超超临界机组系统特点
- 格式:ppt
- 大小:780.00 KB
- 文档页数:19
600MW超临界机组总体介绍
首先,600MW超临界机组是一种燃煤发电机组,采用超临界锅炉及超
临界蒸汽参数运行。
其设计能力达到了600兆瓦,是一种大型的发电机组。
它采用了先进的燃煤发电技术,具有较高的发电效率,可以最大限度地利
用煤炭资源。
600MW超临界机组的核心设备是超临界锅炉。
它采用了高温高压的工质,将锅炉内的水蒸汽压力提高到临界值以上,使得蒸汽温度大幅度提高。
这种工艺使得机组的热效率得到提高,能耗减少。
同时,超临界锅炉还具
有较小的包容性和快速启停的特点,适合应对电网负荷波动和需求峰谷的
变化。
此外,600MW超临界机组还采用了先进的自动化控制系统。
通过实时
监测和分析各项参数,调整机组的工作状态,使其保持在最佳的工作状态。
这种自动化控制系统能够有效地提高机组的稳定性和可靠性,减少人工干
预的需求。
总的来说,600MW超临界机组是一种现代化、高效能的发电设备。
它
不仅具有高热效率和低耗能的特点,还具有较低的排放量和高度自动化的
控制系统。
这使得600MW超临界机组成为了目前燃煤发电的首选,为能源
供应提供了可靠支持,同时也对环境保护做出了贡献。
超临界机组和亚临界机组特点比较超临界机组是指主蒸汽压力高于临界压力(22.13MPa)的锅炉和汽轮发电机组,它具有如下特点:(1) 热效率高、热耗低。
超临界机组比亚临界机组可降低热耗~2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。
(2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。
(3) 超临界锅炉水冷壁管道内单相流体阻力比亚临界汽包炉双相流体阻力低。
(4) 超临界压力下工质的导热系数和比热较亚临界压力的高。
(5) 超临界压力工质的比容和流量较亚临界的小,故锅炉水冷壁管内径较细,汽机的叶片可以缩短,汽缸可以变小,降低了重量与成本。
(6)超临界压力直流锅炉没有大直径厚壁的汽包和下降管,制造时不需要大型的卷板机和锻压机等机械,制造、安装、运输方便。
同时取消汽包而采用汽水分离器,汽水分离器远比亚临界锅炉的汽包小,内部装置也很简单,制造工艺也相对容易,相应地降低了成本。
(7)启动、停炉快。
超临界压力直流锅炉不存在汽包上下壁温差等安全问题,而且其金属重量和储水量小,因而锅炉的储热能力差,所以其增减负荷允许的速度快,启动、停炉时间可大大缩短。
一般在较高负荷(80~100%)时,其负荷变动率可达 10%/min。
(8) 超临界压力锅炉适宜于变压运行。
(9)超临界锅炉机组的水质要求较高,使水处理设备费用增加,例如蒸汽中铜、铁和二氧化硅等固形物的溶解度是随着蒸汽比重的减小而增大,因而在超临界压力下,即使温度不高,铜、铁和二氧化硅等的溶解度也很高,为防止它在锅炉蒸发受热面及汽机叶片上结垢,超临界锅炉需 100%的凝结水精处理,除盐除铁。
(10)超临界压力锅炉的蓄热特性不及汽包炉,外界负荷变动时,汽温、汽压变化快而必须有相当灵敏可靠的自动调节系统,锅炉机组的自控水平要求也较高一些。
超临界机组详细介绍
超临界机组是一种高效、节能的发电设备,其工作原理是将水加热至超临界状态,进而驱动涡轮转子旋转,产生电能。
超临界机组具有燃煤量少、污染排放低、效率高等特点,被广泛应用于电力工业。
超临界机组的核心组成部分包括锅炉、汽轮机、发电机、调速器等。
锅炉是超临界机组的重要部件,通过燃烧燃料产生高温高压的蒸汽,供给汽轮机驱动发电机转动。
