高中数学导数讲义之定积分
- 格式:doc
- 大小:268.07 KB
- 文档页数:3
第九章 定 积 分1 定积分的定义一、背景1、曲边梯形的面积1()ni i i S f x ξ=≈∆∑2、变力所做的功 1()ni i i W F x ξ=≈∆∑上述问题均可归结为一个特定形式的和式逼近,思想方法:分割、近似求和、取极限.二、定积分的定义定义 1 设闭区间[],a b 内有1n -个点,依次为0121n n a x x x x x b -=<<<⋅⋅⋅<<=,其把[],a b 分成n 个小区间[]1,,1,i i i x x i n -∆==⋅⋅⋅.称这些点或小闭子区间构成[],a b 的一个分割,记为{}01,,n T x x x =⋅⋅⋅或{}12,,n ∆∆⋅⋅⋅∆,小区间i ∆的长度为1i i i x x x -∆=-,同时记{}1max i i nT x ≤≤=∆,称为分割T 的模(或细度).注1 ||||,1,i x T i n ∆≤=⋅⋅⋅. 因而,||||T 可用来刻画[],a b 被分割的细密程度,同时,若T 给定,则||||T 确定,而对同一细度(模), 相应的分割却有无穷多个.定义 2 设f 为[],a b 上的函数,对[],a b 上的分割{}12,,n T =∆∆⋅⋅⋅∆,任取点,i i ξ∈∆1,i n =⋅⋅⋅,作和式1()niii f x ξ=∆∑,称为函数f 在[],a b 上的一个积分和,也称为Riemann 和.注2. Riemann 和与分割T 及i ξ的取法有关. 对同一个分割T ,相应的Riemann 和有无穷多个.定义 3 设f 是[],a b 上的函数,J 为一个确定的数. 若对任给正数0ε>,存在正数0δ>,使得对[],a b 上的任何分割T ,以及其上任选的i ξ,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称f 在[],a b 上可积(或Riemann 可积) ,数J 称为f 在[],a b 上的定积分(或Riemann 积分) ,记作()baJ f x dx =⎰. 其中f 称为被积函数,x 称为积分变量,[],a b 称为积分区间,,a b 分别称为积分的下限、上限.注.1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰⇔0,0,,,,i i T T εδδξ∀>∃>∀<∀∈∆1()()nbi i ai f x f x dx ξε=∆-<∑⎰定积分的几何意义(f 可积)(1) 0f ≥时,()ba f x dx ⎰就是以,,x a xb x ==轴及()y f x =围成的曲边梯形的面积.(2) 0f ≤时,()baf x dx ⎰为x 轴下方的曲边梯形面积的相反数(负面积) .(3) ()baf x dx ⎰是曲线()y f x =在x 轴上方部分所有曲边梯形的正面积与下方所有曲边梯形的负面积的代数和. (4) 注.()()()bb baaaf x dx f t dt f u du ==⎰⎰⎰,定积分与积分变量无关.三、举例例 1 已知函数2()f x x =在区间[]0,1上可积,求120x dx ⎰.例 2 已知1()1f x x=+,()sin g x x π=在[]0,1上可积. 利用定积分的定义说明 1) 10111lim()1221n dx n n n x→∞++⋅⋅⋅+=+++⎰. 2) 10012(1)1lim (sin sin sin )sin sin n n xdx x dx n n n n ππππππ→∞-++⋅⋅⋅+==⎰⎰.给出一般公式().......ba f x dx =⎰例 3 讨论Dirichlet 函数1()0x D x x ⎧=⎨⎩,为有理数,为无理数 在[]0,1上的可积性.四、 定积分的计算 定理 (微积分基本定理)设[]:,f a b R →可积,存在可导函数[]:,F a b R →,使F f '=,则()()|()()bx bx a af x dx F x F b F a ====-⎰上式也称为Newton-Leibniz 公式.例 4 求例2中定积分的值.例 5 1) 211(ln )eex dx x⎰;2) 2⎰;3) 求11()f x dx -⎰,其中210()0x x x f x e x --<⎧=⎨≥⎩, ,;4) 0⎰;5) 221lim nn i in i→∞=+∑;6) 112lim[(1)(1)(1)]n n n n n n→∞++⋅⋅⋅+.2 可积性条件一、可积的必要条件定理1 若函数f 在[],a b 上可积,则f 在[],a b 上有界.注 有界仅是f 可积的必要条件,而非充分条件. 如[]0,1上的()D x . 定理2 设函数f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点. [ 若函数f 在[],a b 上处处不连续,则f 必不可积. ] 二、可积的充要条件设{}12,,n T =∆∆⋅⋅⋅∆为[],a b 上的一个分割,设f 在[],a b 上有界,则f 在每个i ∆上必有上下确界,记{}sup ()ii x M f x ∈∆=,{}inf ()ii x m f x ∈∆=,1,i n =⋅⋅⋅.作和式1()n i i i S T M x ==∆∑,1()ni i i s T m x ==∆∑,分别称为f 关于T 的上和和下和(Darboux 上下和) , 从而i i ξ∀∈∆,1,i n =⋅⋅⋅,1()()()ni i i s T f x S T ξ=≤∆≤∑. (作图几何意义)注 当分割T 确定后,则上和与下和完全确定.性质1 对同一分割T ,上和()S T 是所有积分和1()ni i i f x ξ=∆∑的上确界(相对于i ξ取),下和()s T 是所有积分和1()ni i i f x ξ=∆∑的下确界, 即{}1()inf ()i i n i i i s T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑, {}1()sup ()i i n i i i S T f x ξξ∈∆=⎧⎫=∆⎨⎬⎩⎭∑,且 1()()()()()ni i i m b a s T f x S T M b a ξ=-≤≤∆≤≤-∑,其中,M m 分别为f 在[],a b 上的上、下确界.性质2 设T '为分割T 添加p 个新分点后所得到的分割. 则()()()()s T s T s T p M m T '≤≤+- ()()()()S T S T S T p M m T '≥≥--即分点增加后,下和不减,上和不增.性质3 若T 与T '为任意两个分割,T ''为T 与T '所有分点合并组成的分割,记为T T T '''=+,则 ()()s T s T ''≥, ()()S T S T ''≤;()()s T s T '''≥, ()()S T S T '''≤.性质4 对任意两个分割T 、T ',总有()()s T S T '≤.即:对任何两个分割,下和总不大于上和. 因而,所有的上和有下界,所有的下和有上界,从而分别有下、上确界,记为S 和s . 即{}inf ()TS S T =,{}sup ()Ts s T =,称S 和s 分别为f 在[],a b 上的上、下积分,记为()ba S f x dx -=⎰,()b a s f x dx -=⎰.性质5 ()()()()bbaa mb a f x dx f x dx M b a ---≤≤≤-⎰⎰性质6. [Darboux 定理] 0lim ()()b a T S T f x dx -→=⎰,0lim ()()ba T s T f x dx →-=⎰.定理 3 (第一充要条件) [],a b 上的有界函数f 可积⇔()()bb a a f x dx f x dx --=⎰⎰定理4 (可积的第二充要条件)[],a b 上的有界函数f 可积⇔ 0ε∀>,存在分割T ,使得()()S T s T ε-<.由于11()()()nni i i i i i i S T s T M m x x ω==-=-∆=∆∑∑,其中i i i M m ω=-称为f 在i ∆上的振幅. 从而有定理4' [],a b 上的有界函数f 可积⇔0ε∀>,存在分割T ,使得1ni i i x ωε=∆<∑.定理4'的几何意义:若f 可积,则曲线()y f x =可用总面积任意小的一系列小矩形覆盖. 反之亦然.三、可积函数类(充分条件)定理 5. 