发动机概论
- 格式:ppt
- 大小:5.04 MB
- 文档页数:159
第一章概论航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。
P3空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。
不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。
涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。
在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。
P4燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。
由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。
涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。
按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。
P5航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。
对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。
引擎基本构造:缸径冲程排气量与压缩比引擎是由凸轮轴、汽门、汽缸盖、汽缸本体、活塞、活塞连杆、曲轴、飞轮、油底壳…等主要组件,以及进气、排气、点火、润滑、冷却…等系统所组合而成。
以下将各位介绍在汽车型录的「引擎规格」中常见的缸径、冲程、排气量、压缩比、SOHC、DOHC等名词。
缸径:汽缸本体上用来让活塞做运动的圆筒空间的直径。
冲程:活塞在汽缸本体内运动时的起点与终点的距离。
一般将活塞在最靠近汽门时的位置定为起点,此点称为「上死点」;而将远离汽门时的位置称为「下死点」。
排气量:将汽缸的面积乘以冲程,即可得到汽缸排气量。
将汽缸排气量乘以汽缸数量,即可得到引擎排气量。
以Altis 1.8L车型的4汽缸引擎为例:缸径:79.0mm,冲程:91.5mm,汽缸排气量:448.5 c.c.引擎排气量=汽缸排气量×汽缸数量=448.5c.c.×4=1,794 c.c.压缩比:最大汽缸容积与最小汽缸容积的比率。
最小汽缸容积即活塞在上死点位置时的汽缸容积,也称为燃烧室容积。
最大汽缸容积即燃烧室容积加上汽缸排气量,也就是活塞位在下死点位置时的汽缸容积。
Altis 1.8L引擎的压缩比为10:1,其计算方式如下:汽缸排气量:448.5 c.c.,燃烧室容积:49.83 c.c.压缩比=(49.84+448.5):49.84=9.998:1≒10:1 发动机基本工作原理一、基本理论汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。
因此,汽车发动机是属于内燃机,即燃烧在发动机内部发生。
有两点需注意:1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。
2.同样也有外燃机。
在早期的火车和轮船上用的蒸汽机就是典型的外燃机。
燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。
内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。
第一章发动机总体构造1、发动机的基本术语有哪些?各有什么含义?(I)工作循环活塞在气缸内往比运动时,完成了进气、乐缩、作功和排气4个工作过程,周而兔始地进行这些过程,内燃机才能持续地运转对外输出功率,每完成一次上述4个过程称为一个工作循环。
(2)上止点(TDC)上止点是指活寒离曲轴回转中心最远处,通常指活寒的最高位置。
(3)卜止点(BDe)下止点是指活塞离曲轴回转中心最近处,通常指活塞的最低位置.(4)活塞行程(三)活塞行程是指上、下两止点间的距离,单位:亳米(mm)。
活塞由•个止点移到另一个止点,运动一次的过程称为行程。
(5)曲柄半径(R)曲柄半径是指与连杆大端相连接的曲柄销的中心线到曲轴回转中心线的距离(11rι),显然,曲轴每转一周,活塞移动两个行程,呻S=2R.(6)气缸工作容积(V h)气缸工作容积是指活塞从上止点到下止点所让出的空间的容积.其计算公式为V h=11I)2S∕4×IO6式中:K一—气缸工作容积,升(1.):D——气缸直径,花米(物):S——活塞面枳,平方亳米(mm?)。
(7)发动机工作容积(V t)发动机工作容积是指发动机所有气缸工作容枳的总和,也称发动机的扣量。
若发动机的气缸数为i,则V1=V11-i。
(8)燃烧室容积(VJ热烧室容积是指活寒在上止点时,活寤顶上面空间的容积,单位:升(1.),(9)气缸总容积(VJ气缸总容积是指活塞在下止点时,活塞顶上面空间的容积(1.).它等丁•气缸工作容积与燃烧窕容积之和,即V.=V h+工(10)压缩比(ε)压缩比是指气缸总容积与燃烧室容枳的比值,即e=V u∕V c=V h+V./V c=1.+V h/V t(11)工况内燃机在某一时刻的运行状况简称工况,以该时刻内燃机对外输出有效功率和转速来表示。
(12)负荷率内燃机在某一转速卜.发出的有效功率与相同转速卜所能发出的最大有效功率的比值称为负荷率,简称负荷。
2、发动机总体结构包括哪几部分?各起什么作用?(1)曲柄连杆机构。
火箭发动机概论范文火箭发动机的发展可以追溯到古代中国。
根据文献记载,早在公元132年,张衡发明了世界上第一种火箭-“火龙”的原型,用于追击敌军。
