能性就较大。
(3)、处理时首先分析可能有问题的基线是否必要,如果是连接两个不相邻的点,并且涉及到环甚多,则可以直接将其删除。
井研算例网形复杂回路众多,一般可直接删除不合格基线。
(4)、如果一个闭合差超限的环,相关基线均不能简单删除(删除后影响图形结构,减少了重要环路),应该改变基线解算参数,重新计算相关基线。
方法是在网图上选中重解基线,重新设置高度角,历元间隔、参考星等设置,点击“基线解算”→“解算选择基线”。
(5)、基线解算的精度指标rms和ratio是基线解算质量的参考指标,前者是中误差,后者是方差比(,rms越小,表明基线解算质量越高,ratio越大,表明整周未知数解算越可靠,所以重解基线,要关注这两项指标,但是这两项指标只作参考,最重要的指标还是闭合差。
GPS数据处理GPS基线解算的优化及平差的方法技巧摘要:对影响GPS基线解算质量的主要因素进行分析和研究,结合实例阐明基于南方GPS后处理软件的GPS基线解算的优化技术和方法。
以及对GPS 解算数据平差处理的方法与技巧。
关键词:GPS基线解算;固定解;浮动解;残差曲线;优化,数据传输、数据分流、观测数据的平滑、滤波、平差计算、同步环、异步环、重复基线。
GPS接收机采集记录的是GPS接收机天线至卫星的伪距、载波相位和卫星星历等数据。
GPS数据处理就是从原始观测值出发得到最终的测量定位成果,其数据处理过程大致可划分为数据传输、格式转换(可选)、基线解算和网平差以及GPS网与地面网联合平差等四个阶段。
GPS测量数据处理的流程如图所示。
GPS测量数据处理流程一、引言根据GPS外业观测和基线数据处理的实际情况,即使通过选取恰当的点位来保证良好的观测条件,进行星历预报来保证观测到的卫星数目及星座的图形强度,但在实际的基线解算过程中,时常会遇到基线只有浮动解而无固定解。
在此情况下,对基线解算进行优化处理后通常能够得到固定解,从而提高基线质量,避免或减少返工重测现象。
二、影响GPS基线解算结果的几个因素及其对策影响GPS基线解算质量的因素较多也较为复杂,如卫星的周跳、星历误差、对流层及电离层影响、多路径误差、无线电干扰、不明因素影响及起算点误差过大等都会影响基线解算。
应对措施1基线起点坐标不准确的应对方法要解决基线起点坐标不准确的问题,可以在进行基线解算时,使用坐标准确度较高的点作为基线解算的起点,较为准确的起点坐标可以通过进行较长时间的单点定位或通过与WGS-84坐标较准确的点联测得到;也可以采用在进行整网的基线解算时,所有基线起点的坐标均由一个点坐标衍生而来,使得基线结果均具有某一系统偏差,然后,再在GPS网平差处理时,引入系统参数的方法加以解决。
2卫星观测时间短的应对方法卫星整周模糊度难以确定的影响。
由于个别或少数卫星观测时间太短,而导致这些卫星的整周模糊度难以准确确定。
第七章GPS基线向量网平差GPS基线解算就是利用GPS观测值,通过数据处理,得到测站的坐标或测站间的基线向量值。
在布设GPS网时,首先需对构成GPS网的基线进行观测,并利用所采集到的GPS数据进行数据处理,通过基线解算,获得具有同步观测数据的测站间的基线向量。
为了确定GPS 网中各个点在某一特定坐标系统下的绝对坐标,需要提供位置基准、方位基准和尺度基准,而一条GPS基线向量只含有在WGS-84下的水平方位、垂直方位和尺度信息,通过多条GPS 基线向量可以提供网的方位基准和尺度基准,由于GPS基线向量中不含有确定网中各点绝对坐标的位置基准信息,因此,仅凭GPS基线向量所提供的基准信息,是无法确定出网中各点的绝对坐标的。
而我们布设GPS网的主要目的是确定网中各个点在某一特定局部坐标系下的坐标,这就需要从外部引入位置基准,这个外部基准通常是通过一个以上的起算点来提供的。
网平差时可利用所引入的起算数据来计算出网中各点的坐标。