若f 在[],a b 上连续,则f 在[],a b 上可积.定理 6. 若f是[],a b上仅有有限个间断点的有界函数,则f在[],a b上可积.注.改变可积性函数在某些点处的值, 不改变可积性, 也不改变积分值. 定理7. 若f为[],a b上的单调函数,则f在[],a b上可积.例1试用两种方法证明函数0 0()1111xf xxn n n=⎧⎪=⎨<≤⎪+⎩,,,1,2n=⋅⋅⋅在[]0,1上可积.例2 设f 在[],a b 上有界,{}[],n a a b ⊂,lim n na c =.证明:若f 仅在{}n a 上间断,则f 在[],a b 上可积.例3 f 在[],a b 上可积,[][],,a b αβ⊂,则f 在[],αβ上可积.例4 证明定理2: 若f 在[],a b 上可积,则f 在(),a b 内至少有一个连续点(从而有无穷多个连续点) .例5 证明: Riemann 函数[]1, ()0 0,10,1p x p q q p q q f x x ⎧=>⎪=⎨⎪=⎩,和互素,,或中的无理数 在[]0,1上可积,且1()0f x dx =⎰.(第三充要条件)3 定积分的性质一、定积分的性质 1. 线性性质定理 1 设f 在[],a b 上可积,k 为常数,则kf 在[],a b 上可积,且 ()()bbaakf x dx k f x dx =⋅⎰⎰.定理 2 设,f g 在[],a b 上可积,则f g ±在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.推论. 设,f g 在[],a b 上可积,,αβ为常数,则f g αβ+在[],a b 上可积,且()()()()bb baaaf xg x dx f x dx g x dx αβαβ+=+⎰⎰⎰.2. 乘积可积性定理 3 设,f g 在[],a b 上可积,则f g ⋅在[],a b 上可积. 注 一般情形下,()()()()b b baaaf xg x dx f x dx g x dx ⋅≠⋅⎰⎰⎰.定理 4 有界函数f 在[],a c 和[],c b 上可积f ⇔在[],a b 上可积,且()()()bcbaacf x dx f x dx f x dx =+⎰⎰⎰规定 1) ()0aa f x dx =⎰.2)()()baab f x dx f x dx =-⎰⎰,()b a <.则对任何,,a b c 均有 ()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.4. 关于函数的单调性定理5 设,f g 在[],a b 上可积,且()()f x g x ≤,[],x a b ∀∈,则()()bbaaf x dxg x dx ≤⎰⎰.推论 (积分值的估计) 设f 在[],a b 上可积,,M m 分别为f 在[],a b 上的上、下确界,则 ()()()ba mb a f x dx M b a -≤≤-⎰.定理6 若函数f 在[],a b 上可积,则f 在[],a b 上可积,且|()||()|bbaaf x dx f x dx ≤⎰⎰.注. 定理 6的逆不真.6. 积分第一中值定理定理 7 若函数f 在[],a b 上连续,则至少存在一点[],a b ξ∈,使得()()()baf x dx f b a ξ=-⎰.几何意义: 称1()ba f x dxb a -⎰为f 在[],a b 上的平均值.定理7' (推广的第一中值定理) 若,f g 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少存在一点[],a b ξ∈,使得()()()()bbaaf xg x dx f g x dx ξ=⎰⎰.[()1g x ≡时,即为定理7.]二、应用举例例 1 求11()f x dx -⎰. 其中2110() 01x x x f x e x ---≤<⎧=⎨≤<⎩, ,.例 2 求()sin f x x =在[]0,π上的平均值.例 3 若f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,则()0ba f x dx >⎰.例 4比较积分1⎰和21x e dx ⎰的大小.例 5证明:22ππ<<⎰.例 6 若f 在[],a b 上可积,()0f x >,则()0ba f x dx >⎰.例 7 若,f g 在[],a b 上可积,则{}()max (),()M x f x g x =在[],a b 上可积.*例 8 设f 在[],a b 上可积,且()0f x m >>,则1f可积.*例 9 证明:若f 在[],a b 上连续,且()()0b baaf x dx xf x dx ==⎰⎰,则在(),a b 内至少存在两点12,x x 使12()()0f x f x ==. 又若2()0bax f x dx =⎰,此时,f 在(),a b 内是否至少有三个零点?*例 10 设f 在[],a b 上二阶可导,且()0f x ''>,证明: 1) 1()()2ba ab f f x dx b a+≤-⎰ 2) 又若()0f x ≤,[],x a b ∈,则又有2()()ba f x f x dxb a ≥-⎰,[],x a b ∈.*例11证明:(1)11ln(1)11ln2n nn+<++⋅⋅⋅+<+(2)1112lim1lnnnn→∞++⋅⋅⋅+=*例13若f可积,m f M≤≤,g在[,]m M上连续,则复合函数h g f=可积.由此, 若f可积, 则2f,13,f||f, ()f xe, (0)f≥,1(inf0)ff>可积.4 微积分基本定理 定积分的计算一、微积分基本定理 1. 变限积分的可微性设f 在[],a b 上可积,则任何[],x a b ∈,f 在[],a x 上也可积,从而()()xa x f t dt Φ=⎰,[],x ab ∈定义了一个以x 为积分上限的函数, 称为变上限积分.定理1 若f 在[],a b 上可积,则()()xa x f t dt Φ=⎰在[],ab 上连续.定理 2 (原函数存在定理,微积分学基本定理)若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰,[],x a b ∈.注. 1) 当f 在[],a b 上连续,则()()xax f t dt Φ=⎰为f 的一个原函数,且f 的任一原函数()()xaF x f t dt C =+⎰. 令x a =,则()F a C =. 从而()()()xaf t dt F x F a =-⎰——Newton-Leibniz .2) 定理2. 揭示了导数和定积分之间的深刻联系,同时证明了连续函数必有原函数,并说明变上限积分就是一个原函数. 由于它的重要作用而被称为微积分基本定理.3) 同样可定义变下限积分()()bxxbf t dt f t dt =-⎰⎰. 且当f 连续时,有()()bxd f t dt f x dx =-⎰ 4) 变上限积分()xaf t dt ⎰一般不写作()xaf x dx ⎰.例 1 1)⎰2) 220sin cos t tdt π⎰例 2 设f 在[],a b 上连续,()0f x ≥,且()0f x ≡/,证明: ()0baf x dx >⎰.例 3 设f 为连续函数,,u v 均为可导函数,且复合f u ,f v 均有意义,证明()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=⋅-⋅⎰.例 4 求1) 230limx x x +→⎰2) 222010cos limx x x t dtx →-⎰二、定积分的换元法定理 3 设f 在[],a b 上连续,Φ满足条件1) ()a αΦ=,()b βΦ=. [](),,a t b t αβ≤Φ≤∈ 2) ()t Φ在[],αβ上有连续导函数,则()(())()baf x dx f t t dt βα'=Φ⋅Φ⎰⎰.例 5 1)⎰2) 220sin cos t tdt π⎰3)10x x dx e e -+⎰4)3212(1)dx x x -+⎰5)120ln(1)1x dx x ++⎰6) 已知32()4f x dx =-⎰,求21(1)xf x dx +.注 在换元法计算定积分时,一要注意积分上下限的变化(这里只需要求,a b 的对应值为,αβ,而不计较,αβ的大小) . 二是要注意代入新变量,直接求定积分的值,而无需变量还原. (此与不定积分是不一样的. 这是因为不定积分求的是被积函数的原函数,其变量应一致,而定积分的结果是一个数值,只需求出即可) .