高等数学-重积分的应用
- 格式:ppt
- 大小:2.04 MB
- 文档页数:30
重积分的积分性质和计算规则重积分是高等数学中的一种重要概念,指对于一个二元函数而言,将其在一个二维区域上进行积分的过程。
与单积分类似,重积分也有其特定的积分性质和计算规则。
本文将详细介绍重积分的这些性质和规则,以帮助读者更好地理解和应用重积分的相关知识。
一、积分性质1. 线性性质:重积分具有线性性,即对于常数c与两个可积函数f(x,y)和g(x,y),有如下式子成立:∬ (c*f(x,y) + g(x,y)) dxdy = c * ∬ f(x,y) dxdy + ∬g(x,y)dxdy2. 可积性与非负性:如果函数f(x,y)在一个有限二维区域上是可积的,那么它在该区域上的积分一定存在;而如果函数g(x,y)在该区域上非负,则其积分也是非负的。
3. 积分次序可交换:如果二元函数f(x,y)在一个矩形区域上是可积的,则对于该区域内的任意两个积分限定,这两个积分的次序可以任意交换而不影响结果,即:∬ f(x,y) dxdy = ∬ ( ∬f(x,y)dy ) dx = ∬(∬f(x,y) dx)dy二、计算规则1. Fubini定理:Fubini定理是重积分中的一个重要定理,可以将对二元函数在一个区域上的重积分转化为两个一元函数相应区域上的积分,即:∬f(x,y)dxdy = ∫a∫b f(x,y)dxdy = ∫b∫a f(x,y)dydx = ∫a∫b f(x,y)dydx其中f(x,y)为被积函数,a和b分别为区域在x和y轴上的积分限。
2. 直角坐标系下的计算规则:在直角坐标系下,重积分可以用二重积分的形式表示,即:∬f(x,y)dxdy = ∫c∫d f(x,y)dxdy其中 c 和 d 分别为区域在x和y轴上的积分限,这个积分区域可以是矩形、梯形、三角形等形状。
在进行计算时,通常需先用对x或y的积分公式进行计算,再对另一个变量进行积分。
3. 极坐标系下的计算规则:在极坐标系下,重积分可以用二重积分的极坐标形式表示,即:∬f(x,y)dxdy = ∫α∫β f(r*cosθ,r*sinθ)rdrdθ其中α和β为对应极角的积分限,r是到极点的距离,θ是到x轴的角度。
重积分的积分应用和物理意义重积分是高等数学中一个重要的概念和工具。
它的出现是为了解决多元函数在空间区域内的积分问题。
在实际应用中,重积分有着广泛的应用,尤其是在物理学领域。
本文就对重积分的积分应用和物理意义进行分析。
一、重积分的积分应用1.体积和质量的计算在几何学和物理学中,体积和质量的计算都涉及到对空间中某个区域的积分。
例如,在三维空间中,某个具有规则形状的立体体积可以通过三重积分计算得出。
具体地,设空间中一个体积为V的区域为S,对其进行三重积分可以得到S的体积为:V = ∫∫∫ S dx dy dz同样的,如果在空间中某一点对应有一定质量,那么对该区域进行三重积分可以得到该区域的质量。
这时需要考虑到每个小立方体所包含的质量及其对应的体积,即:m = ∫∫∫ S ρ(x, y, z) dx dy dz其中,ρ(x, y, z)表示该点的密度。
2.力的计算在物理学中,重积分可用于计算某个物体所受的外力。
例如,平面上某个点的引力如果可以看成是均匀分布的,那么该点所受的外力可以通过对其周围区域进行二重积分得到。
具体地,如果某一点所受的引力函数的密度为ρ(x, y),则该点所受的外力F可以表示为:F = ∫∫ D ρ(x, y) dS其中,D为该点周围的区域面积,dS为微小面积元素。
3.能量的计算在物理学中,重积分还可用于计算某个系统所具有的能量。
例如,某个三维物体所具有的动能可以通过对其质点进行积分计算得到。
具体地,设空间中某个物体的速度场为V(x, y, z),则其动能可以表示为:E = 1/2 * m * ∫∫∫ S [V(x, y, z)]^2 dx dy dz其中,m为该物体的总质量。
二、重积分的物理意义重积分在物理学中有着广泛的应用,它可以帮助我们理解物理现象的本质和规律。
以下就以几个例子来说明重积分的物理意义。
1.空间电荷密度在电学中,空间电荷密度常常需要进行积分计算。
例如,在计算某一电场强度时,我们需要考虑到空间中每个点的电荷密度对该点电场强度的影响。
高数大一知识点总结重积分高数大一知识点总结:重积分高等数学中的重积分是一种扩展了二重积分的概念,它在多变量函数的积分中扮演重要的角色。
本文将对高数大一课程中的重积分进行总结和讲解。
一、重积分的概念和性质重积分是定义在三维空间内的函数的积分,通常用来计算多变量函数在某个区域上的累积效应。
与二重积分类似,重积分可以通过分割区域,将其近似为无穷小的小区域,然后对每个小区域进行积分,再将这些积分进行累加而得到。
重积分的计算通常与坐标系的选择有关,常见的坐标系有直角坐标系、极坐标系和柱坐标系等。
根据实际问题的特点和对称性的分析,选择合适的坐标系可以简化计算过程。
在计算重积分时,需要注意积分顺序的选择。
根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,这样有助于简化计算,并得到准确的结果。
重积分具有一些重要的性质,例如线性性、划分性和保号性等。
这些性质在具体计算过程中可以灵活运用,简化计算和分析。
二、重积分的计算方法1. 直角坐标系下的重积分计算方法直角坐标系下的重积分计算通常通过多次积分来实现。
根据题目给定的区域和函数的特点,可以选择先对哪个自变量进行积分,再对另一个自变量进行积分。
通过逐步积分,最终可以得到准确的结果。
2. 极坐标系下的重积分计算方法极坐标系下的重积分计算常常适用于具有旋转对称性的问题。
在极坐标系下,将函数和区域表示成极坐标形式,通过选择合适的积分顺序和极角范围,可以简化计算过程,得到准确的结果。
3. 柱坐标系下的重积分计算方法柱坐标系下的重积分计算通常应用于具有柱对称性的问题。
在柱坐标系下,将函数和区域表示成柱坐标形式,通过选择合适的积分顺序和柱角范围,可以简化计算过程,得到准确的结果。
三、重积分的应用领域重积分在科学和工程领域有广泛的应用。
例如,在物理学中,用重积分可以计算物体的质量、质心和转动惯量等;在电磁学中,可以用重积分计算电荷、电场和电势等;在流体力学中,可以用重积分计算流体的质量、流速和流量等。
《高等数学》——重积分摘要:高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。
重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。
重积分主要用来解决实际问题,在本文中,首先我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及其在几何和物理方面的应用,并借以实例加以说明。
其次,谈谈我个人对学习重积分的一些建议和想法。
关键词:重积分;曲面面积;重心;转动惯量;引力;应用.在高等数学中,重积分是多元函数积分学的内容,在一元函数积分学中我们知道定积分是某种确定形式的和的极限。
这种和的概念推广到定义在区域、曲线及曲面上多元函数的情形,便得到重积分、曲线积分及曲面积分的概念。
高等数学讨论的重积分主要包括二重积分和三重积分两部分,引起二重积分概念的过程是测量曲顶柱体体积的过程的反映,三重积分概念是作为二重积分概念的推广而引出的,但事实上三重积分也是某些具体现实过程的反映。
在本章中将介绍重积分的概念、计算法以及它们的一些应用。
重积分在各种知识领域中的应用非常广阔,我们将在理论力学,材料力学,水力学及其她一些工程学科中碰到它们。
文章中我分为两个部分来谈重积分,第一部分主要归纳了重积分的应用,对于重积分的学习,要求主要掌握重积分的计算和应用,会用重积分的思想解决实际问题,然而计算又涵盖在具体应用中。
因此学习重积分要从它的应用着手。
第二部分谈了谈自己对学习重积分的一些建议和想法。
主要从学习重积分的思想和计算方法两方面来谈。
I .重积分的应用归纳如下:1.1曲面的面积 设曲面∑的方程为(),y x f z,=∑在xoy 面上的投影为xy D ,函数()y x f ,在D 上具有连续偏导数,则曲面∑的面积为: 若曲面∑的方程为(),z y g x ,=∑在yoz 面上的投影为yz D ,则曲面∑的面积为:若曲面∑的方程为(),x z h y ,=∑在zox 面上的投影为zx D ,则曲面∑的面积为:例1:计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A 。
高等数学第十章重积分1. 引言在高等数学中,积分是一个重要的概念。
在之前的学习中,我们学习了定积分和不定积分的概念和性质。
在本章中,我们将进一步学习一种扩展的积分形式,即重积分。
2. 重积分的引入和定义重积分是一种将函数在二维或更高维空间内的区域上进行积分的方法。
它的引入主要是为了解决在二维平面上对非矩形区域进行积分的问题。
在计算重积分之前,我们首先需要定义积分区域。
对于二维平面上的区域,我们可以使用极坐标或直角坐标来描述。
对于更高维的区域,我们则需要使用其他的坐标系。
一般来说,重积分可以分为两类:累次积分和二重积分。
累次积分是指先对一个变量进行积分,然后再对另一个变量进行积分。
而二重积分则是指在一个积分符号下同时对两个变量进行积分。
对于二重积分,我们可以使用迭代积分和换元积分的方法来计算。
迭代积分是将一个二重积分转化为两个累次积分的过程,而换元积分是利用变量替换的方法来简化计算。
3. 重积分的性质重积分具有一些和定积分相似的性质。
例如,重积分具有线性性质和保号性质。
线性性质指的是对于两个函数的重积分,其和函数的重积分等于两个函数分别取重积分后再相加。
保号性质指的是如果函数在积分区域上恒大于等于0,则函数的重积分也大于等于0。
此外,重积分还具有可加性和可积性。
可加性指的是如果一个积分区域可以被分割为多个不相交的子区域,则重积分可以拆分成多个子区域的重积分之和。