汽轮机则是将蒸汽能量转化为机械能的设备,其转子是由高速旋转的叶轮组成。
发电机则将机械能转化为电能,是超临界机组的核心部件之一。
调速器则是用来调节机组的发电功率,保持电压稳定。
超临界机组的优点在于其高效节能、排放低、减少使用煤炭资源等多个方面。
其局限在于设备投资成本高、运行维护成本高等。
近年来,随着环保意识的不断提高和煤炭资源的紧缺,超临界机组受到越来越多的关注和重视,成为电力工业的重要发展方向。
- 1 -。
3.4.1总体特点本次机组具有超群的热力性能;优越的产品运行业绩及可靠性;高效、高可用率、容易维护、检修所花时间少、运行灵活、快速启动及调峰能力。
机组采用一只高压缸、一只中压缸和二只低压缸串联布置。
汽轮机四根转子各由两只径向轴承来支承。
这种支承方式不仅安装维护方便,属于传统成熟结构;相对于单支承轴承跨距小,转子刚度高,厂内高速动平衡状态的动力特性与现场转子工作状基本相同,减少现场动平衡量;而且轴承工作比压相对较低,在一般轴承比压设计范围内,联轴器螺栓受力较小,汽机转子能平稳安全运行。
本机组采用以下在多台相近蒸汽参数和相同容量的机组得到验证的设计和结构特征,来保证机组具有高的可靠性和运行高效率。
●模块设计●采用成熟可靠结构●高效率冲动式叶型●选用合适的材料来适应高蒸汽参数●对高温部件作特殊精心设计●可靠的防止固体微粒腐蚀的技术●高压、中压缸为双层缸结构●汽缸采用水平中分面、窄高法兰,并采用合理的螺栓冷却系统●中心线支承方式●汽缸和隔板精确的同心度●经过验证的叶片固定方式●每个转子配有独立的双轴承支撑●对轴系稳定性进行了慎密校核●实心合金钢整锻转子,轮盘式转子结构●低压缸为三层缸结构,防止热变形●铁素体不锈钢汽封和接触式汽封●径向汽封,动静间隙合理●全部隔板采用焊接结构●结构上有足够的疏水槽●钢台板●先进的低压缸喷水系统●测温元件可在线更换●转子厂内高速动平衡和超速试验,将不平衡量降到最小●高效、高可靠性的阀门●面向用户的设计、检修维护方便图3-26 高压内缸中分面螺栓冷却图图3-27 中压缸纵剖面3.4.2 高压模块(HP 汽缸)高压缸为单流式,包括1个双向流冲动式调节级和8个冲动式压力级。
高压汽缸采用双层缸结构,内缸和外缸之间的夹层只接触高压排汽,使缸壁设计较薄,高压排汽占据内外缸空间,简化汽缸结构。
汽缸设计采用合理的结构和支撑方式,保证热态时热变形对称和自由膨胀,降低扭曲变形。
高压内、外缸由合金钢铸件制成,精确加工和手工研磨水平中分面达到严密接触,防止漏汽。
国产1000MW超超临界机组技术综述一、本文概述随着全球能源需求的日益增长和环境保护压力的加大,高效、清洁的发电技术已成为电力行业的重要发展方向。
国产1000MW超超临界机组作为当前国际上最先进的发电技术之一,其在我国电力工业中的应用和发展具有重要意义。
本文旨在对国产1000MW超超临界机组技术进行全面的综述,以期为我国电力工业的可持续发展提供技术支持和参考。
本文将首先介绍超超临界技术的基本原理和发展历程,阐述国产1000MW超超临界机组的技术特点和优势。
接着,文章将重点分析国产1000MW超超临界机组的关键技术,包括锅炉技术、汽轮机技术、发电机技术以及自动化控制系统等。
本文还将对国产1000MW超超临界机组在节能减排、提高能源利用效率以及降低运行成本等方面的实际效果进行评估,探讨其在电力工业中的应用前景。
本文将总结国产1000MW超超临界机组技术的发展趋势和挑战,提出相应的对策和建议,以期为我国电力工业的可持续发展提供有益的启示和借鉴。