当然,GPS基线向量网的平差,除了可以解求出待定点的坐标以外,还可以发现和剔除GPS基线向量观测值和地面观测中的粗差,消除由于各种类型的误差而引起的矛盾,并评定观测成果的精度。
第1节G PS网平差的分类GPS网平差的类型有多种,根据平差所进行的坐标空间,可将GPS网平差分为三维平差和二维平差,根据平差时所采用的观测值和起算数据的数量和类型,可将平差分为无约束平差、约束平差和联合平差等。
一、三维平差和二维平差1. 三维平差所谓三维平差是指平差在三维空间坐标系中进行,观测值为三维空间中的观测值,解算出的结果为点的三维空间坐标。
GPS网的三维平差,一般在三维空间直角坐标系或三维空间大地坐标系下进行。
2. 二维平差所谓二维平差是指平差在二维平面坐标系下进行,观测值为二维观测值,解算出的结果为点的二维平面坐标。
二维平差一般适合于小范围GPS网的平差。
二、无约束平差、约束平差和联合平差1. 无约束平差GPS网的无约束平差指的是在平差时不引入会造成GPS网产生由非观测量所引起的变形的外部起算数据。
10.5.1基线解算1.观测值的处理GPS基线向量表示了各测站间的一种位置关系,即测站和测站间的坐标增量。
GPS基线向量和常规测量中的基线是有区别的,常规测量中的基线只有长度属性,而GPS基线向量则具有长度、水平方位和垂直方位等三项属性。
GPS基线向量是GPS同步观测的直接结果,也是进行GPS网平差,获取最终点位的观测值。
若在某一历元中,对k颗卫星数进行了同步观测,则可以得到k-1个双差观测值;若在整个同步观测时段内同步观测卫星的总数为l则整周未知数的数量为l-1。
在进行基线解算时,电离层延迟和对流层延迟一般并不作为未知参数,而是通过模型改正或差分处理等方法将它们消除。
因此,基线解算时一般只有两类参数,一类是测站的坐标参数,数量为3;另一类是整周未知数参数(m为同步观测的卫星数),数量为。
2.基线解算基线解算的过程实际上主要是一个平差的过程,平差所采用的观测值主要是双差观测值。
在基线解算时,平差要分三个阶段进行,第一阶段进行初始平差,解算出整周未知数参数的和基线向量的实数解(浮动解);在第二阶段,将整周未知数固定成整数;在第三阶段,将确定了的整周未知数作为已知值,仅将待定的测站坐标作为未知参数,再次进行平差解算,解求出基线向量的最终解-整数解(固定解)。
(1)初始平差根据双差观测值的观测方程(需要进行线性化),组成误差方程后,然后组成法方程后,求解待定的未知参数其精度信息,其结果为:待定参数:待定参数的协因数阵:,单位权中误差:。
通过初始平差,所解算出的整周未知数参数本应为整数,但由于观测值误差、随机模型和函数模型不完善等原因,使得其结果为实数,因此,此时和实数的整周未知数参数对应的基线解被称作基线向量的实数解或浮动解。
为了获得较好的基线解算结果,必须准确地确定出整周未知数的整数值。
(2)整周未知数的确定第二节已提及,此处不再详述。
(3)确定基线向量的固定解当确定了整周未知数的整数值后,和之相对应的基线向量就是基线向量的整数解。
在使用数据处理软件进行GPS网平差时,需要按以下几个步骤来进行:⏹提取基线向量,构建GPS基线向量网⏹三维无约束平差⏹约束平差/联合平差⏹质量分析与控制一、提取基线向量,构建GPS基线向量网要进行GPS网平差,首先必须提取基线向量,构建GPS基线向量网。
提取基线向量时需要遵循以下几项原则:⏹必须选取相互独立的基线,若选取了不相互独立的基线,则平差结果会与真实的情况不相符合。
⏹所选取的基线应构成闭合的几何图形。
⏹选取质量好的基线向量,基线质量的好坏,可以依据RMS、RDOP、RATIO、同步环闭和差、异步环闭和差和重复基线较差来判定。
⏹选取能构成边数较少的异步环的基线向量。
⏹选取边长较短的基线向量。