注 定理3换元积分条件,f 可减弱为f 可积,ϕ可减弱为()t ϕ'在[],αβ上可积,且除有限个点外()0t ϕ'>(或()0t ϕ'<) . (保证[][]:,,a b ϕαβ→是11-的.) 例 6 设f 为[],a a -(对称区间) 上的连续奇(偶) 函数,则()0aaf x dx -=⎰(0()2()a aaf x dx f x dx -=⎰⎰) .如求22223(sin3cos 5arctan 1)x x x x x e x dx ππ--⋅+⋅--⎰.例 7 设f 为(,)-∞+∞上以T 为周期的可积函数,证明:对任何实数a R ∈,有()()a TTaf x dx f x dx +=⎰⎰.例 8 设f 为连续函数,则1) 22(sin )(cos )f x dx f x dx ππ=⎰⎰;2)(sin )(sin )2xf x dx f x dx πππ=⎰⎰.由此计算2sin sin cos xdx x x π+⎰和20sin 1cos x x dx xπ⋅+⎰.例 9 设f 在[],a b 上连续,求证:()()bbaaf x dx f a b x dx =+-⎰⎰.由此计算362cos (2)xdx x x πππ-⎰.三、分部积分定理 4 若(),()u x v x 为[],a b 上的连续可导函数,则有定积分分部积分公式()()()()()()bbb a aau x v x dx u x v x u x v x dx ''⋅=⋅-⋅⎰⎰或()()()()()()bb b a aau x dv x u x v x v x du x =⋅-⎰⎰例 10 1) 10x xe dx ⎰ 2)21ln ex xdx ⎰3) 1ln eexdx ⎰4) 1arcsin xdx ⎰5) 2sin x x e dx π⋅⎰6)4⎰例 11 求20sin nxdx π⎰和2cos n xdx π⎰.注 由前两式可推出著名的Wallis 公式:2(2)!!1lim 2(21)!!21m m m m π→∞⎡⎤=⋅⎢⎥-+⎣⎦.四、Taylor 公式的积分型余项 推广的分部积分公式设(),()u t v t 在[,]a b 上有1n +阶连续导函数,则(1)()(1)()()()()()()()(1)()()bn n n n n baau t v t dt u t v t u t v t u t v t +-'⎡⎤⋅=⋅-⋅+⋅⋅⋅+-⋅⎣⎦⎰1(1)(1)()()bn n au t v t dt +++-⋅⎰.设f 在0x 处的某邻域0()U x 有1n +阶连续导函数,0()x U x ∈,则有(1)()1(1)()()()()()()!()0()xxn n n n n n xx x x x t ft dt x t f t n x t f t n f t f t dt +--⎡⎤-=-+-+⋅⋅⋅++⋅⎣⎦⎰⎰()00000()!()![()()()()]!n n f x n f x n f x f x x x x x n '=-+-+⋅⋅⋅+-!()n n R x =(1)1()()()!x n n n x R x f t x t dt n +⇒=-⎰ ——积分型余项注 1) 由推广的第一积分中值定理((1)()n f t +连续,()n x t -在[]0,x x 或[]0,x x 上保持同号) ,则(1)1()()()!x n n n x R x f x t dt n ξ+=-⎰(1)101()()(1)!n n f x x n ξ++=-+ ——Lagrange 型余项2) 直接由积分第一中值定理,有(1)01()()()()!n n n R x f x x x n ξξ+=-- (1)10001(())(1)()!n n n f x x x x x n θθ++=+--- 00x =时,(1)11()()(1)!n n n n R x f x x n θθ++=-, 01θ≤≤——Cauchy 型余项五、积分第二中值定理 定理 5 设f 在[],a b 上可积,1) 若g 在[],a b 上减,且()0g x ≥,则存在[],a b ξ∈,使()()()()baaf xg x dx g a f x dx ξ=⎰⎰.2) 若g 在[],a b 上增,且()0g x ≥,则存在[],a b η∈,使()()()()bbaf xg x dx g b f x dx η=⎰⎰.推论. 设f 在[],a b 上可积,g 为单调函数,则存在[],a b ξ∈,使得()()()()()()bbaaf xg x dx g a f x dx g b f x dx ξξ=+⎰⎰⎰.例 12 设()f x 为[]0,2π上的单调递减函数,证明:对任何正整数n ,恒有20()sin 0f x nxdx π≥⎰.定理 6 设函数f 在闭区间[],a b 上连续,函数g 在[],a b 上可导,且导函数()g x '在[],a b 上非负且连续,则存在[],c a b ∈,使得()()()()()()bc baacf xg x dx g a f x dx g b f x dx =+⎰⎰⎰.例 13 证明:当0x >时,有不等式21sin x cxt dt x+≤⎰(0)c >.例 14 设()y f x =为[],a b 上严格增的连续曲线,试证:存在(),a b ξ∈使图中阴影部分面积相同.习 题1. 求)0(F '及)4(πF '. 其中⎰-=202sin )(x t tdt e x F2. 求下列极限(1) ⎰→xx dt t x 020cos 1lim (2) dxe dt e x txt x ⎰⎰∞→020222)(lim3. 求下列积分(1) ⎰⋅2042sin cos πxdx x (2)dx x ⎰-224(3) dx xx⎰+202sin 1cos π (4) dx xx ⎰+411(5) dx x x ⎰-1122)2( (6)dx x a x a2202-⎰(7)dx xx ⎰++311 (8)xdx x 3sin][3π⎰4. 求下列积分 (1) dx xe x⎰-2ln 0(2) ⎰210arccos xdx(3) ⎰-adx x a 022 (4) dx x x⎰-1221(5)⎰-2ln 01dx e x(6)dx ax x aa⎰-+222(7)dx xb x a xx ⎰+⋅202222sin cos cos sin π(8)dx x x ee⎰1ln(9)⎰+20cos sin cos πdx xx x(10)⎰+-adx xa xa 0arctan(11)dx e x x ⎰-⋅202sin π(12)dx xa xa x a⎰+-025. 求下列极限 (1) ∑=+∞→nk n nk 123lim (2) 2213lim k n nk nk n -∑=∞→6. 证明 (1)⎰⎰-=-11)1()1(dx x x dx x x m n n m(2) 若f 在R 上连续, 且⎰=x adt t f x f )()(, 则.0)(≡x f (3) 0sin sin ,m n mx nxdx m n N m nπππ-≠⎧=∈⎨=⎩⎰,(4)⎰-=ππ0cos sin nx mx(5) 设f 在],0[π上连续,且⎰⎰⎰===πππ0cos )(sin )()(xdx x f xdx x f dx x f求证f 在),0(π内至少两个零点.定积分1、定积分的定义1()lim ()nbi i aT i f x dx f x ξ→==∆∑⎰0,0,,,,di i T T εδδξ⇔∀>∃>∀<∀∈∆1()ni i i f x J ξε=∆-<∑. (())baJ f x dx =⎰2、可积函数(充要) 条件1) f 在[],a b 上可积⇒f 在[],a b 上有界⇒f 在(),a b 内至少有一个连续点2) f 在[],a b 上可积⇔()()b ba a f x dx f x dx --=⎰⎰⇔0,,()()T S T s T εε∀>∃-< ⇔10,,ni i i T w x εε=∀>∃∆<∑3) f 在[],a b 上连续⇒f 在[],a b 上可积f 在[],a b 上单调⇒f 在[],a b 上可积f 在[],a b 上仅有限个间断点(或间断点仅有限个聚点) ,则f 在[],a b 上可积. f 在[],a b 上可积,g 与f 仅有限个点处不相等,则g 在[],a b 上可积,且()()bbaag x dx f x dx =⎰⎰4) 可积函数复合未必可积.3、定积分性质1) 线性性质 2) 子区间可积性 3) 乘积可积 4) 区间可加性 5) 单调性 6) 绝对可积性4、微积分基本定理与Newton-Leibniz 公式定理. 