可积性指的是如果一个函数在有界闭区域上连续或只有有限个间断点,那么该函数的重积分存在。
4. 重积分的应用重积分在物理学、经济学和几何学等领域中有着广泛的应用。
在物理学中,我们可以使用重积分来计算物体的质心、面积、体积等性质。
在经济学中,我们可以使用重积分来计算市场需求曲线和供给曲线之间的面积,从而得到市场的总需求量和总供给量。
在几何学中,重积分可以用来计算平面和空间中的曲线长度、曲面面积和体积。
例如,我们可以使用重积分来计算球体的体积和球冠的体积。
重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。
正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。
而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。
2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。
3.重积分的性质:包括线性性质、保号性质、次可加性质等。
这些性质在进行重积分计算时非常重要。
二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。
在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。
2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,极坐标法可以简化计算过程。
三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。
在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。
2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,柱坐标法可以简化计算过程。
结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。
通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。
前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
第九章(二) 重积分的应用重积分的应用十分广泛。
尤其是在几何和物理两方面。
几何方面的应用有利用二重积分求平面图形的面积;求曲面面积;利用三重积分求立体体积。
物理方面的应用有求质量;求重心;求转动惯量;求引力等。
在研究生入学考试中,该内容是《高等数学一》和《高等数学二》的考试内容。
通过这一章节的学习,我们认为应到达如下要求:1、掌握重积分的几何和物理意义,并能应用于实际计算。
2、对于重积分的应用领域和常见应用问题有全面的了解,并能利用重积分解决应用问题。
3、具备空间想象能力,娴熟的重积分计算技巧和将理论转化为应用的能力。
一、知识网络图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧求引力求转动慣量求重心求质量物理应用求曲面面积求立体体积求平面图形面积几何应用重积分的应用 二、典型错误分析例1. 求如下平面区域D 的面积,其中D 由直线x y x ==,2及曲线1=xy 所围成。
如图: y[错解]89)2(2212221=-===⎰⎰⎰⎰⎰dy y dx dy d S y Dσ[分析]平面图形的面积可以利用二重积分来计算,这一点并没有错。
问题在于区域D ,假设先按x 积分,再按y 积分,则应注意到区域D 因此划分为两个部分,在这两个部分,x 、y 的积分限并不相同,因此此题假设先积x, 后积y ,则应分两部分分别积分,再相加。
[正确解] 2ln 2322112121-=+==⎰⎰⎰⎰⎰⎰yyDdx dy dx dy d S σ 例 2..设平面薄片所占的闭区域D 是由螺线θγ2=上一段弧)20(πθ≤≤与直线2πθ=所围成,它的面密度为22),(y x y x +=ρ,求该薄片的质量。
[错解] 24023420320220πθθθσρπθπ====⎰⎰⎰⎰⎰d r dr r d d MD[分析] 平面物体的质量是以面密度函数为被积函数的二重积分,因此解法的第一步是正确的。
注意到积分区域的边界有圆弧,而被积函数为22),(y x y x +=ρ,因此积分的计算采用极坐标系算,这一点也是正确的。
例 利用二重积分的性质,估计积分2222(2)d Dx y x y σ+-⎰⎰ 的值,其中D 为半圆形区域224,0x y y +≤≥.解 我们先求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值.由22220,420,x yf x xy f y x y '⎧=-=⎪⎨'=-=⎪⎩解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0.在边界222:4L x y +=(0)y ≥上,242()(,4)58(22)h x f x x x x x =-=-+-≤≤由3()4100h x x x '=-=得驻点123550,,22x x x ==-=,(0)(0,2)8h f ==. 5537()(,)2224h f ±=±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知222202(2)d 82Dx y x y πσπ⋅≤+-≤⋅⎰⎰,即22220(2)d 16Dx y x y σπ≤+-≤⎰⎰.例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则(cos sin )()Dxy x y dxdy +=⎰⎰.(A )12cos sin D x y dxdy ⎰⎰ (B )12D xy dxdy ⎰⎰(C )14(cos sin )D xy x y dxdy +⎰⎰ (D )0解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角形区域,则0D 关于y 轴对称,且1D 为0D 在y 轴右侧的部分区域,区域0D D -关于x 轴对称.又xy 关于x 和y 均为奇函数;而cos sin x y 关于x 为偶函数.关于y 为奇函数,由二重积分的奇偶对称性得0,0D D D xy dxdy xy dxdy -==⎰⎰⎰⎰,故0Dxy dxdy =⎰⎰;1cos sin 2cos sin ,cos sin 0D D D D x ydxdy x y dxdy x y dxdy -==⎰⎰⎰⎰⎰⎰,故1cos sin 2cos sin DD x y dxdy x y dxdy =⎰⎰⎰⎰.所以1(cos sin )cos sin 2cos sin DDDD xy x y dxdy xy dxdy x y dxdy x y dxdy +=+=⎰⎰⎰⎰⎰⎰⎰⎰.因此我们选(A ).例 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则Dσ= .解 由题意知,D 关于直线y x =对称,由二重积分轮换对称性得DσDσ=12D d σ=⎰⎰ 211()π2π22242D D a b a b a b a b d d σσ+++=+==⋅⋅=⎰⎰⎰⎰. 因此,我们应填“π2a b+.”例 计算二次积分220sin xydx dy yππ⎰⎰解 积分区域如图,则 原式20sin yydy dx yπ=⎰⎰2200sin sin sin y dy ydy ydy ππππ==+-⎰⎰⎰4=;例设D为椭圆区域22(1)(2)149x y--+≤,计算二重积分()Dx y dxdy+⎰⎰.解令12cos,23sin,x ry r=+⎧⎨=+⎩θθ则D的极坐标表示为01,02r≤≤≤≤θπ,且(,)6(,)x yrrθ∂=∂.由式(10.2.8),可得2100()6(32cos3sin)Dx y dxdy d r r rdr+=++⎰⎰⎰⎰πθθθ2326(cos sin)1823d=++=⎰πθθθπ.例计算二重积分⎰⎰+Dyxyx dd)(,其中D为.122++≤+yxyx解解法1 D的边界曲线为,2/3212122=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-yx这是一个以⎪⎭⎫⎝⎛21,21为圆心,23为半径的圆域,采用一般的变量代换,令⎪⎪⎩⎪⎪⎨⎧-=-=,21,21yvxu即作变换⎪⎪⎩⎪⎪⎨⎧+=+=,21,21vyux于是D变为.2/3:22≤+'vuD.111),(),(==∂∂=vuyxJ所以,()d d(1)1d dD Dx y x y u v u v'+=++⋅⋅⎰⎰⎰⎰(再用极坐标).23023d d )cos (sin d d d )1sin cos (d 222/30202/3020ππθθθθθθθππ=+⎪⎪⎭⎫ ⎝⎛⋅=++=++=⎰⎰⎰⎰⎰⎰r r r r rr r r D解法2 由于积分区域D :23212122≤⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 关于21=x (即)021=-x 对称,故⎰⎰=⎪⎭⎫ ⎝⎛-D y x x .0d d 21 类似地,由于D 关于⎪⎭⎫⎝⎛=-=02121y y 即对称,故 ⎰⎰=⎪⎭⎫ ⎝⎛-D y x y .0d d 21 从而.2323d d d d 1d d 21d d 21d d )(2ππ=⎪⎪⎭⎫ ⎝⎛⋅===⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰面积D y x y x y x y y x x y x y x D D D DD例 计算y x e I Dy xd d },max{22⎰⎰=,其中,}10,10|),{(≤≤≤≤=y x y x D解 D 由x y =分为D 2,D 2两部分,如图.