矿床学 热液概述
- 格式:ppt
- 大小:10.64 MB
- 文档页数:105
第五章热液矿床概论(气水)热液指形成于地壳一定深度的,具有一定的温度(500-50℃)、压力的气液两相体系,称为气水热液,简称热液。
气水热液组成:以水为主,含挥发组份(H2O、F、Cl、B、S、P等),并经常含有各种成矿组份,故又称之为含矿(气水)热液。
当含矿气水热液在一定的地质构造中移动时,由于温度、压力和组份浓度等物理化学条件的变化,平衡遭到破坏,其中的成矿物质通过充填或交代作用,发生沉淀、聚集,以致形成矿床,这类矿床称为(气水)热液矿床。
①成矿晚于围岩,属于后生矿床。
②成矿温度400℃-50℃之间,少数可达500℃或更高,成矿深度变化较大。
③构造对气水热液矿床的形成有明显的控制作用。
它既是气水热液运移的通道,又是成矿组分沉淀的场所。
④气水热液矿床往往都发育有较强烈的围岩蚀变。
⑤成矿作用具有多阶段性。
⑥矿石组份:构成矿床的金属矿物以金属硫化物(Cu、Mo、Pb、Zn、Hg、Sb、Ag)为主,另外有部分金属氧化物和含氧盐(W、Sn、U……)。
⑦矿体主要呈透镜状、囊状、不规则状,有时也呈似层状。
⑧矿石组构:具充填和交代形成的结构构造,如脉状、网脉状、浸染状、块状构造,胶状、侵蚀、残余、骸晶结构等。
含矿热液的种类岩浆成因热液变质成因热液建造水大气水热液幔源初生水热液1. 岩浆成因热液岩浆成因热液指在岩浆结晶过程中从岩浆中释放出来的热水溶液。
水从岩浆中分出的主要因素是由于温度和压力的降低。
岩浆成因热液中常含有H2S、HCI、HF、SO2、CO、CO2、H2、N2等挥发组分,故具有很强的形成金属络合物并使其迁移活动的能力。
此外有高盐度、富K+的特征。
人们不可能直接得到岩浆水,但通过氢-氧同位素的计算可以确定岩浆水的参与:岩浆成因热液:δ18O:+6~+9‰,δD:-48~-80‰2 .变质成因热液指岩石在进化变质作用过程中(增温增压)所释放出来的热水溶液。
岩石遭受进化变质作用时,总伴随着矿物的脱水反应,而且脱水同变质的强度成正比。
第六章热液矿床各论三地下水热液矿床(一)概述一、1、地下水热液矿床:与岩浆活动无直接关系,在地壳浅部和表层的地热异常区,由地热或地热增温率导致的岩层内同生水或循环地下水活动性增强,萃取围岩中的成矿物质形成的含矿溶液,称为地下水含矿热液,当地下水含矿热液运移到有利构造和围岩中,通过充填和交代的成矿方式形成的矿床称为地下水热液矿床。
2、工业意义:主要金属矿产有Pb、Zn、Hg、Sb、As、Au、Ag、U、Ni、Mo等;非金属矿产有水晶、冰洲石、石棉、蛇纹石、重晶石等,有些矿床可以称为大型、超大型矿床(MVT 型铅锌矿床、贵州万山汞矿床)(二)地下水含矿热液的形成作用1、侧分泌作用:热液可能是大气降水、原生水、或结晶时的释放水。
热液流经围岩时,成矿组份从附近围岩中析出进入热液,形成含矿气水热液,矿质被热液带到附近有利空间沉淀成矿。
2、压实热液作用:岩石在压实过程中,岩层中的孔隙水受压而被释放出来。
如原为海相沉积物在成岩、压实过程中,可释放出以卤化物为主的热卤水。
在这些热液的作用下,可形成后生的金属和非金属矿床,如某些泥质岩中的铅锌矿脉可能是这种成因造成的。
3、下渗水环流热液作用:下渗水沿断裂、裂隙带循环,通过加温,使围岩中有用组份活化转移,进入热液,并在有利的岩性条件下富集。
4、热泉堆积作用:一般发生在年轻和正在进行矿化的地区。
热泉水基本上是大气降水,一般含有较高的Hg、As、F等元素,随着温度下降,有用组分沉淀堆积可形成矿床,如美国加利福尼亚州的汞矿床就是一例。
(三)地下水热液矿床的特征其总体特征与岩浆热液矿床大体相似,但还有自己的特点,主要表现在:(1)矿床及其附近一般无岩浆岩体出露,即使有,也与矿床无直接直接关系;(2)矿化明显受一定地层、岩性(岩相)控制,矿床常产于一定层位中,矿体常集中在某些岩性段:ⅰ)海相、泻湖相碳酸盐岩(多与白云质碳酸盐岩和礁相杂岩);ⅱ)红色碎屑岩系中的浅色带及接触带;ⅲ)黑色页岩;(3)矿床受构造控制明显,主要是褶皱、断裂、裂隙、及岩层的层间构造带,矿体多为两向至三向延长过渡的凸镜状、囊状或脉状矿体,在空间上沿一定层位呈带状分布;(4)矿石成分简单,与围岩成分基本相似,金属矿物常为方铅矿、闪锌矿、自然金、辉锑矿、辰砂、雄黄、雌黄、黄铁矿、黄铜矿、辉铜矿、斑铜矿等,矿物颗粒较大,并呈带状分布,有时晶体生长完好;(5)围岩蚀变弱,主要为低温蚀变,如硅化、碳酸盐化、粘土化、重晶石化等;(6)成矿温压低(T50-200℃,P<3×107-5×107Pa,D<1.5km),同位素变化大(δ34S 变化范围-12.2-+36.1‰),矿石年龄可大于围岩,也可小于围岩。