通过本文的综述,读者可以全面了解国产1000MW超超临界机组技术的现状和发展方向,为相关研究和应用提供参考和指导。
二、超超临界机组技术概述随着全球能源需求的不断增长和对高效、清洁发电技术的迫切需求,超超临界机组技术在我国电力行业中得到了广泛的应用。
超超临界机组是指蒸汽压力超过临界压力,且蒸汽温度也相应提高的火力发电机组。
与传统的亚临界和超临界机组相比,超超临界机组具有更高的热效率和更低的煤耗,是实现火力发电高效化、清洁化的重要途径。
超超临界机组技术的核心在于提高蒸汽参数,即提高蒸汽的压力和温度,使其接近或超过水的临界压力(1MPa)和临界温度(374℃)。
在这样的高参数下,机组的热效率可以大幅提升,煤耗和污染物排放也会相应降低。
同时,超超临界机组还采用了先进的材料技术和制造工艺,以适应高温高压的工作环境,保证机组的安全稳定运行。
在超超临界机组中,关键技术包括高温材料的研发和应用、锅炉和汽轮机的优化设计、先进的控制系统和自动化技术等。
超超临界机组优化运行的实施超临界机组是指蒸汽参数处于临界状态以上,但未达到超临界状态的燃煤机组。
超临界机组采用高参数、高效率、低排放技术,具有节能、降耗、减排的优势。
为了实现超临界机组的最佳运行效果,需要对机组进行优化运行。
本文将分析超临界机组优化运行的实施方案,并进行详细阐述。
超临界机组具有以下几个运行特点:1. 高参数:超临界机组采用较高的高温高压蒸汽参数,提高了煤的热效率,减少了煤耗。
2. 高效率:超临界机组燃烧热效率高达40%以上,比传统的燃煤机组效率提高了10%左右。
3. 低排放:超临界机组采用先进的燃烧技术和脱硫、脱硝等环保设施,大大降低了排放量,符合环保要求。
4. 高可靠性:超临界机组设备先进,具有较高的可靠性和稳定性,运行寿命长。
以上特点说明了超临界机组具有先进的技术和运行性能,但是要实现最佳的运行效果,还需要进行优化运行。
1. 燃料控制优化:根据机组负荷和燃烧特性,合理控制燃煤的供给量和燃烧方式,保证燃煤燃烧的充分和平稳。
2. 蒸汽参数优化:根据外部环境变化和负荷需求,调整蒸汽参数,提高机组的热效率和能量利用率。
3. 运行方式优化:根据负荷变化和电网需求,选择最优的机组运行方式,保证电网供需平衡和运行稳定。
4. 设备状态优化:通过设备状态监测和维护,保证设备运行在最佳状态,延长设备使用寿命和降低故障率。
5. 环保排放优化:根据环保要求和排放监测,采取有效的污染物减排措施,保证排放水平在合格范围内。
以上内容是超临界机组优化运行的主要方面,下面将详细阐述实施方案。
1. 软件系统优化:采用先进的机组控制系统和优化软件,实现对机组运行参数、状态的实时监测和调整。
通过智能化的数据分析和运算,对机组运行进行优化调整,提高运行效率和稳定性。
2. 模型仿真优化:建立超临界机组的数学模型,包括燃烧模型、热力模型、动力学模型等,通过模拟仿真分析,找到最佳的运行参数和工况,为实际运行提供参考和指导。
超临界机组锅炉启动系统特点及分析(2) 内置式分离器启动系统内置式启动系统指在机组启动、正常运⾏、停运过程中,启动分离器均投⼊运⾏,所不同的是在锅炉启停及低负荷运⾏期间,启动分离器湿态运⾏,起汽⽔分离作⽤;⽽在锅炉正常运⾏期间(负荷⾼于最低直流负荷时,通常为30%BMCR或35%BMCR),从⽔冷壁出来的微过热蒸汽经过分离器,进⼊过热器,此时分离器仅起⼀连接通道作⽤。
内置式启动系统的启动分离器设在蒸发区段和过热区段之间,启动分离器与蒸发段和过热器之间没有任何阀门,系统简单,操作⽅便,不需要外置式启动系统所涉及的分离器解列或投运操作,从根本上消除了分离器解列或投运操作所带来的汽温波动问题,但分离器要承受锅炉全压,对其强度和热应⼒要求较⾼。