⎪⎩⎪⎨⎧≤≤≤≤≤≤≤≤=1,10:,0,10:,21},max{2222y x x D e x y x D e e y x y x x e y y e x y x e y x e I yy xx D y D x d d d d d d d d 01010222212⎰⎰⎰⎰⎰⎰⎰⎰+=+=21110d d 2d d 2222x e x xe y e x x x xx ⎰⎰⎰⎰===.1102-==e e x例 利用二重积分计算定积分1(,0)ln b ax x I dx a b x-=>⎰解 因为1ln ln bb a btt aa x x x dt x x x-==⎰所以 ⎰⎰⎰⎰⎰⎪⎭⎫⎝⎛++=+=+===bab aba batta b t dt t dx x dt dx dt x I 11ln )1ln(11)(11例 ],[)(b a x f 为上的连续函数,且0)(>x f ,试利用二重积分证明.)()(1d )(2a b x f x x f baba-≥⎰⎰证 因为x x f y y f x x f x x f b a b a babad )(1d )(d )(1d )(⎰⎰⎰⎰=,d d )()(d d )()(y x y f x f y x x f y f DD⎰⎰⎰⎰≥= 其中 所以},,|),{(b y a b x a y x D ≤≤≤≤=⎰⎰⎰⎰⎰⎰+=DD bab ay x y f x f y x x f y f x x f x x f d d )()(d d )()(d )(1d )(2 y x y f x f y f x f y x y f x f x f y f DDd d )()()()(d d )()()()(22⎰⎰⎰⎰≥+=,)(2d d 22a b y x D-==⎰⎰亦即.)(d )(1d )(2a b x x f x x f baba-≥⎰⎰例 计算⎰1d )(x x xf ,其中⎰=21d int)(x t tS x f 解 当10,102≤≤≤≤x x 时⎰⎰⎰-===111222,d sin d sin d sin )(x x x y yy y y y t t tx f从而x y y y x x x xf x d d sin d )(101102⎰⎰⎰⎥⎦⎤⎢⎣⎡-= 图y x y yx y y y x x xDd d sin d sin d 1102⎰⎰⎰⎰-=⋅-=,其中D 曲线1,2==y x y ,和0=x 所围成,如图10-8。
第十章重积分一元函数积分学中,我们曾经用和式的极限来定义一元函数()f x在区间,a b⎡⎤⎣⎦上的定积分,并已经建立了定积分理论,本章将把这一方法推广到多元函数的情形,便得到重积分的概念. 本章主要讲述多重积分的概念、性质、计算方法以及应用.第1节二重积分的概念与性质二重积分的概念下面我们通过计算曲顶柱体的体积和平面薄片的质量,引出二重积分的定义.1.1.1. 曲顶柱体的体积曲顶柱体是指这样的立体,它的底是x Oy平面上的一个有界闭区域D,其侧面是以D的边界为准线的母线平行于z轴的柱面,其顶部是在区域D上的连续函数(),=,且z f x y (),0f x y≥所表示的曲面(图10—1).图10—1现在讨论如何求曲顶柱体的体积.分析这个问题,我们看到它与求曲边梯形的面积问题是类似的.可以用与定积分类似的方法(即分割、近似代替、求和、取极限的方法)来解决(图10—2).图10—2(1)分割闭区域D 为n 个小闭区域,n σσσ∆∆∆12,,,同时也用i Δσ表示第i 个小闭区域的面积,用()i d Δσ表示区域i Δσ的直径(一个闭区域的直径是指闭区域上任意两点间距离的最大值),相应地此曲顶柱体被分为n 个小曲顶柱体.(2)在每个小闭区域上任取一点()()()1122,, ,,, ,n n ξηξηξη对第i 个小曲顶柱体的体积,用高为,()i i f ξη而底为i Δσ的平顶柱体的体积来近似代替.(3)这n 个平顶柱体的体积之和1(,)niiii f ξησ=∆∑就是曲顶柱体体积的近似值.(4)用λ表示n 个小闭区域i Δσ的直径的最大值,即()max 1i i nλd Δσ≤≤=.当0λ→ (可理解为iΔσ收缩为一点)时,上述和式的极限,就是曲顶柱体的体积:1lim (,).ni i i i V f λξησ→==∆∑1.1.2 平面薄片的质量设薄片在x Oy 平面占有平面闭区域D ,它在点,()x y 处的面密度是,()ρρx y =.设()0x y ρ>,且在D 上连续,求薄片的质量(见图10-3).图10-3先分割闭区域D 为n 个小闭区域n σσσ∆∆∆12,,,在每个小闭区域上任取一点()()()1122,, ,,, ,n n ξηξηξη近似地,以点,()i i ξη处的面密度,()i i ρξη代替小闭区域i Δσ上各点处的面密度,则得到第i 块小薄片的质量的近似值为,()i i i ρξηΔσ,于是整个薄片质量的近似值是1(,)niiii ρξησ=∆∑用()max 1i i nλd Δσ≤≤=表示n 个小闭区域i Δσ的直径的最大值,当D 无限细分,即当0λ→时,上述和式的极限就是薄片的质量M ,即1lim (,)ni i i λi M ρξηΔσ→==∑.以上两个具体问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限.抽象出来就得到下述二重积分的定义.定义1 设D 是x Oy 平面上的有界闭区域,二元函数,()z f x y =在D 上有界.将D 分为n 个小区域n σσσ∆∆∆12,,,同时用i Δσ表示该小区域的面积,记i Δσ的直径为()i d Δσ,并令()max 1i i nλd Δσ≤≤=.在i Δσ上任取一点,, 1,2,,()()i i ξηi n =,作乘积()Δ,i i i f ξησ并作和式Δ1(,)ni i i i n S f ξησ==∑.若0λ→时,n S 的极限存在(它不依赖于D 的分法及点(,)i i εη的取法),则称这个极限值为函数,()z f x y =在D 上的二重积分,记作(,)d Df x y σ⎰⎰,即1(,)d lim (,)Δniiii Df x y f λσξησ→==∑⎰⎰, (10-1-1)其中D 叫做积分区域,,()f x y 叫做被积函数,d σ叫做面积元素,,d ()f x y σ叫做被积表达式,x 与y 叫做积分变量,Δ1(,)ni i i i f ξησ=∑叫做积分和.在直角坐标系中,我们常用平行于x 轴和y 轴的直线(y =常数和x =常数)把区域D 分割成小矩形,它的边长是x ∆和Δy ,从而ΔΔΔσx y =⋅,因此在直角坐标系中的面积元素可写成d dx dy σ=⋅,二重积分也可记作1(,)d d lim (,)niiii Df x y x y f λξησ→==∆∑⎰⎰.有了二重积分的定义,前面的体积和质量都可以用二重积分来表示.曲顶柱体的体积V 是函数,()z f x y =在区域D 上的二重积分(,)d DV f x y σ=⎰⎰;薄片的质量M 是面密度,()ρρx y =在区域D 上的二重积分(,)d DM x y ρσ=⎰⎰.因为总可以把被积函数,()z f x y =看作空间的一曲面,所以当,()f x y 为正时,二重积分的几何意义就是曲顶柱体的体积;当,()f x y 为负时,柱体就在x Oy 平面下方,二重积分就是曲顶柱体体积的负值. 如果,()f x y 在某部分区域上是正的,而在其余的部分区域上是负的,那么,()f x y 在D 上的二重积分就等于这些部分区域上柱体体积的代数和.如果,()f x y 在区域D 上的二重积分存在(即和式的极限(10-1-1)存在),则称,()f x y 在D 上可积.什么样的函数是可积的呢与一元函数定积分的情形一样,我们只叙述有关结论,而不作证明.如果,()f x y 是闭区域D 上连续,或分块连续的函数,则,()f x y 在D 上可积.我们总假定,()z f x y =在闭区域D 上连续,所以,()f x y 在D 上的二重积分都是存在的,以后就不再一一加以说明.1.1.3 二重积分的性质设二元函数,,,()()f x y g x y 在闭区域D 上连续,于是这些函数的二重积分存在.利用二重积分的定义,可以证明它的若干基本性质.下面列举这些性质.性质1 常数因子可提到积分号外面.设k 是常数,则(,)d (,)d DDkf x y k f x y σσ=⎰⎰⎰⎰.性质2 函数的代数和的积分等于各函数的积分的代数和,即[]()()d ()d ()d DDDf x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰,,,,.性质3 设闭区域D 被有限条曲线分为有限个部分闭区域,则D 上的二重积分等于各部分闭区域上的二重积分的和.例如D 分为区域1D 和2D (见图10-4),则12(,)d (,)d (,)d DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰. (10-1-2)图10-4性质3表示二重积分对积分区域具有可加性.性质4 设在闭区域D 上,1()f x y =,σ为D 的面积,则1d d DDσσσ==⎰⎰⎰⎰.从几何意义上来看这是很明显的.因为高为1的平顶柱体的体积在数值上就等于柱体的底面积.性质5 设在闭区域D 上有,,()()f x y g x y ≤,则(,)d (,)d DDf x yg x y σσ≤⎰⎰⎰⎰.由于 (,)(,)(,)f x y f x y f x y -≤≤ 又有(,)d (,)d DDf x y f x y σσ≤⎰⎰⎰⎰.这就是说,函数二重积分的绝对值必小于或等于该函数绝对值的二重积分.性质6 设、M m 分别为()f x y ,在闭区域D 上的最大值和最小值,σ为D 的面积,则有(,)d Dm f x y M σσσ≤≤⎰⎰.