二、三维无约束平差在构成了GPS基线向量网后,需要进行GPS网的三维无约束平差,通过无约束平差主要达到以下几个目的:⏹根据无约束平差的结果,判别在所构成的GPS网中是否有粗差基线,如发现含有粗差的基线,需要进行相应的处理,必须使得最后用于构网的所有基线向量均满足质量要求。
⏹调整各基线向量观测值的权,使得它们相互匹配。
三、约束平差/联合平差在进行完三维无约束平差后,需要进行约束平差或联合平差,平差可根据需要在三维空间进行或二维空间中进行。
约束平差的具体步骤是:⏹指定进行平差的基准和坐标系统。
⏹指定起算数据。
⏹检验约束条件的质量。
⏹进行平差解算。
四、质量分析与控制在这一步,进行GPS网质量的评定,在评定时可以采用下面的指标:⏹基线向量的改正数。
根据基线向量的改正数的大小,可以判断出基线向量中是否含有粗差。
具体判定依据是,若:《GPS 测量技术与应用》电子教案甘肃林业职业技术学院测绘工程系 2 10||ασ-⋅⋅<t q v i i 1,则认为基线向量中不含有粗差;反之,则含有粗差。
相邻点的中误差和相对中误差。
若在进行质量评定时,发现有质量问题,需要根据具体情况进行处理,如果发现构成GPS 网的基线中含有粗差,则需要采用删除含有粗差的基线、重新对含有粗差的基线进行解算或重测含有粗差的基线等方法加以解决;如果发现个别起算数据有质量问题,则应该放弃有质量问题的起算数据。
GPS网平差进行GPS网平差的目的主要有三个:(1)消除由观测量和已知条件中存在的误差所引起的GPS 网在几何上的不一致。
包括闭合环闭合差不为0;复测基线较差不为0;通过由基线向量所形成的导线,将坐标由一个已知点传算到另一个已知点的符合差不为0等。
通过网平差,可以消除这些不一致.(2)改善GPS网的质量,评定GPS网的精度。
通过网平差,可得出一系列可用于评估GPS网的精度指标,如观测值改正数、观测值验后方差等等。
结合这些精度指标,还可以设法确定出可能存在粗差或质量不佳的观测值,并对它们进行相应的处理,从而达到改善网的质量的目的.(3)确定GPS网中点在指定参照系下的坐标以及其他所需参数的估值。
通常,无法通过某个单一类型的网平差过程来达到上述三个目的,而必须分阶段采用不同类型的网平差方法。
根据进行网平差时所采用的观测量和已知条件的类型和数量,可将网平差分为最小约束平差/自由网平差、约束平差和联合平差三种类型。
这三种类型网平差除了都能消除由于观测值和已知条件所引起的网在几何上的不一致外,还具有各自不同的功能。
无约束平差能够被用来评定网的内符合精度和探测处理粗差,而约束平差和联合平差则能够确定点在制定参照系下的坐标。
根据进行平差时所采用坐标系的类型,GPS网平差还可以分为三维平差和二维平差.在使用数据处理软件进行GPS网平差时,需要进行以下四个步骤:1、基线向量提取2、三维无约束平差3、约束平差/联合平差4、质量分析与控制基线向量提取:要进行GPS网平差,首席必须提取基线向量,构建GPS基线向量网.提取基线向量时,需要遵循以下几项原则:(1)必须选取相互独立的基线,若选取了不相互独立的基线,则平差结果会与真实的情况不相符合.(2)所选取的基线应构成闭合的几何图形.(3)选取质量好的基线向量,基线质量好坏可以依据RMS、RDOP、Ratio、同步环闭合差、异步环闭合差及重复基线较差来判定。
(4)选取能构成边数较少的异步环的基线向量.(5)选取边长较短的基线向量.三维无约束平差GPS网的最小约束平差/自由网平差中所采用的观测量完全为GPS基线向量,平差通常在与基线向量相同的地心地固系下进行。
GNSS基线向量网平差研究1 GNSS测量的特点(1)各个系统内可提供全球统一的三维地心坐标经典大地测量将平面和高程采用不同方法分别施测。
GPS测量中,可提供统一WGS-84下的坐标,可以精确测量观测站的大地高程。