若f 在[],a b 上连续,则()()xa x f t dt Φ=⎰在[],ab 上处处可导,且()()()xa d x f t dt f x dx'Φ==⎰. 由此可得()()()baf x dx F b F a =-⎰.注. 若f '可积,则()()()b af x dx f b f a '=-⎰.定理. 若f 在[],a b 上可积,则()()xax f t dt Φ=⎰在[],a b 上连续.结论 (变限积分的导数)()()(())(())()(())()h x g x f t dt f h x h x f g x g x '''=⋅-⋅⎰5、定积分的积分方法 1) 换元设()y f x =在[],a b 上可积,()x t ϕ=满足ϕ'在[],αβ上可积,且在[],αβ上至多除有限个点使()0t ϕ'=,其余点()0t ϕ'>,(),()a b ϕαϕβ==,则()(())()baf x dx f t t dt βαϕϕ'=⋅⎰⎰[ 注意:积分上下限只需对应,而不管大小. ] 2) 分部积分 (注意具体被积函数的形式) 设,u v ''为[],a b 上可积函数, 则 bbb a aaudv uv vdu =-⎰⎰.6、Taylor 公式与积分中值定理. 1) 可积函数未必有原函数.1, 01;() 1 , 1 2.x f x x -≤≤⎧=⎨<<⎩ 2) 有原函数的函数也未必可积.22211cos 2sin , 0;()0, 0.x x f x x x xx ⎧-+≠⎪=⎨⎪=⎩在[1,1]-上有原函数220, 0;()1sin , 0.x x F x x x =⎧⎪=⎨⋅≠⎪⎩ 但f 在[0,1]上不可积.3) 可积不连续的函数也可能有原函数.习 题 课一、定积分的计算 例 1 1)20πθ⎰2) 1t x t dt -⎰, (1,0,01)x x x ><≤≤3)arctana⎰4) 10(1)xdx x α+⎰5)10ln(1dx ⎰6)0⎰7)121⎰8)2-⎰9) 21,0() , 0x x x f x e x -⎧+<⎪=⎨>⎪⎩ , 求31(2)f x dx -⎰.10) 1(2)2f =,(2)0f '=,20()1f x dx =⎰. 求120(2)x f x dx ''⎰.二、利用定积分定义求和式极限11111()lim ()lim ()nn i i T n i i f x dx f x f n n ξ→→∞===∆=∑∑⎰1()lim ()n ban i b a b af x dx f a i n n→∞=--=+∑⎰例 2 1) 221lim nn i i n i→∞=+∑2) 11lim[(1)]n n n k k n -→∞=+∏3) 12lim 1knnn k n k→∞=+∑4) 444333124lim (12)5n n n n →∞++⋅⋅⋅+=++⋅⋅⋅+三、变限积分的导数例 3 1)2sin b a d x dx dx⎰ 2) 2sin x a d tdt dx ⎰3) 10(arctan )t x e tdt '⋅⎰4)23ln t t d dxdt x⎰ 例 4 1) 设0x ≥时,()f x 连续,且230()x f t dt x =⎰,求()f x .2) 设f 连续,31()x f t dt x c -=+⎰,求c 与(7)f .例 5 1) 设f 在[],a b 上连续,0()()()xF x f t x t dt =-⎰,[],x a b ∈.求证:()()F x f x ''=.2) 设f 在[)0,+∞上连续,且()0f x >,00()()()xx tf t dt x f t dtϕ=⎰⎰.试证:ϕ在()0,+∞上严格增.3) f 为连续可导函数. 试求:()()xa d x t f t dt dx'-⎰.四、求含变限积分未定型极限 例 6 1) 20cos limsin xx x x t dttdt→⎰⎰2) 222020()limxt x x t e dt e dt→∞⎰⎰例 7 1) 设f 在[],a b 上连续,求证:(),x a b ∈时,1lim ()()()()xa h f t h f t dt f x f a n+→+-=-⎰.2) ()f x 在R 上连续,且以T 为周期,求证:0011lim ()()x Tx f t dt f t dt x T→∞=⎰⎰.3)1lim bb -→⎰,(01)b << 存在.4) 设f 在[]0,A (0)A ∀>上可积,lim ()x f x a →+∞=,则01lim()xx f t dt a x →+∞=⎰.五、定积分的极限例 8 1) 求证: 1) 10lim 1nnx dx x +⎰ 2) 120lim (1)n n x dx →∞-⎰3) 2lim sin n n xdx π→∞⎰2) 设f 在[]0,2π上单调,求证:20lim ()sin 0f x xdx πλλ→∞⋅=⎰.六、某些积分不等式1、利用积分关于被积函数的单调性证明不等式.例 9 证明不等式 11201413n x dx n x x n-≤≤-+⎰,n ∈.例 10 证明:1) 211<⋅⋅⋅+< 2) 11ln(1)11ln 2n n n+<++⋅⋅⋅+<+[由此证明11lim(1ln )2n n n ++⋅⋅⋅+-存在,一般称此极限为Euler 常数,记为C ]2、某些不等式的积分形式设函数,f g 在[],a b 上可积,对[],a b 上n 等分, 取[]1,i i i x x ξ-∈,若对任何n ,1i n ≤≤,有11()()nn i i i i b a b af g n n ξξ==--⋅≤⋅∑∑,则有()()b b a a f x dx g x dx ≤⎰⎰. 例 11 1) 证明Schwarz 不等式.设,f g 在[],a b 上可积, 则222()()()()b b ba a a f x g x dx f x dx g x dx ⎡⎤≤⋅⎢⎥⎣⎦⎰⎰⎰.而当,f g 连续时, 等号成立⇔c ∃,g cf =.2) 设f 在[],a b 上连续,且0f >,则21()()()bba af x dx dx b a f x ⋅≥-⎰⎰.3) 设f 在[]0,1上可积,证明:21120()()f x dx f x dx ≤⎰⎰.4) 设,f g 在[],a b 上可积,则有Minkowski 不等式()111222222()()()()b b b a a a f x g x dx f x dx g x dx ⎡⎤⎡⎤⎡⎤+≤+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰.例 12 若ϕ在[]0,a 上连续,f 二阶可导,且()0f x ''≥, 则有Jesen 不等式0011(())(())a af t dt f t dt a a ϕϕ≥⎰⎰.3、其它不等式例13 1) 设f 在[]0,1上连续可导,证明:10()()()f x f t f t dt '≤+⎰,[]0,1x ∈.2) 设0a >,f 在[]0,a 上连续可导,则01(0)()()aa f f x dx f x dx a '≤+⎰⎰.3) 设f 在[]0,1上连续可导, 且(0)0,(1)1f f ==, 求证:110()()f x f x dx e -'-≥⎰.4) 设f 二阶可导, 求证:3()()()()224baa b Mf x dx b a f b a +--≤-⎰. 其中[],sup ()x a b M f x ∈''=.。
导数与定积分知识汇总导数和定积分是微积分的重要概念之一、导数描述了函数在其中一点上的变化率,而定积分则计算了函数在给定区间上的累积量。
本文将对导数和定积分的基本定义、性质和应用进行详细介绍。
一、导数的定义和性质1. 导数的定义:对于函数f(x),在其中一点a处的导数定义为:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)。
导数表示了函数y=f(x)在x=a处的切线斜率。
2.导数的几何意义:导数表示了函数图像在其中一点上的切线斜率。
如果导数大于零,则函数在该点上递增;如果导数小于零,则函数在该点上递减;如果导数等于零,则函数在该点上取极值;如果导数不存在,则函数在该点上存在间断。
3.导数的计算方法:可以使用基本导数公式来计算导数,例如常数函数、幂函数、指数函数、对数函数等。