上述不等式是二重积分估值的不等式.因为()m f x y M ≤≤,,所以由性质5有d (,)d d DDDm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰,即 d (,)d d DDDm m f x y M M σσσσσ=≤≤=⎰⎰⎰⎰⎰⎰.性质7 设函数,()f x y 在闭区域D 上连续,σ是D 的面积,则在D 上至少存在一点,()ξη使得(,)d ()Df x y f σξησ=⋅⎰⎰,.这一性质称为二重积分的中值定理. 证 显然0σ≠.因,()f x y 在有界闭区域D 上连续,根据有界闭区域上连续函数取到最大值、最小值定理,在D 上必存在一点()11x y ,使()11f x y ,等于最大值M ,又存在一点22()x y ,使22()f x y ,等于最小值m ,则对于D 上所有点,()x y ,有()()()2211.m f x y f x y f x y M =≤≤=,,,由性质1和性质5,可得d (,)d d DDDm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰.再由性质4得(,)d Dm f x y M σσσ≤≤⎰⎰,或1(,)d Dm f x y M σσ≤≤⎰⎰.根据闭区域上连续函数的介值定理知,D 上必存在一点,()ξη,使得1(,)d ()Df x y f σξησ=⎰⎰,,即(,)d ()Df x y f σξησ=⎰⎰,, ,()ξηD ∈.证毕.二重积分中值定理的几何意义可叙述如下:当:,()S z f x y =为空间一连续曲面时,对以S 为顶的曲顶柱体,必定存在一个以D 为底,以D 内某点,()ξη的函数值,()f ξη为高的平顶柱体,它的体积,()f ξησ⋅就等于这个曲顶柱体的体积.习题10—11.根据二重积分性质,比较ln()d Dx y σ+⎰⎰与[]2ln()d Dx y σ+⎰⎰的大小,其中(1)D 表示以10,()、1,0()、1,1()为顶点的三角形; (2)D 表示矩形区域(){}|35,2,0x y x y ≤≤≤≤. 2.根据二重积分的几何意义,确定下列积分的值: (1)(22d Da x y σ+⎰⎰,()222{|}D x y x y a =+≤,;(2)222d Da x y σ--,()222{|}D x y x y a =+≤,.3.设(),f x y 为连续函数,求201lim (,)d πr Df x y rσ→⎰⎰,()()()22200{,}D x y x x y y r =-+-≤|.4.根据二重积分性质,估计下列积分的值:(1)4+d DI xy σ=,()22{|00}D x y x y =≤≤≤≤,,;(2)22sin sin d DI x y σ=⎰⎰,()ππ{,|00}D x y x y =≤≤≤≤,; (3)()2249d DI x y σ=++⎰⎰, ()224{,|}D x y x y =+≤.5.设[][]0,10,1D =⨯,证明函数()()()()1,,,,,为内有理点即均为有理数,,为内非有理点0x y D x y f x y x y D ⎧⎪=⎨⎪⎩在D 上不可积.第2节 二重积分的计算只有少数二重积分(被积函数和积分区域特别简单)可用定义计算外,一般情况下要用定义计算二重积分相当困难.下面我们从二重积分的几何意义出发,来介绍计算二重积分的方法,该方法将二重积分的计算问题化为两次定积分的计算问题.直角坐标系下的计算在几何上,当被积函数(),0f x y ≥时,二重积分(,)d Df x y σ⎰⎰的值等于以D 为底,以曲面,()z f x y =为顶的曲顶柱体的体积.下面我们用“切片法”来求曲顶柱体的体积V .设积分区域D 由两条平行直线,x a x b ==及两条连续曲线()()y x y x ϕϕ==12,(见图10—5)所围成,其中()()a b x x ϕϕ<<12,,则D 可表示为()()(){}12,,|D x y a x b φx y φx =≤≤≤≤.图10—5用平行于yOz 坐标面的平面()00x x a x b =≤≤去截曲顶柱体,得一截面,它是一个以区间()()1020x x φφ⎡⎤⎣⎦,为底,以,0()z f x y =为曲边的曲边梯形(见图10—6),所以这截面的面积为()d 2010()0()0(,)φx φx f x y y A x =⎰.图10—6由此,我们可以看到这个截面面积是0x 的函数.一般地,过区间[,]a b 上任一点且平行于yOz 坐标面的平面,与曲顶柱体相交所得截面的面积为()d 21()()(,)φx φx f x y A y x =⎰,其中y 是积分变量,x 在积分时保持不变.因此在区间[,]a b 上,()A x 是x 的函数,应用计算平行截面面积为已知的立体体积的方法,得曲顶柱体的体积为d d d 21()()()(,)b b φx a a φx A x x f x y V y x ⎡⎤=⎢⎥⎣=⎦⎰⎰⎰,即得21()()(,)d (,)d d b x a x Df x y f x y y x ϕϕσ⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰,或记作21()()(,)d d (,)d bx ax Df x y x f x y y ϕϕσ=⎰⎰⎰⎰.上式右端是一个先对y ,后对x 积分的二次积分或累次积分.这里应当注意的是:做第一次积分时,因为是在求x 处的截面积()A x ,所以x 是,a b 之间任何一个固定的值,y 是积分变量;做第二次积分时,是沿着x 轴累加这些薄片的体积()A x dx ⋅,所以x 是积分变量.在上面的讨论中,开始假定了,()0f x y ≥,而事实上,没有这个条件,上面的公式仍然正确.这里把此结论叙述如下:若,()z f x y =在闭区域D 上连续,()():D a x b x y x ϕϕ≤≤≤≤12,,则21()()(,)d d d (,)d bx ax Df x y x y x f x y y ϕϕ=⎰⎰⎰⎰. (10-2-1)类似地,若,()z f x y =在闭区域D 上连续,积分区域D 由两条平行直线y a y b ==,及两条连续曲线()()x y x y ϕϕ==12,(见图10—7)所围成,其中()()c d x x ϕϕ<<12,,则D 可表示为()()(){},|D x y c y d y x y ϕϕ=≤≤≤≤12,.则有21()()(,)d d d (,)d dx cx Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰. (10-2-2)图10—7以后我们称图10-5所示的积分区域为X 型区域,X 型区域D 的特点是:穿过D 内部且平行于y 轴的直线与D 的边界的交点不多于两个.称图10—7所示的积分区域为Y 型区域,Y 型区域D 的特点是:穿过D 内部且平行于x 轴的直线与D 的边界的交点不多于两个.从上述计算公式可以看出将二重积分化为两次定积分,关键是确定积分限,而确定积分限又依赖于区域D 的几何形状.因此,首先必须正确地画出D 的图形,将D 表示为X 型区域或Y 型区域.如果D 不能直接表示成X 型区域或Y 型区域,则应将D 划分成若干个无公共内点的小区域,并使每个小区域能表示成X 型区域或Y 型区域,再利用二重积分对区域具有可加性相加,区域D 上的二重积分就是这些小区域上的二重积分之和(图10—8).图10-8例1 计算二重积分d Dxy σ⎰⎰,其中D 为直线y x =与抛物线2y x =所包围的闭区域.解 画出区域D 的图形,求出y x =与2y x =两条曲线的交点,它们是()0,0及()1,1.区域D (图10—9)可表示为:20.x x y x ≤≤≤≤1,图10—9因此由公式(10-2-1)得()221120d d d 2x x xxDx xy x x ydy y x σ==⎰⎰⎰⎰⎰d 135011()224x x x -==⎰.本题也可以化为先对x ,后对y 的积分,这时区域D 可表为:1,0y y y x ≤≤≤≤.由公式(10-2-2)得10d d d y yDxy y y x x σ=⎰⎰⎰⎰.积分后与上面结果相同.例2 计算二重积分221d Dy x y σ+-⎰⎰,其中D 是由直线,1y x x ==-和1y =所围成的闭区域.解 画出积分区域D ,易知D :11,1x x y -≤≤≤≤ (图10-10),若利用公式(10-2-1),得图10-1011222211d (1d )d xDy x yy x y y x σ-+-=+-⎰⎰⎰⎰ ()d 1312221113xx y x -⎡=⎤-+-⎢⎥⎣⎦⎰ ()d d 113310121(1)33x x x -=--=--⎰⎰x 12=.若利用公式(10-2-2),就有()12222111d 1d d yDy x y y x y x y σ--+-=+-⎰⎰⎰⎰,也可得同样的结果.例3 计算二重积分22d Dx y σ⎰⎰,其中D 是直线2,y y x ==和双曲线1x y =所围之闭区域. 解 求得三线的三个交点分别是1,(1,1)2,2⎛⎫ ⎪⎝⎭及2,2().如果先对y 积分,那么当121x ≤≤时,y 的下限是双曲线1y x=,而当12x ≤≤时,y 的下限是直线y x =,因此需要用直线x =1把区域D 分为1D 和2D 两部分(图10—11).1211, 21:D x y x≤≤≤≤; 22, 2:1D x x y ≤≤≤≤.