后来,火箭技术传入阿拉伯地区,并在中世纪传入到欧洲。
到了19世纪,火箭技术在工业革命的推动下得到了快速发展,成为现代航天技术的基石。
喷管是承受燃气高速喷出的部分,它通过形状的设计来实现喷射气体的加速和推力的增加。
喷管的内壁一般都用特殊材料进行涂层处理,以提高耐热性和耐腐蚀性。
喷管外挂装置则用来控制火箭的方向和稳定性。
火箭发动机的喷气流通过喷管外挂装置进行偏转,以实现对火箭的姿态调整和运动控制。
火箭发动机的推力大小取决于燃料燃烧产生燃气的质量流量和喷气速度。
燃料和氧化剂的选择是非常重要的,常见的燃料和氧化剂组合有液体氧和液体氢、液体煤油和液体氧、固体燃料等。
不同的组合可以产生不同的推力和特性。
火箭发动机的分类有很多种,主要可以分为液体火箭发动机和固体火箭发动机两大类。
液体火箭发动机是指使用液体燃料和氧化剂的火箭发动机,其优点是可调节推力和燃烧时间,缺点是复杂性和易受损。
固体火箭发动机是指使用固体燃料的火箭发动机,其优点是结构简单,推力大,常用于火箭的初步推进阶段,缺点是不能停止燃烧和调节推力。
火箭发动机在航天领域发挥着至关重要的作用。
火箭发动机的研发和设计涉及到力学、化学、材料、流体力学等多个领域的知识。
随着航天技术的不断发展,火箭发动机的推力和效率也在不断提高,提供了更大的载荷能力和更远的航行距离。
尽管火箭发动机在航天技术中具有重要地位,但也面临一些挑战和难题。
首先,火箭发动机的推力和效率还有进一步提升的空间。
其次,火箭发动机的重量和体积也需要不断减小,以提高整个火箭的载荷能力。
此外,火箭发动机在使用过程中也面临耐久性和可靠性等问题。
总结起来,火箭发动机是现代航天技术中至关重要的一部分,其工作原理和设计涉及到多个学科的知识。
随着技术的不断进步,火箭发动机的推力和效率将不断提高,为人类探索宇宙提供更大的可能性。
火箭发动机概论(2)2010-07-12 15:23:13| 分类:默认分类| 标签:|字号大中小订阅动力机械科研生产联合体(NPO Energomash)是俄罗斯一家专门从事液体推进剂火箭设计生产的公司。
其创建者是苏联20世纪20年代就开始从事火箭发动机研究的瓦朗坦·格鲁什科,1954年,他成立了这家公司,并担任主席,公司当时叫做OKB-456。
格卢什科领导设计局长达30多年,给当时的苏联提供了许多性能最好的发动机。
公司曾设计了RD-107和RD-108发动机,驱动R-7火箭将卫星号人造卫星送入太空。
之后又为质子火箭设计了RD-253发动机。
给“能源号”设计了RD-170。
R-7是前苏联最早的一种火箭,R-7火箭的设计特点之一是具有一个芯级发动机段(A),其上捆绑了4个助推器(B,V,G和D)形成了第一级。
每一级的芯级发动机上都捆绑着4个主发动机和4个游动发动机。
对于第一级,一共有20个主燃烧室和12个游动燃烧室,都在同一时刻点火,推举着飞行器离开发射台。
当连接器引爆时它们就会分离,剩下芯级发动机继续作为第二级,其上面级称为第三级。
对R-7的早期设计研究集中在以液氧(LOX)和煤油的混合物为推进剂的单燃烧室发动机上,由格鲁什科负责的OKB-456设计局进行研发。
芯级主发动机为RD-106发动机,发射时可以产生约520kN的推力,真空条件下可以产生约645kN的推力。
4个捆绑助推器采用RD-105发动机,发射时每个发动机可以产生约540kN的推力。
然而,在研发过程中,这些发动机在单燃烧室燃烧稳定性上都暴露出了问题。
到1953年,这一问题变得更加突出,使得火箭无法再承受高热核弹头不断增加的质量。
1953年前,这种设计思想曾计划用于采用洲际弹道导弹来发射原子弹,但是后来转而用于发射(更重的)氢弹(或热核弹)。
从原子弹转到热核弹是运载能力必须增加的主要原因。
它必须具有把一个54吨的弹头送到8,500千米远的运载能力。
西北工业大学航空发动机结构分析课后答案第一章第一章概论思考题1、航空燃气涡轮发动机有哪些基本类型,指出他们的共同点、区别和应用。
区别:涡轮喷气发动机:在单个流道内靠发动机喷出的高速燃气产生反作用推力的燃气涡轮发动机,涡轮出口燃气在喷管中膨胀,使燃气可用能量转变为高速喷流的动能而产生反作用力。
主要应用:军用、民用、特别是超声速飞机,目前大多被涡扇发动机取代。
涡轮风扇发动机:与涡喷发动机相比多了压气机前风扇、外涵道结构。
空气进入发动机后分别通过内外涵道。
推力由内外涵道两部分的气体动能产生。
主要应用:中、大涵道比发动机多用于亚声速客机和运输机,小涵道比发动机多用于战斗机和超声速飞行器上。
涡轮螺旋桨发动机:靠动力涡轮把燃气能量转化为轴功率,带动螺旋浆工作,主要应用于速度小于800km/h的中小型运输机、通用客机。
涡轮轴发动机:原理与结构基本与涡轮螺旋桨发动机一样,只是燃气发生器出口燃气所含能量全被自由涡轮吸收,驱动轴转动。
其主要用途是直升机。
螺旋桨风扇发动机:可看做带高速先进螺旋桨的涡轮螺旋桨发动机,又可看做除去外涵道的大涵道比涡扇发动机,兼具耗油率低和飞行速度高的优点。
目前尚未进入实际应用阶段。
共同点:组成部分:进气装置、压气机、燃烧室、涡轮和尾喷管。
工作过程:吸气进气、压缩、燃烧后膨胀和排气。
核心及部分:压气机、燃烧室、涡轮。
2、涡轮喷气、涡轮风扇、军用涡扇分别是何年代问世的?涡轮喷气 :二十世纪三十年代末。
涡轮风扇 :二十世纪六十年代初。
军用涡扇 :二十世纪六十年代中期。
3、简述涡轮风扇发动机的基本类型。
按用途可分为军用涡扇发动机和民用涡扇发动机,按是否有加力燃烧室分为带加力的涡扇发动机和不带加力的涡扇发动机,带加力的用于军用超音速飞行,不带加力的用于民用,按涵道比大小可分为小涵道比、中涵道比、大涵道比涡扇发动机。
4、什么是涵道比,涡扇发动机如何按涵道分类,说明各类型发动机的应用机型。
涵道比是指涡扇发动机外涵道和内涵道空气质量流量之比,又称流量比。