此外,还可以使用导数的四则运算法则,包括求和、差、积和商的导数。
4.高阶导数:函数的导数可以继续求导,得到高阶导数。
第n阶导数表示了函数的n次变化率,可以用f^(n)(x)表示。
例如,如果函数的二阶导数大于零,那么函数在该点上呈现凸的曲线形状。
二、定积分的定义和性质1. 定积分的定义:对于函数f(x),在区间[a,b]上的定积分定义为:∫[a,b] f(x) dx = lim(n→∞) Σ[f(x_k) Δx_k],其中Σ表示求和,Δx_k是区间[a,b]上一个子区间的长度,x_k是该子区间内任意一点。
2.定积分的几何意义:定积分表示了函数f(x)在区间[a,b]上的曲线下面积。
如果函数在该区间上为正值,则积分值为正;如果函数在该区间上为负值,则积分值为负;如果函数在该区间上变号,则通过积分可以得到曲线上和曲线下的面积差。
3.定积分的计算方法:可以使用定积分的基本公式来计算定积分,如幂函数的定积分、三角函数的定积分等。
此外,还可以利用换元积分法、分部积分法等方法来计算更复杂的定积分。
4. 积分的性质:积分具有线性性质,即∫[a,b] (f(x) + g(x)) dx = ∫[a,b] f(x) dx + ∫[a,b] g(x) dx;积分也具有保号性质,即如果在[a,b]上f(x) ≤ g(x),那么∫[a,b] f(x) dx ≤ ∫[a,b] g(x) dx。
高考数学考点突破——导数及其应用与定积分:定积分与微积分基本定理 含解析【考点梳理】1.定积分的概念与几何意义(1)定积分的定义如果函数f(x)在区间[a ,b]上连续,用分点将区间[a ,b]等分成n 个小区间,在每个小区间上任取一点ξi(i =1,2,…,n),作和式f(ξi)Δx =f(ξi),当n→∞时,上述和式无限接近于某个常数,这个常数叫做函数f(x)在区间[a ,b]上的定积分,记作f(x)dx ,即f(x)dx =f(ξi).1n i =∑1n i =∑lim n →∞1n i =∑在f(x)dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式.(2)定积分的几何意义(1)kf(x)dx=kf(x)dx(k为常数).(2)[f1(x)±f2(x)]dx=f1(x)dx±f2(x)dx.(3)f(x)dx=f(x)dx+f(x)dx(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么f(x)dx=F(b)-F(a).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F(b)-F(a)记为F(x) ,即f(x)dx=F(x))=F(b)-F(a).【考点突破】考点一、定积分的计算【例1】(1)(cos x+1)dx=________.(2)|x2-2x|dx=________.(3)(2x+)dx=________.[答案] (1) π(2) 8 (3) 1+π4[解析] (1)(cos x+1)dx=(sin x+x)=π.(2)|x2-2x|dx=(x2-2x)dx+(2x-x2)dx=+=+4+4-=8.(3)dx表示以原点为圆心,以1为半径的圆的面积的,∴dx=.又∵ 2xdx=x2=1,∴(2x+)dx=2xdx+dx=1+.。
第三讲 导数的实际应用定积分的概念及应用一、知识梳理1、若函数f (x )在区间A 上有唯一一个极值点0x ,且0()f x 是这个函数的极大(小)值,那么这个极值必定就是函数f (x )在区间A 上的最大(小)值。
2、定积分的几何意义:当f (x )>0时()b af x dx ⎰表示由直线__________,__________,__________ 和曲线y =f (x )所围成的曲边梯形的面积。
3、微积分基本定理(牛顿—莱布尼兹公式):如果()f x 是区间[a ,b ]上的连续函数,并且F ()()x f x '=,那么()F()F()baf x dx b a =-⎰。
常常把F()F()b a -记作F()|b a x 。
二、典例导析例1、用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?变式训练1、(1)要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )A .33cm B .3310cm C .3316cm D .3320(2)从一块边长为a 的正方形铁皮的各角截去相等的方块,把各边折起来做成一个无盖的箱子,箱子的高是这个正方形的边长几分之几时,箱子容积最大?例2、计算下列定积分:(1)2111e x dx x x ⎛⎫++ ⎪⎝⎭⎰;(2)0(2sin 32)x x e dx π-+⎰;变式训练2、计算下列定积分:(1)⎰--+322616dx x x(2)2201x dx -⎰例3、求由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积(画出图形)。
变式训练3、由直线12x =,x =2,曲线1y x =及x 轴所围图形的面积是( ) A .154 B .174 C .1ln 22D .2ln2例4、在曲线y =x 2(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴所围的面积为121。
高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念讲义新人教A 版选修221.定积分的概念一般地,设函数f (x )在区间[a ,b ]上□01连续,用分点a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式□02∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ). 当n →∞时,上述和式无限接近某个常数,那么这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作:□03⎠⎛ab fx d x ,即⎠⎛ab f (x )d x =□04lim n →∞∑ni =1 b -a n f (ξi ).2.定积分的相关名称3.定积分的几何意义(1)前提条件:函数f (x )在区间[a ,b]上连续,f (x )≥0.(2)定积分⎠⎛ab f (x )d x 的几何意义:由y =0,曲线f (x )以及直线x =a ,x =b 围成的曲边梯形的□12面积. 4.定积分的基本性质(1)⎠⎛a b kf (x )d x =□13k ⎠⎛ab f (x )d x (k 为常数). (2)⎠⎛a b [f (x )±g(x )]d x =□14⎠⎛a b f (x )d x ±⎠⎛ab g(x )d x . (3)⎠⎛ab f (x )d x =□15⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c<b).用定积分求曲边图形面积时,不判断曲边图形位于x 轴上方、还是下方,直接求解而出现错误.避免出错的措施为:(1)当对应的曲边图形位于x 轴上方时(图①),定积分的值取正值,且等于曲边图形的面积;(2)当对应的曲边图形位于x 轴下方时(图②),定积分的值取负值,且等于曲边图形面积的相反数;(3)当位于x 轴上方的曲边图形面积等于位于x 轴下方的曲边图形面积时,定积分的值为0(图③),且等于位于x 轴上方的曲边图形面积减去位于x 轴下方的曲边图形面积.1.判一判(正确的打“√”,错误的打“×”) (1)⎠⎛a b f (x )d x =⎠⎛ab f (t)d t .( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛ab (x 2+2x )d x =⎠⎛a b x 2d x +⎠⎛ab 2xd x .( )答案 (1)√ (2)× (3)√探究1 利用定义计算定积分例1 利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.