图10—11于是12222221222112222212d d d d d d d x x D D D x x x x x x y x y y y y y y σσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ d d 2222121112x xx x x x y y ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰d d 2212311222x x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰1243231124626x x x x ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦812719264==. 如果先对x 积分,那么:12, 1 D y x y y≤≤≤≤,于是223221222111d d d d 3yy y Dyx x x y x y y y y σ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰d 22254111136312y y y y y ⎡⎤⎡⎤=-=+⎢⎥⎢⎥⎣⎦⎣⎦⎰2764=. 由此可见,对于这种区域D ,如果先对y 积分,就需要把区域D 分成几个区域来计算.这比先对x 积分繁琐多了.所以,把重积分化为累次积分时,需要根据区域D 和被积函数的特点,选择适当的次序进行积分.例4 设,()f x y 连续,求证d d d d (,)(,)bx b baaayx f x y y y f x y x =⎰⎰⎰⎰.证 上式左端可表为d d d (,)(,)bxaaDx f x y y f x y σ=⎰⎰⎰⎰,其中,:D a x b a y x ≤≤≤≤ (图10—12)区域D 也可表为:,a y b y x b ≤≤≤≤,图10—12于是改变积分次序,可得(,)d d (,)d b bayDf x y y f x y xσ=⎰⎰⎰⎰由此可得所要证明的等式.例5 计算二重积分d sin D x σx ⎰⎰,其中D 是直线y x =与抛物线2y x =所围成的区域.解 把区域D 表示为x 型区域,即(){}2D =x ,y |0x 1,x y x ≤≤≤≤.于是d d d d 221100sin sin sin xx x x Dx x x σx y y x x x x ⎛⎫== ⎪⎝⎭⎰⎰⎰⎰⎰ ()sin d 11x x x =-⎰()1cos cos sin x x x x =-+-1sin10.1585=-≈注:如果化为y 型区域即先对x 积分,则有d d d 10sin sin y y Dx x σy x x x =⎰⎰⎰⎰. 由于sin xx的原函数不能由初等函数表示,往下计算就困难了,这也说明计算二重积分时,除了要注意积分区域D 的特点(区分是x 型区域,还是y 型区域)外,还应注意被积函数的特点,并适当选择积分次序.二重积分的换元法与定积分一样,二重积分也可用换元法求其值,但比定积分复杂得多.我们知道,对定积分()d baf x x ⎰作变量替换()x φt =时,要把()f x 变成()()f φt ,d x 变成d ()φt t ',积分限,a b 也要变成对应t 的值.同样,对二重积分(),d Df x y σ⎰⎰作变量替换()(),,,,x x u v y y u v ⎧=⎪⎨=⎪⎩时,既要把(),f x y 变成()()(),,,f x u v y u v ,还要把x Oy 面上的积分区域D 变成uOv 面上的区域uv D ,并把D 中的面积元素d σ变成uv D 中的面积元素d *σ.其中最常用的是极坐标系的情形.2.2.1 极坐标系的情形下面我们讨论利用极坐标变换,得出在极坐标系下二重积分的计算方法.把极点放在直角坐标系的原点,极轴与x 轴重合,那么点P 的极坐标(),P r θ与该点的直角坐标(),P x y 有如下互换公式:πcos ,sin ;0,02x r θy r θr θ==≤<+∞≤≤; 22,arctan;,yr x y θx y x=+=-∞<<+∞. 我们知道,有些曲线方程在极坐标系下比较简单,因此,有些二重积分(),d Df x y σ⎰⎰用极坐标代换后,计算起来比较方便,这里假设(),z f x y =在区域D 上连续.在直角坐标系中,我们是以平行于x 轴和y 轴的两族直线分割区域D 为一系列小矩形,从而得到面积元素d d d σx y =.在极坐标系中,与此类似,我们用“常数r =”的一族同心圆,以及“常数θ=”的一族过极点的射线,将区域D 分成n 个小区域(),1,2,,ij σi j n ∆=,如图10—13所示.图10—13小区域面积()2212ij i i j i j σr r θr θ⎡⎤∆=+∆∆-∆⎣⎦212i i j i j r r θr θ=∆∆+∆∆.记 ()()()22,,1,2,,ij i jρr θi j n ∆=∆+∆=,则有()ij i i j ij σr r θορ∆=∆∆+∆,故有d d d σr r θ=.则()()d d d ,cos ,sin DDf x y σf r θr θr r θ=⎰⎰⎰⎰.这就是直角坐标二重积分变换到极坐标二重积分的公式.在作极坐标变换时,只要将被积函数中的,x y 分别换成cos ,sin r θr θ,并把直角坐标的面积元素d d d σx y =换成极坐标的面积元素d d r r θ即可.但必须指出的是:区域D 必须用极坐标系表示.在极坐标系下的二重积分,同样也可以化为二次积分计算.下面分三种情况讨论: (1) 极点O 在区域D 外部,如图10—14所示.图10—14设区域D 在两条射线,θαθβ==之间,两射线和区域边界的交点分别为,A B ,将区域D 的边界分为两部分,其方程分别为()()12,r r θr r θ==且均为[],αβ上的连续函数.此时()()(){}12,|,D r θr θr r θαθβ=≤≤≤≤.于是()()()()d d d d 21cos ,sin cos ,sin βr θαr θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰(2) 极点O 在区域D 内部,如图10—15所示.若区域D 的边界曲线方程为()r r θ=,这时积分区域D 为()(){}π,|0,02D r θr r θθ=≤≤≤≤,且()r θ在π0,2⎡⎤⎣⎦上连续.图10—15于是()()()πd d d d 20cos ,sin cos ,sin r θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰.(3) 极点O 在区域D 的边界上,此时,积分区域D 如图10—16所示.图10—16()(){},|,0D r θαθβr r θ=≤≤≤≤,且()r θ在π0,2⎡⎤⎣⎦上连续,则有()()()d d d d 0cos ,sin cos ,sin βr θαDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰.在计算二重积分时,是否采用极坐标变换,应根据积分区域D 与被积函数的形式来决定.一般来说,当积分区域为圆域或部分圆域,及被积函数可表示为()22f x y +或y f x ⎛⎫⎪⎝⎭等形式时,常采用极坐标变换,简化二重积分的计算.例6 计算二重积分22221d d 1Dx y I x y x y --=++⎰⎰,其中()(){}222,|01D x y x y a a =+≤<<.解 在极坐标系中积分区域D 为(){}π,|0,02D r θr a θ=≤≤≤≤,则有2222π2220011d d d d 11Dx y r I x y r r x y r θ---==+++⎰⎰2222211πd πd 11aa t r t r r r t r t--=+-=⎰⎰令()()22220πarcsin 1πarcsin 11a t ta a =+-=+--.例7 计算二重积分2d Dxy σ⎰⎰,其中D 是单位圆在第I 象限的部分.解 采用极坐标系. D 可表示为π, 1002θr ≤≤≤≤(图10-17),图10-17于是有π12222d d cos sin d Dxy r r r r σθθθ=⋅⋅⎰⎰⎰⎰ πd d 12421cos sin 15θθθr r ==⎰⎰.例8 计算二重积分Dx σ⎰⎰2d ,其中D 是二圆221x y +=和224x y +=之间的环形闭区域.解 区域D :2,120θπr ≤≤≤≤,如图10—18所示.图10—18于是2π22π22230111cos215d cos d d d π24Dx r r r r r θσθθθ+=⋅==⎰⎰⎰⎰⎰⎰2d . 2.2.2. 直角坐标系的情形 我们先来考虑面积元素的变化情况.设函数组,,,()()x x u v y y u v ==为单值函数,在uv D 上具有一阶连续偏导数,且其雅可比行列式(,)0(,)J x y u v ∂≠∂=,则由反函数存在定理,一定存在着D 上的单值连续反函数,,,()()u u x y v v x y ==.这时uv D 与D 之间建立了一一对应关系,uOv 面上平行于坐标轴的直线在映射之下成为x Oy 面上的曲线,,,00()()u x y u v x y v ==.我们用uOv 面上平行于坐标轴的直线,1,,,1,,, (2;2)i j u u v v i n j m ====将区域uv D 分割成若干个小矩形,则映射将uOv 面上的直线网变成x Oy 面上的曲线网(图10—19).图10—19在uv D 中任取一个典型的小区域Δuv D (面积记为*Δσ)及其在D 中对应的小区域ΔD (面积记为Δσ),如图10—20所示.图10—20设ΔD 的四条边界线的交点为1211322,,,,,000000()()()P x y P x x y y P x x y y +∆+∆+∆+∆和ΔΔ433,00()P x x y y ++.当ΔΔ,u v 很小时,()ΔΔ123,,,i i x y i =也很小,ΔD 的面积可用12P P 与14P P 构成的平行四边形面积近似.即Δ1214P P P P σ⨯≈.