内置式分离器启动系统适⽤于变压运⾏锅炉。
⽬前,在世界各国超(超)临界锅炉上,内置式启动系统得到⼴泛应⽤。
内置式的启动系统可分为扩容式(⼤⽓式、⾮⼤⽓式两种)、启动疏⽔热交换器和循环泵(并联和串联两种)⽅式。
⼏种内置式分离器启动系统的简单⽐较见表1。
表1 内置式启动系统的分类由表1可知,启动疏⽔热交换式和带再循环泵的启动系统具有良好的极低负荷运⾏和频繁启动特性,适⽤于带中间负荷和两班制运⾏。
扩容式(⼤⽓式和⾮⼤⽓式)低负荷和频繁启停特性较差,但初投资较前者少,适⽤于带基本负荷的电⼚。
① 简单疏⽔扩容式启动系统在机组启动过程中,启动分离器中的疏⽔经⼤⽓式扩容器扩容,⼆次汽排⼊⼤⽓,⼆次⽔经集⽔箱、疏⽔泵排⾄凝汽器。
启动系统主要由除氧器、给⽔泵、⼤⽓式扩容器、集⽔箱、AN阀、ANB阀及启动分离器等组成。
图2 简单疏⽔扩容器的启动系统在锅炉启动时,分离器⽔位容器建⽴⽔位,此时压⼒为0,点⽕后,炉⽔被加热并逐渐开始蒸发产汽,分离器内开始建⽴压⼒,此时汽压通过汽机旁路门开度来维持和控制,⽔位由分离器排⽔阀控制。
⽴式内置式分离器(或⽔位容器)的⾼度很⾼,主要是由于满⾜⽔位的较⼤波动和便于控制,因为⽴式容器横断⾯积很⼩,单位长度储⽔量不⼤,所以⽔位波动往往很⼤,有时波动量达±5m,甚⾄更⼤⼀些,特别是在炉⽔开始蒸发的阶段,由于⽔冷壁系统产⽣汽⽔膨胀现象,瞬间有⼤⼤多于给⽔流量的⽔涌往分离器,使其⽔位产⽣剧烈波动。
超临界机组概述超临界机组是指一种采用超临界压力(超过临界压力)运行的发电机组。
超临界机组相对于传统的亚临界机组来说,具有更高的效率和更低的排放。
本文将介绍超临界机组的工作原理、优势以及应用领域。
工作原理超临界机组的工作原理与传统的火电发电机组基本相同,主要由锅炉、汽轮机、发电机等部分组成。
不同之处在于超临界机组的锅炉是以超临界压力运行的。
超临界压力是指在一定的温度下,压力超过物质的临界压力。
在超临界状态下,水和蒸汽不存在明显的相变,因此锅炉运行更加稳定。
此外,超临界机组的锅炉采用高温高压的工作流体,使得汽轮机输出的功率更高,从而提高了发电机组的效率。
优势超临界机组相对于传统的亚临界机组,具有以下几个优势:1.更高的效率:由于超临界机组采用高温高压工作流体,可以提高汽轮机的输出功率,从而提高发电机组的效率。
据统计,超临界机组的效率可以达到40%以上,比亚临界机组提高了几个百分点。
2.更低的排放:超临界机组采用超临界压力运行,锅炉的燃烧效率更高,燃料的利用率更高,从而减少了二氧化碳的排放。
同时,超临界机组的锅炉设计也更为精细,可以更好地控制氮氧化物和颗粒物的排放。
3.更适应多样化燃料:超临界机组由于采用了高温高压工作流体,对燃料的适应性更强。
相比亚临界机组,超临界机组可以灵活地应对不同种类的燃料,包括煤炭、天然气、生物质等。
4.更稳定的运行:超临界机组的锅炉在超临界状态下运行,不存在明显的相变,因此锅炉的运行更加稳定。
这也意味着超临界机组的运行可靠性更高。
应用领域超临界机组在电力工业中广泛应用,特别适用于大型的火电厂。
其高效率和低排放的特点使得超临界机组成为清洁能源转型过程中的重要选择。
此外,超临界机组还可以应用于工业余热发电系统。
通过利用工业生产过程中产生的高温高压余热,可以达到能源的再利用,提高能源利用效率。
结论超临界机组作为一种新型发电技术,具有更高的效率、更低的排放和更稳定的运行。
在能源转型的背景下,超临界机组有望成为未来清洁能源发电的重要手段。