[解] 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n . (2)近似代替、求和 取ξi =n +i -1n (i =1,2,…,n ), 则S n =∑ni =1f (n +i -1n)·Δx =∑ni =1⎣⎢⎡⎦⎥⎤3n +i -1n +2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3i -1n 2+5n =3n2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n . (3)取极限⎠⎛12(3x +2)d x =lim n→∞S n =lim n→∞ ⎝ ⎛⎭⎪⎫132-32n =132. 拓展提升利用定义求定积分的关键仍然是“分割、近似代替、求和、取极限”这一过程.其中: (1)在近似代替时,可以选取每个小区间的左端点、右端点、区间中点、区间端点的几何平均数等相应的函数值来代替该区间的函数值;(2)将“近似代替、求和”作为一个步骤来处理,其条理性更强.【跟踪训练1】 求由直线x =0,x =1,y =0与曲线f (x )=x 2+2x +1围成曲边梯形的面积.解 将区间[0,1]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤i -1n ,i n ,等i 个小区间的面积为ΔS i =f ⎝ ⎛⎭⎪⎫i n ·1n =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n,S n =∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n=1n 3(12+22+32+…+n 2)+2n2(1+2+3+…+n )+1=1n3·n n +12n +16+2n2·n n +12+1=⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n+2,S =lim n→∞S n =lim n→∞ ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n +2=73, 所以所求的曲边梯形的面积为73.拓展提升b f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,利用定积分所表示的几何意义求⎠⎛a直线x=b及x轴所围成的平面图形的形状.常见形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.解 (1)如图1,阴影部分面积为2+5×12=72,从而 ⎠⎛01(3x +2)d x =72.图1 图2探究3 利用定积分的性质求定积分例3 已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛02(3x 3)d x ;(2)⎠⎛14(6x 2)d x ; (3)⎠⎛12(3x 2-2x 3)d x .[解] (1)⎠⎛02(3x 3)d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x =3×⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛14(6x 2)d x =6⎠⎛14x 2d x =6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6×⎝ ⎛⎭⎪⎫73+563=126. (3)⎠⎛12(3x 2-2x 3)d x =⎠⎛12(3x 2)d x -⎠⎛12(2x 3)d x=3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=7-152=-12.拓展提升【跟踪训练3】 已知f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2,4-x ,x ∈[2,3,52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.1.求阴影部分面积可分两类:(1)规则图形:按照面积的相关公式直接计算;(2)不规则图形:转化为规则图形或曲边梯形,再求面积的和或差,曲边梯形面积利用定积分来计算;改变积分变量,使问题简化.2.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.1.若函数f(x)在区间[a,b]上的图象在x轴上方,且图象从左至右上升,则求由曲线y =f(x),直线x=a,x=b(a≠b)及x轴围成的平面图形的面积S时,将区间[a,b]n等分,用每个小区间的左端点的函数值计算出面积为S1,用每个小区间的右端点的函数值计算出面积为S2,则有( )A.S1<S<S2B.S1≤S<S2C.S1≤S2≤S D.S1≤S≤S2答案 A解析 由题意知,在区间⎣⎢⎡⎦⎥⎤i-1n ,i n 上,f ⎝ ⎛⎭⎪⎫i -1n <f ⎝ ⎛⎭⎪⎫i n,所以S 1=∑i =1nf ⎝ ⎛⎭⎪⎫i -1n ·1n <∑i =1nf ⎝ ⎛⎭⎪⎫i n ·1n =S 2,则S 1<S <S 2.答案 D3.⎠⎛06(2x -4)d x =________.答案 12解析 如图A(0,-4),B(6,8),M(2,0),S △AOM =12×2×4=4,S △MBC =12×4×8=16,所以⎠⎛06(2x -4)d x =16-4=12.4.曲线y =1x与直线y =x ,x =2所围成的图形面积用定积分可表示为 ________.答案 ⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x解析 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121xd x =⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x . 5.根据定积分的几何意义求定积分⎠⎛13(x -2)d x ,⎠⎛13|x -2|d x .解 根据定积分的几何意义,所求定积分表示直线x =3,x =1,y =0分别与函数y =x -2,y =|x -2|的图象所围成的图形的面积,即如图的阴影部分的面积.∴⎠⎛13(x -2)d x =-12×1×1+12×1×1=0. ⎠⎛13|x -2|d x =12×1×1+12×1×1=1.。
定积分知识点总结高中一、定积分的概念定积分是微积分中的重要概念之一,它是对一个区间上函数的积分进行求解的一种方法。
在数学上,定积分可以用来求解曲线与坐标轴所围成的图形的面积、求解物体的质量、求解物体的质心和求解函数的平均值等。
二、定积分的符号表示定积分的符号表示为∫abf(x)dx,其中∫表示积分的意思,a和b分别表示积分的区间,f(x)表示被积函数,而dx表示自变量。
三、定积分的基本性质1. 定积分的区间可以是一个闭区间也可以是一个开区间。
2. 定积分的积分域是一段区间上的一个函数。
3. 定积分的值只与积分的上限和下限以及积分函数的具体形式有关,与被积函数在区间上函数值的具体大小无关。
四、定积分的计算方法1. 定积分的计算方法有多种,其中最常用的方法有两种:换元积分法和分部积分法。
2. 换元积分法是将定积分中的自变量进行替换,从而使积分的形式更容易计算。
3. 分部积分法是将被积函数进行分解,从而使积分的形式更容易计算。
五、定积分的应用1. 定积分可以用来求解曲线与坐标轴所围成的图形的面积。
这是定积分最基本的应用之一。
2. 定积分可以用来求解物体的质量。
例如,如果我们知道一个物体的密度分布函数,在定积分的帮助下可以求解出物体的总质量。
3. 定积分可以用来求解物体的质心。
通过定积分可以计算出物体在某一方向上的平均位置。
4. 定积分可以用来求解函数的平均值。
通过定积分可以求解被积函数在一段区间上的平均值。
六、定积分的图形表示1. 在定积分的图形表示中,定积分表示的是曲线与坐标轴所围成的图形的面积。
2. 定积分的图形表示与被积函数在指定区间上的图像有关,可以通过被积函数的图像来判断定积分的正负值,从而得到面积的正负值。
七、定积分的应用实例1. 一块形状不规则的地块的面积可以通过定积分来求解。
2. 一根线密度不均匀的杆子的质量可以通过定积分来求解。
3. 一个质点在一段区间内的平均位置可以通过定积分来求解。
第五章 定积分的概念教学目的与要求:1. 解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。
2. 解广义积分的概念并会计算广义积分。
3.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力做功、引力、压力和函数的平均值等)。