而()()ΔΔ1112x y P P =+i j()()()ΔΔ[][]00000000,,,(,x u u v x u v y u u v y u v =+-++-i j()()ΔΔ[][]0000,,u u x u v u y u v u ≈'+'i j .同理()()ΔΔ[][]001400,,v v P P x u v v y u v v ≈'+'i j .从而得ΔΔΔΔΔ1214y xu u u u P P P σP y x v v vv∂∂∂∂⨯=∂∂∂=∂的绝对值 *(,)(,)(,)(,)x y x y Δu Δv u v u v Δσ∂∂==∂∂.因此,二重积分作变量替换,,,()()x x u v y y u v ==后,面积元素d σ与d *σ的关系为*(,),(,)x y d d u v σσ∂=∂ 或(,)(,)x y dxdy dudv u v ∂=∂. 由此得如下结论:定理1 若,()f x y 在x Oy 平面上的闭区域D 上连续,变换:,,,()()T x x u v y y u v ==,将uOv 平面上的闭区域uv D 变成x Oy 平面上的D ,且满足:(1),,,()()x u v y u v 在uv D 上具有一阶连续偏导数, (2)在uv D 上雅可比式(0(,),)x y J u v ∂∂=≠;(3)变换:uv T D D →是一对一的,则有[](,)d d (,),(,)d d .uvDD f x y x y f x u v y u v J u v =⎰⎰⎰⎰例9 计算二重积分ed d y x y xDx y -+⎰⎰,其中D 是由x 轴,y 轴和直线2x y +=所围成的闭区域. 解 令,u y x v y x =-=+,则,22x y v u v u-==+.在此变换下,x Oy 面上闭区域D 变为uOv 面上的对应区域D '(图10—21).图10—21雅可比式为11(,)122(,)21122x y u v J -∂==-∂=,则得1ed de d d 2y x u y xvDD x y u v -+'=-⎰⎰⎰⎰-1d e d (e e)d 22001122uv v v v u v v -==-⎰⎰⎰e e 1=--.例10 设D 为x Oy 平面内由以下四条抛物线所围成的区域:222,,x ay x by y px ===,2y qx =,其中<<, <<00a b p q ,求D 的面积.解 由D 的构造特点,引入两族抛物线22,y ux x vy ==,则由u 从p 变到q ,v 从a 变到b 时,这两族抛物线交织成区域D '(图10—22).图10—22雅可比行列式为(,)1(,)(,)(,)J x y u v u v x y ∂=∂∂∂=222211322y yx xx x y y==---,则所求面积()()11d d d d 33D D S x y u v b a q p '===--⎰⎰⎰⎰.习题10—21.画出积分区域,把(,)d Df x y σ⎰⎰化为二次积分:(1)()1,1,{,0}D x y x y y x y =+≤-≤≥|; (2)()22{,}D x y y x x y =≥-≥|,. 2.改变二次积分的积分次序:(1)20d d 22(,)yy y f x y x ⎰⎰;(2)e 1d d ln 0(,)xx f x y y ⎰⎰; (3)()220,xxdx f x y dy ⎰⎰;(4)1-1d (,)d x f x y y ⎰.3.设(,)f x y 连续,且(,)(,)d Df x y xy f x y σ=+⎰⎰,其中D 是由直线0,1y x ==及曲线2y x =所围成的区域,求(,).f x y4.计算下列二重积分:(1)()22Dx y d σ+⎰⎰,(){},|1,1D x y x y =≤≤;(2)d sin D x σx ⎰⎰,其中D 是直线y x =与抛物线y x π=所围成的区域;(3)Dσ,(){}22,|D x y x y x =+≤;(4)22-y e d d ⎰⎰Dx x y ,D 是顶点分别为()0,0O ,(),11A ,()0,1B 的三角形闭区域. 5.求由坐标平面及2,3,4x y x y z ==++=所围的角柱体的体积.6.计算由四个平面0,0,1,1x y x y ====所围的柱体被平面0z =及236x y z ++=截得的立体的体积.7.在极坐标系下计算二重积分:(1)d Dx y ⎰⎰, ()ππ22224{,|}D x y x y =≤+≤;(2)()d d Dx y x y +⎰⎰, (){},|22D x y xy x y =+≤+;(3)d d Dxy x y ⎰⎰,其中D 为圆域222x y a +≤;(4)22ln(1)d d Dx y x y ++⎰⎰,其中D 是由圆周221x y +=及坐标轴所围成的在第一象限内的闭区域.8. 将下列积分化为极坐标形式:(1) 2d d 2200)x x y y +⎰a;(2) d 0xx y ⎰⎰a .9.求球体2222x y z R ++≤被圆柱面222x y Rx +=所割下部分的体积. 10.作适当坐标变换,计算下列二重积分:(1)22d d D x x y y ⎰⎰,由12,,xy x y x ===所围成的平面闭区域;(2)d d y x yDex y +⎰⎰,(){,|0,0}1,D x y x y x y =+≤≥≥;(3)d Dx y , 其中D 是椭圆22221y x a b+=所围成的平面闭区域;(4)()()sin d d Dx y x y x y +-⎰⎰, (){,|0,0}D x y x y x y ππ=≤+≤≤-≤.11.设闭区域D 由直线100,,x y x y +===所围成,求证:1cos d d sin1.2Dx y x y x y +⎛⎫=⎪-⎝⎭⎰⎰ 12.求由下列曲线所围成的闭区域的面积:(1) 曲线334,8,5,15xy xy xy xy ====所围成的第一象限的平面闭区域; (2) 曲线,,,x y a x y b y x y x αβ+=+===所围的闭区域0,0()a b αβ<<<<.第3节 三重积分三重积分的概念三重积分是二重积分的推广,它在物理和力学中同样有着重要的应用.在引入二重积分概念时,我们曾考虑过平面薄片的质量,类似地,现在我们考虑求解空间物体的质量问题.设一物体占有空间区域Ω,在Ω中每一点,,()x y z 处的体密度为,,()ρx y z ,其中,,()ρx y z 是Ω上的正值连续函数.试求该物体的质量.先将空间区域Ω任意分割成n 个小区域12, ,, n Δv Δv Δv(同时也用i Δv 表示第i 个小区域的体积).在每个小区域i Δv 上任取一点,,()i i i ξηζ,由于,,()ρx y z 是连续函数,当区域i Δv 充分小时,密度可以近似看成不变的,且等于在点,,()i i i ξηζ处的密度,因此每一小块i Δv 的质量近似等于,,()i i i i ρξηζΔv ,物体的质量就近似等于1(,,)niiii ρξηζΔv=∑i.令小区域的个数n 无限增加,而且每个小区域i Δv 无限地收缩为一点,即小区域的最大直径()max 10i i nλd Δv ≤≤=→时,取极限即得该物体的质量1lim (,,)ni i i λi ρξηζΔv M →==∑i .由二重积分的定义可类似给出三重积分的定义:定义1 设Ω是空间的有界闭区域,,,()f x y z 是Ω上的有界函数,任意将Ω分成n 个小区域12,,,n Δv Δv Δv ,同时用i Δv 表示该小区域的体积,记i Δv 的直径为()i d Δv ,并令()max 1i i nλd Δv ≤≤=,在i Δv 上任取一点,,()i i i ξηζ,1,2,,()i n =,作乘积,,()i i i i f ξηζΔv ,把这些乘积加起来得和式1(,,)n i i i i f ξηζΔv =∑i ,若极限01lim (,,)ni i i λi f ξηζΔv →=∑i 存在(它不依赖于区域Ω的分法及点(,,)i i i ξηζ的取法),则称这个极限值为函数,,()f x y z 在空间区域Ω上的三重积分,记作(),,f x y z dv Ω⎰⎰⎰,即 ()01,,lim (,,)ni i i i i f x y z dv f v λξηζ→=Ω=∆∑⎰⎰⎰,其中,,()f x y z 叫做被积函数,Ω叫做积分区域,d v 叫做体积元素.在直角坐标系中,若对区域Ω用平行于三个坐标面的平面来分割,于是把区域分成一些小长方体.和二重积分完全类似,此时三重积分可用符号(),,d d d f x y z x y z Ω⎰⎰⎰来表示,即在直角坐标系中体积元素d v 可记为d d d x y z .有了三重积分的定义,物体的质量就可用密度函数,,()ρx y z 在区域Ω上的三重积分表示,即(),,M x y z dv Ωρ=⎰⎰⎰,如果在区域Ω上,,1()f x y z =,并且Ω的体积记作V ,那么由三重积分定义可知1d v dv V ΩΩ==⎰⎰⎰⎰⎰⎰.这就是说,三重积分dv Ω⎰⎰⎰在数值上等于区域Ω的体积.三重积分的存在性和基本性质,与二重积分相类似,此处不再重述. 三重积分的计算为简单起见,在直角坐标系下,我们采用微元分析法来给出计算三重积分的公式. 三重积分(,,)d f x y z v Ω⎰⎰⎰表示占空间区域Ω的物体的质量.设Ω是柱形区域,其上、下分别由连续曲面()()z z x y z z x y ==12,,,所围成,它们在x Oy 平面上的投影是有界闭区域D ;Ω的侧面由柱面所围成,其母线平行于z 轴,准线是D 的边界线.这时,区域Ω可表示为(){}12,,, ,,,|()()()Ωx y z z x y z z x y x y D =≤≤∈先在区域D 内点,()x y 处取一面积微元d d d σx y =,对应地有Ω中的一个小条,再用与x Oy 面平行的平面去截此小条,得到小薄片(图10—23).图10—23于是以d σ为底,以dz 为高的小薄片的质量为,,d d d ()f x y z x y z .