GLONASS 提供统一的PE-90坐标系下坐标,GNSS测量的这一特点,不仅为研究大地水准面的形状和确定地面点的高程开辟了新途径,同时也为其在航空物探、航空摄影测量及精密导航中的应用,提供了重要的高程数据。
GPS定位是在全球统一的WGS-84坐标系统中计算的,因此全球不同点的测量成果是相互关联的。
我国使用CGCS2000坐标系统后,也便于WGS-84到CGCS2000坐标系统的转换,都是地心坐标系,转换精度更高。
(2)实时定位利用全球定位系统进行导航,即可实时确定运动目标的三维位置和速度,可实时保障运动载体沿预定航线运行,亦可选择最佳路线,特别是对军事上动态目标的导航,具有十分重要的意义。
(3)观测时间短目前,利用经典的静态相对定位模式,观测20Km以内的基线所需观测时间,对于单频接收机在1h左右,对于双频接收机仅需15~20min。
采用实时动态定位模式,流动站初始化后,可随时定位,每站观测仅需几秒钟。
利用GNSS 技术建立控制网,可缩短观测时间,提高作业效益。
2 GPS基线向量网平差由于GNSS系统中得到基线向量以后,再进行GNSS基线向量网平差,网平差解算原理是相似的,本文以GPS基线向量网平差处理的分析为例。
2.1GPS基线向量网三维平差因为GPS基线向量观测值是WGS-84坐标系中的三维坐标的空间直角坐标,本文讨论不含地面观测数据和地面起算数据的GPS网在WGS-84坐标系中的三维平差。
对不含地面数据的GPS网在WGS-84坐标系中进行三位平差有如下作用:1)检验GPS基线数据有没有粗差或明显的系统误差,并考察GPS网的内部精度和GPS基线向量的观测值精度。
2)为了利用某些点的正常高和GPS大地高差,确定GPS 网中其它点的正常高,提供大地高差数据。
一、名词解释1、岁差:地球在绕太阳运行时,地球自转轴的方向在天球上缓慢移动,春分点在黄道上随之慢慢移动章动:在岁差的基础上还存在各种大小和周期各不相同的微小的周期性变化2、WGS-84坐标系:美国国防部1984年世界大地坐标系,属于协议地球坐标系3、卫星星历:描述有关卫星轨道的信息4、自相关系数:R(t)=(Au-Bu)/(Au+Bu)Au为相同码元数Bu为相异码元数5、重建载波:在进行载波相位测量前,首先要进行解调工作,设法将调制在载波上的测距码和导航电文去掉,重新恢复载波,这一工作叫重建载波6、相对定位:确定同步跟踪相同的GPS卫星信号的若干台接收机之间的相对位置(坐标差)的定位方法7、伪距:ρ=τ*c 距离ρ并不等于卫星至地面测站的真正距离,叫伪距8、整周跳变:如果由于某种原因使计数器无法连续计数,那么信号被重新跟踪后,整周计数器中将丢失某一量而变得不正确。
而不足一整周的部分Fr(φ)由于是一个瞬时量测值,因而仍是正确的,这种现象叫整周跳变9、整周未知数:载波相位测量时,载波相位与基准相位之间相位差的首观测值所对应的整周未知数10、PDOP值:空间位置精度因子11、相对论效应:是由于卫星钟和接收机钟所处的状态(速度和重力位)不同而引起卫星钟和接收机钟产生相对钟误差的现象12、数学同步误差:加上改正数后的卫星钟读数和GPS标准时间之差称为数学同步误差13、平均相位中心:天线瞬时相位中心的平均值14、独立基线:两台接收机得到的多余观测边以外的必要基线15、异步环闭合差:不是完全由同步观测基线所组成的闭合环称为异步环,异步环的闭合差16、基线解算:利用多个测站的GPS同步观测数据,获得这些测站之间坐标差的过程17、网平差:将基线结果再当成数据18、约束平差:平差时所采用的观测值完全是GPS观测值(即GPS基线向量),而且,在平差时引入了使得GPS网产生由非观测量所引起的变形的外部起算数据。
19、Ratio值:反映了所确定出的整周未知数参数的可靠性,这一指标取决于多种因素,既与观测值的质量有关,也与观测条件的好坏有关。