5.1定积分概念 一. 定积分的定义不考虑上述二例的几何意义,下面从数学的角度来定义定积分 定义 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n 个小区间,记},......,,max{,,......2,1,211n i i i x x x n i x x x ∆∆∆==-=∆-λ在[i i x x ,1-]上任意取一点i ξ,作和式:)1.......()(1ini ix f ∆∑=ξ 如果无论[a,b]作怎样分割,也无论i ξ在[i i x x ,1-]怎样选取,只要0→λ有→∆∑=i ni i x f 1)(ξI (I 为一个确定的常数),则称极限I 是f(x)在[a,b]上的定积分,简称积分,记做⎰badx x f )(即I=⎰badx x f )(其中f(x)为被积函数,f(x)dx 为积分表达式,a 为积分下限,b 为积分上限,x 称为积分变量,[a,b]称为积分区间。
注1. 定积分还可以用δε-语言定义 2由此定义,以上二例的结果可以表示为A=⎰badx x f )(和S=⎰21)(T T dt t v3有定义知道⎰badx x f )(表示一个具体的书,与函数f(x)以及区间[a,b]有关,而与积分变量x 无关,即⎰badx x f )(=⎰b adu u f )(=⎰badt t f )(4定义中的0→λ不能用∞→n 代替5如果ini ix f Lim∆∑=→1)(ξλ存在,则它就是f(x)在[a,b]上的定积分,那么f(x)必须在[a,b]上满足什么条件f(x)在[a,b]上才可积分呢?经典反例:⎩⎨⎧=中的无理点,为,中的有理点,为]10[0]10[,1)(x x x f 在[0,1]上不可积。
导数的应用及定积分(一)导数及其应用1.函数y =f (x )在x =x 0处的瞬时变化率是limΔx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=limΔx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx 。
2.导数的几何意义函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=limΔx →0f (x 0+Δx )-f (x 0)Δx.3.函数的导数对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=limΔx →0f (x 0+Δx )-f (x 0)Δx.4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。
5.常见函数的导数(x n )′=__________.(1x )′=__________.(sin x )′=__________.(cos x )′=__________.(a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则:(f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,⎝⎛⎭⎫f (x )g (x )′=___________________.(3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.6.函数的单调性设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________.(2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________.7.函数的极值x ,如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个_________;如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个________.极大值与极小值统称为________,极大值点与极小值点统称为________.8.函数的最值假设函数y =f(x)在闭区间[a ,b]上的图象是一条连续不断的曲线,该函数在[a ,b]上一定能够取得____________与____________,若该函数在(a ,b)内是__________,该函数的最值必在极值点或区间端点取得.9.生活中的实际优化问题(1)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中__________的取值范围.(2)实际优化问题中,若只有一个极值点,则极值点就是__________点. (二)定积分1.曲边梯形的面积(1)曲边梯形:由直线x =a 、x =b(a≠b)、y =0和曲线________所围成的图形称为曲边梯形.(2)求曲边梯形面积的方法与步骤:①分割:把区间[a ,b]分成许多小区间,进而把曲边梯形拆分为一些_______________; ①近似代替:对每个小曲边梯形“___________”,即用__________的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的________;①求和:把以近似代替得到的每个小曲边梯形面积的近似值________;①取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个________,即为曲边梯形的面积.2.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v(t),那么也可以采用________、________、________、________的方法,求出它在a≤t≤b 内所作的位移s.3.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑=ni 1f(ξi )Δx=_____________(其中Δx 为小区间长度),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的_________,记作⎰baf (x )dx ,即⎰baf (x )dx =_________.________,x 叫做________,f(x)dx 叫做________.4.定积分的几何意义如果在区间[a ,b ]上函数f (x )连续且恒有___________,那么定积分⎰baf (x )dx 表示由_________________________,y =0和_____________所围成的曲边梯形的面积.5.定积分的性质 ①⎰bakf(x )dx =__________________(k 为常数);②⎰ba(x )]dx f±(x )[f 21=________________;③⎰baf (x )dx =⎰caf (x )dx +_______________(其中a <c <b ).6.微积分(1)微积分基本定理如果F (x )是区间[a ,b ]上的________函数,并且F ′(x )=________,那么⎰baf (x )dx =___________.(2)用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找被积函数的________,利用求导运算与求原函数运算互为逆运算的关系,运用基本初等函数求导公式和导数的四则运算法则从反方向上求出F (x ).(3)被积函数的原函数有很多,即若F (x )是被积函数f (x )的一个________,那么F (x )+C (C 为常数)也是被积函数f (x )的________.但是在实际运算时,不论如何选择常数C (或者是忽略C )都没有关系,事实上,以F (x )+C 代替式中的F (x )有⎰baf (x )dx =[F (b )+C ]-[F (a )+C ]=F (b )-F (a ).(4)求定积分的方法主要有:①利用定积分的________;②利用定积分的___________;③利用_______________。
第一部分 定积分的概念
问题一 曲边梯形的面积
如图,阴影部分类似于一个梯形,但有一边是曲线()y f x =的一段, 我们把由直线,(),0x a x b a b y ==≠=和曲线()y f x =所围成的图形 称为曲边梯形.如何计算这个曲边梯形的面积?