把这些小薄片沿z 轴方向积分,得小条的质量为d d d 21(,)(,)(,,)z x y z x y f x y z z x y ⎡⎤⎢⎥⎣⎦⎰. 然后,再在区域D 上积分,就得到物体的质量21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰. 也就是说,得到了三重积分的计算公式(),,f x y z dv Ω⎰⎰⎰=21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰21(,)(,)d d (,,)d z x y z x y Dx y f x y z z =⎰⎰⎰.(10-3-1)例1 计算三重积分d d d x x y z Ω⎰⎰⎰,其中Ω是三个坐标面与平面1x y z ++=所围成的区域(图10—24).图10—24解 积分区域Ω在x Oy 平面的投影区域D 是由坐标轴与直线1x y +=围成的区域:10x ≤≤,10y x ≤≤-,所以111100d d d d d d d d d x yxx yDx x y z x y x z x y x z -----Ω==⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 110(1)xx x x y y --=-⎰⎰d 210(1)1224x x x -==⎰. 例2 计算三重积分d z v Ω⎰⎰⎰,其中2222:,,, 000Ωx y z x y z R ≥≥≥++≤(见图10—25).图10—25解 区域Ω在x Oy 平面上的投影区域222:,,00D x y x y R ≥≥+≤.对于D 中任意一点,()x y ,相应地竖坐标从0z =变到222R x z y --=.因此,由公式(10-3-1),得()22222201d d d d d d 2R x y DDz v x y z R x y x y --Ω==--⎰⎰⎰⎰⎰⎰⎰π001d d 2222()R θR ρρρ-=⎰⎰ 221π240224RρρR ⎛⎫⋅⋅- ⎪ ⎪⎭=⎝π416R =. 三重积分化为累次积分时,除上面所说的方法外,还可以用先求二重积分再求定积分的方法计算.若积分区域Ω如图10-26所示,它在z 轴的投影区间为[,]A B ,对于区间内的任意一点z ,过z 作平行于x Oy 面的平面,该平面与区域Ω相交为一平面区域,记作D (z ).这时三重积分可以化为先对区域()D z 求二重积分,再对z 在[]A B ,上求定积分,得()(,,)d d (,,)d d BAD z f x y z v z f x y z x y Ω=⎰⎰⎰⎰⎰⎰. (10-3-2)图10—26我们可利用公式(10-3-2)重新计算例2中的积分.区域Ω在z 轴上的投影区间为[,]0R ,对于该区间中任意一点z ,相应地有一平面区域():,00D z x y ≥≥与2222R x y z +≤-与之对应.由公式(10-3-2),得()zd d d d RD z v z z x y Ω=⎰⎰⎰⎰⎰⎰.求内层积分时,z 可以看作常数:并且()2222:R D z x y z +≤-是14个圆,其面积为()π224R z =-,所以 ()01πzd π416Rv =z R z z R Ω⋅-=⎰⎰⎰⎰224d . 例3 计算三重积分2d z v Ω⎰⎰⎰,其中:1222222y x z a b Ωc +≤+. 解 我们利用公式(10-3-2)将三重积分化为累次积分.区域Ω在z 轴上的投影区间为[,]c c -,对于区间内任意一点z ,相应地有一平面区域()D z :122222222(1)(1)y x z z a b c c --≤+与之相应,该区域是一椭圆(图10—27),其面积为π221z c ab ⎛⎫- ⎪⎝⎭.所以22222()d d d d π1d ccc c D z z z v =z z x y abz z c --Ω⎛⎫=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰π3415abc =π3415abc =.图10—27三重积分的换元法对于三重积分(,,)f x y z dv Ω⎰⎰⎰作变量替换:(,,)(,,)(,,)x x r s t y y r s t z z r s t =⎧⎪=⎨⎪=⎩它给出了Orst 空间到Ox yz 空间的一个映射,若()()(),,,,,,,,x r s t y r s t z r s t 有连续的一阶偏导数,且(,,)(,,)0x y z r s t ∂≠∂,则建立了Orst 空间中区域*Ω和Ox yz 空间中相应区域Ω的一一对应,与二重积分换元法类似,我们有d d d d (,,)(,,)x y z r s t v r s t ∂∂=.于是,有换元公式[]*(,,)(,,)(,,),(,,),(,,)d d d (,,)x y z f x y z dv f x r s t y r s t z r s t r s t r s t ΩΩ∂=⋅∂⎰⎰⎰⎰⎰⎰.作为变量替换的实例,我们给出应用最为广泛的两种变换:柱面坐标变换及球面坐标变换. 3.3.1 柱面坐标变换三重积分在柱面坐标系中的计算法如下: 变换cos ,sin ,x r θy r θz z =⎧⎪=⎨⎪=⎩称为柱面坐标变换,空间点(),,M x y z 与,,()r θz 建立了一一对应关系,把,,()r θz 称为点(),,M x y z 的柱面坐标.不难看出,柱面坐标实际是极坐标的推广.这里,r θ为点M 在x Oy 面上的投影P 的极坐标.π<,2,<<00r θz ≤+∞≤≤-∞+∞(图10—28).图10—28柱面坐标系的三组坐标面为 (1)常数r =,以z 为轴的圆柱面; (2)常数θ=,过z 轴的半平面; (3)常数z =,平行于x Oy 面的平面.由于cos sin 0(,,)sin cos 0(,,)001θr θx y z θr r r θθz -∂==∂,则在柱面坐标变换下,体积元素之间的关系式为:d d d d d d x y z r r θz =.于是,柱面坐标变换下三重积分换元公式为:(,,)d d d (cos ,sin ,)d d d f x y z x y z =f r r z r r z θθθ'ΩΩ⎰⎰⎰⎰⎰⎰. (10-3-3)至于变换为柱面坐标后的三重积分计算,则可化为三次积分来进行.通常把积分区域Ω向x Oy 面投影得投影区域D ,以确定,r θ的取值范围,z 的范围确定同直角坐标系情形.例4 计算三重积分22d d d z x y x y z Ω+⎰⎰⎰,其中Ω是由锥面22z x y =+1z =所围成的区域.解 在柱面坐标系下,积分区域Ω表示为π1,1,200r z r θ≤≤≤≤≤≤ (图10—29).图10—29所以有2π11222d d d d d d rz x y x y z r z r z θΩ+=⋅⎰⎰⎰⎰⎰⎰ d ππ12212202(1)15r r r =-=⎰. 例5 计算三重积分()22d d d x y x y z Ω+⎰⎰⎰,其中Ω是由曲线22,0y z x ==绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围之区域.解 曲线2=2,0y z x =绕z 旋转,所得旋转面方程为222x y z +=.设由旋转曲面与平面2z =所围成的区域为1Ω,该区域在x Oy 平面上的投影为1D ,(){}4221|D x ,y x +y =≤.由旋转曲面与8z =所围成的区域为2Ω,2Ω在x Oy 平面上的投影为2D ,()21622{|}D x ,y x +y =≤.则有21ΩΩΩ=,如图10—30所示.图10—30()21288223322d d d d d d d d d r D D xy x y z r r z r r z θθΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2d d d 8d222243300026ππθr r θr r ⎛⎫=+- ⎪⎝⎭⎰⎰⎰⎰r π336=. 3.3.2 球面坐标变换三重积分在球面坐标系中的计算法如下: 变换sin cos ,sin sin ,cos x r φθy r φθz r φ=⎧⎪=⎨⎪=⎩称为球面坐标变换,空间点(),,M x y z 与,,()r φθ建立了一一对应关系,把,,()r φθ称为点(),,M x y z 的球面坐标(图10-31),其中ππ<,,2000r φθ≤+∞≤≤≤≤.图10-31球面坐标系的三组坐标面为: (1)常数r =,以原点为中心的球面;(2)常数φ=,以原点为顶点,z 轴为轴,半顶角为φ的圆锥面; (3)常数θ=,过z 轴的半平面. 由于球面坐标变换的雅可比行列式为sin cos cos cos sin sin (,,)sin sin cos sin sin cos (,,)cos sin 0φθr φθr φθx y z φθr φθr φθr φθφr φ-∂=∂-2sin r φ=,则在球面坐标变换下,体积元素之间的关系式为:2d d d sin d d d x y z r φr θφ=.于是,球面坐标变换下三重积分的换元公式为2(,,)d d d (sin cos ,sin sin ,cos )sin d d d f x y z x y z =f r r r r r ϕθϕθϕϕϕθ'ΩΩ⋅⎰⎰⎰⎰⎰⎰. (10-3-4)例6 计算三重积分222()d d d xy z x y z Ω++⎰⎰⎰,其中Ω表示圆锥面222x y z +=与球面2222x y z R z ++=所围的较大部分立体.解 在球面坐标变换下,球面方程变形为2cos r R φ=,锥面为π4φ=(图10—32).