例如:求由抛物线2
y x =,直线1=x 以及x 轴所围成的平面图形的面积S 。
★求曲边梯形面积的四个步骤:第一步:分割.第二步:近似代替。
第三步:求和.第四步:取极限。
(说明:最后所得曲边形的面积不是近似值,而是真实值) 问题二 汽车行驶的路程
汽车以速度v 组匀速直线运动时,经过时间t 所行驶的路程为S vt =.如果汽车作变速直线运动,在时刻t 的速度为()2
2v t t =-+(单位:km/h ),那么它在0≤t ≤1(单位:h)这段时间内行驶的路程S (单位:km )
是多少?
问题三 定积分的概念 : 一般地,设函数()f x 在区间[,]a b 上连续,用分点
0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,在每个小区间
[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:()()i n
i n i i f n
a
b x f ξξ∑
∑==-=∆•1
1
当n →+∞)时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分。
记为:
()b
a
f x dx ⎰
即
()b
a
f x dx ⎰
=()i n
i n f n
a
b ξ∑
=∞
→-1
lim 其中函数()f x 叫做 ,x 叫做 变量,区间[,]a b 为 区间,b 积分 ,a 积分 。
说明:(1)定积分
()b
a
f x dx ⎰
是一个常数
(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:
1()n
i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a
f x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()b
a
S f x dx =
⎰
;变速运动路程2
1
()t t S v t dt =⎰
☆定积分的几何意义
从几何上看,如果在区间[a,b]上的函数()f x 连续且恒有()0f x ≥。
那么定积分
()b
a
f x dx ⎰
表示由直
线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积。
☆定积分的性质
根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx b
a
-=⎰1
性质2 ⎰⎰=b
a
b
a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)
性质3
1212[()()]()()b
b b
a
a
a
f x f x dx f x dx f x dx ±=±⎰
⎰⎰ (定积分的线性性质)
性质4
()()()()b c b
a
a
c
f x dx f x dx f x dx
a c
b =+<<⎰⎰⎰其中 (定积分对积分区间的可加性)
说明:①推广:1212[()()()]()()()b
b
b
b
m m a
a
a
a
f x f x f x dx f x dx f x dx f x ±±±=±±±⎰
⎰⎰⎰L L
②推广:
12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =+++⎰
⎰⎰⎰L
微积分基本定理(牛顿—莱布尼兹公式):⎰
-==b
a
b a a F b F x F dx x f )()(|)()(
三.典例分析
例1.利用定积分定义,证明
a b dx b
a
-=⎰
1,其中a,b 均为常数且a<b.
例2 用定积分表示阴影部分的面积(不要求计算) 例3.(1)计算定积分2
1
(1)x dx +⎰
(2)2
2
(1)x dx -+⎰
四.练习
1、由y=sinx, x=0,x=2
π
,y=0所围成图形的面积写成定积分的形式是 2、计算下列定积分 (1)
⎰
2
3
dx x (2)dx x ⎰
--2
2
2
4 (3)⎰⎰-+-2
1
10
)1()1(dx x dx x
3.将和式的极限)0(.......321lim 1>+++++∞→p n
n P p
p p p n 表示成定积分 ( )
A .dx x ⎰1
01 B .dx x p ⎰10 C .dx x p ⎰10)1( D .dx n
x p
⎰10)(
4.将和式)21
.........2111(lim n
n n n +++++∞→表示为定积分 .
5.曲线]2
3
,0[,cos π∈=x x y 与坐标周围成的面积____________
6.
dx e e
x x
⎰-+1
)(=______________
7.若1
x m e dx =
⎰
,1
1
e
n dx x
=⎰
,则m 与n 的大小关系是_________ 8. 按万有引力定律,两质点间的吸引力2
2
1r
m m k
F =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求所作之功(b >a ) .
9.由曲线2
1y x =-和x 轴围成图形的面积等于S .给出下列结果,其中正确的是____________ ①
1
21
(1)x dx --⎰
;②121
(1)x dx --⎰;③120
2(1)x dx -⎰;④0
21
2(1)x dx --⎰.
10.0
(sin cos sin )x
y t t t dt =
+⎰
,则y 的最大值是__________
11. 若()f x 是一次函数,且
1
()5f x dx =⎰
,1
17
()6xf x dx =
⎰,那么21()f x dx x
⎰的值是 .
12.计算 ⎰202
sin π
dx x dx d
dx x x ⎰-π03sin sin dx x x ⎰-π03cos cos ⎰-20|cos sin |π
dx x x
13
综合题:1
1
2
52
2
2
(1)(2)ln(1)(3)(cos )2
x dx x dx
x x x dx x x -+---⎰
⎰⎰
2
22230
22
2
(4)(5)(6)tan [sin 2ln((32)
e dx x x x dx x x π
π-+++-⎰
⎰
2
(7)⎰。