这时积分区域Ω表示为π2, , 2cos 4000θπφr R φ≤≤≤≤≤≤,图10—32所以22222()d d d sin d d d xy z x y z =r r r ϕϕθ'ΩΩ++⋅⎰⎰⎰⎰⎰⎰ππd d d 22cos 44sin R φθφr φr =⎰⎰⎰ππd π52cos 0540228sin ()515R φφr φR ==⎰. 例7 计算三重积分22(2)d d d y x z x y z Ω+⎰⎰⎰,其中Ω是由曲面2222x y z a ++=,22224x y z a ++=22x y z +=所围成的区域.解 积分区域用球面坐标系表示显然容易,但球面坐标变换应为sin cos sin sin cos ,,x r φθz r φθy r φ===,这时2d sin d d d v r φr φθ=,积分区域Ω表示为ππ224,00,a r a φθ≤≤≤≤≤≤ (图10—33).图10—33所以π2π2222400(2)d d d d d (2cos sin )sin d a a y x z x y z =r r r r θϕϕϕϕΩ+++⎰⎰⎰⎰⎰⎰ππ41515816a ⎛⎫ ⎪⎝⎭=+.值得注意的是,三重积分的计算是选择直角坐标,还是柱面坐标或球面坐标转化成三次积分,通常要综合考虑积分域和被积函数的特点.一般说来,积分域Ω的边界面中有柱面或圆锥面时,常采用柱面坐标系;有球面或圆锥面时,常采用球面坐标系.另外,与二重积分类似,三重积分也可利用在对称区域上被积函数关于变量成奇偶函数以简化计算.习题10-31.化三重积分(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是.(1) 由双曲抛物面x y z =及平面100x y z +-==,所围成的闭区域; (2) 由曲面22z x y =+及平面1z =所围成的闭区域. 2.在直角坐标系下计算三重积分:(1)()d d d 2+xy z x y z Ω⎰⎰⎰,其中[][][]-2,5-3,30,1Ω=⨯⨯;(2)23d d d xy z x y z Ω⎰⎰⎰,其中Ω是由曲面z x y =与平面1y x x ==,,和0z =所围成的闭区域;(3)()3d d d 1+++x y zx y z Ω⎰⎰⎰,其中Ω为平面1000x y z x y z ===++=,,,所围的四面体;。
习题 9.41. 求下列平面闭区域D 的面积.(1) D 由曲线e ,e x x y y -==及1x =围成;(2) D 由曲线21,1y x y x =+=--围成;(3) D 由双纽线22222()4()x y x y +=-围成;(4) {(cos ,sin )|24sin }D r r r θθθ=≤≤;(5) 1(cos ,sin )1cos 2D r r r θθθ⎧⎫=≤≤+⎨⎬⎩⎭; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7) D 由椭圆22(234)(567)9x y x y +++++=围成;(8) D 是由曲线3y x =,34y x =,3x y =,34x y =所围成的位于第一象限部分;2. 利用二重积分计算下列各题中立体Ω的体积.(1) Ω为第一卦限中由圆柱面224y z +=与平面2,0,0x y x z ===所围成;(2) Ω由平面0,0,y z y x ===及6236x y z ++=围成;(3) 22{(,,)|1x y z x y z Ω=+≤≤+;(4) 222{(,,)|1,11}x y z x y z z Ω=+≤+-≤≤;(5) Ω由平面0,0,0,1x y z x y ===+=及抛物面226x y z +=-围成.3. 设平面薄片所占的闭区域是由直线2,x y y x +==和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.4. 在一半径为R 的球体内,以某条直径为中心轴用半径为r 的圆柱形钻孔机打一个孔(r R <),求剩余部分的体积. 若圆柱形孔的侧面高为h ,证明所求体积只与h 有关,而与r 和R 无关.5. 利用三重积分求所给立体Ω的体积.(1) Ω是由柱面2x y =和平面0z =及1x z +=所围成的立体;(2) Ω是由抛物面22z x y =+和所2218z x y =--围成的立体;(3) Ω为圆柱体cos r a θ≤内被球心在原点、半径为a 的球所割下的部分;(4) Ω是由单叶双曲面2222x y z R +-=和平面0,z z H ==围成的立体;(5) 1Ω是Oxyz 坐标系中体积为5的立体,Ω为1Ω在变换448u x y z =++,274v x y z =++,43w x y z =++下的像.6. 已知物体Ω的底面是xOy 平面上的圆域222{(,)|}x y x y R +≤,当用垂直于x 轴的平面截Ω均得到正三角形, Ω的体密度函数为(,,)1x x y z Rρ=+,试求其质量. 7. 计算下列曲面的面积.(1) 平面63212x y z ++=位于第一卦限部分的曲面;(2) 正弦曲线的一拱sin y x =(0πx ≤≤)绕x 轴旋转一周而成的曲面;(3) 球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面;(4) 曲面222z x y =+被柱面22222()x y x y +=-所截下部分的曲面;(5) 抛物面22z y x =-夹在圆柱面221x y +=和224x y +=之间部分的曲面;(6) 球面22223x y z a ++=(0z >)和抛物面222x y az +=(0a >)所围成立体的表面;(7) 圆柱面229x y +=,平面4312y z +=和4312y z -=所围成立体的表面;(8) 两个底面半径都为R , 轴相互正交的圆柱所围立体的表面.8. 求占有下列区域D , 面密度为(,)x y μ的平面薄片的质量与质心:(1) D 是以(0,0),(2,1),(0,3)为顶点的三角形闭区域, (,)x y x y μ=+;(2) D 是第一象限中由抛物线2y x =与直线1y =围成的闭区域, (,)x y xy μ=;(3) D 是由心脏线1sin r θ=+所围成的闭区域, (,)2x y μ=;(4) 22{(,)|(1)1}D x y x y =+-≤, (,)|1|x y y y μ=+-.9. 计算下列立体Ω的体积和形心:(1) 2222{(,,)|3633}x y z x y z x y Ω=+≤≤--;(2) 2222(,,)1x y x y z z a b ⎧⎫⎪⎪Ω=+≤≤⎨⎬⎪⎪⎩⎭; (3) Ω位于锥面3πϕ=上方,球面4cos ρϕ=下方.10. 若半径为R 的半球体上任一点密度与该点到底面之距离成正比(比例系数为k ), 求其质量与质心.11. 求下列平面薄片或物体对指定轴的转动惯量.(1) 均匀薄片{(cos ,sin )|2sin 4sin }D r r r θθθθ=≤≤(面密度为1)对极轴;(2) 底长为a ,高为h 的等腰三角形均匀薄片(面密度为1)对其高;(3) 质量为M , 半径为R 的非均匀球体(其上任一点的密度与球心到该点的距离成正比)对其直径;(4) 密度为1的均匀物体2222x y z ++≤,222x y z +≥对Oz 轴.12. 设物体Ω占有的区域为222{(,,)|,||}x y z x y R z H +≤≤,其密度为常数. 已知Ω关于x 轴及z 轴的转动惯量相等. 证明:2H R =.13. 求下列密度为1的均匀物体对指定质点的引力(引力常数为k ).(1) 高为h ,半顶角为α的圆锥体对位于其顶点的单位质量质点;(2) 柱体222x y R +≤(0z h ≤≤)对位于点0(0,0,)()M a a h >处的单位质量质点;(3) 半径为R 的球体对球内的单位质量质点P .。
重积分的定义与性质重积分是高等数学中的一个重要概念,是对多元函数在空间内的积分运算。
在实际应用中,经常需要对物理量、几何量等进行多个变量的积分运算,这时就需要用到重积分。
本文将对重积分的定义和性质进行详细阐述。
一、连续函数的重积分对于连续函数$f(x,y)$,其中$(x,y)$为定义域内的任意一个点,其重积分定义如下:$$\iint_D f(x,y) dxdy$$在上式中,$D$为定义域。
这个式子的含义是在二维平面上对函数$f(x,y)$从定义域$D$内的每个点$(x,y)$到坐标轴正方向的区域进行积分。
其中,$dxdy$表示微元,用来表示积分的范围。
重积分也可以用极坐标系进行表示:$$\iint_D f(x,y) dxdy=\iint_D f(r\cos\theta,r\sin\theta) rdrd\theta$$这里,$r$和$\theta$分别表示极坐标系下的径向坐标和角度坐标。
二、重积分的性质对于重积分,我们要了解一些基本的性质。
1. 线性性:若$f(x,y)$和$g(x,y)$是$D$上的可积函数,$k_1$和$k_2$为常数,则:$$\iint_D (k_1f(x,y)+k_2g(x,y)) dxdy=k_1\iint_D f(x,y)dxdy+k_2\iint_D g(x,y) dxdy$$也就是说,重积分运算具有线性性。
2. 绝对可积性:如果$\iint_D |f(x,y)| dxdy$有定义,则称$f(x,y)$是$D$上的绝对可积函数。
3. 积分中值定理:如果$f(x,y)$在$D$上连续,则存在一点$(\xi,\eta)\in D$,使得:$$\iint_D f(x,y) dxdy=f(\xi,\eta) Area(D)$$这个公式的含义是,若在平面上将定义域$D$分成许多小的矩形,则在每个小矩形上,函数$f(x,y)$的大小是近似相等的。
因此,整个定义域上的积分值与函数的平均值在某个点上相等。
高等数学中的多重积分应用引言:数学作为一门基础学科,广泛应用于各个领域。
在高等数学中,多重积分是一个重要的概念和工具,它在实际问题的建模和求解中发挥着重要作用。
本文将从多重积分在几何学、物理学和经济学中的应用三个方面进行论述,以展示多重积分的重要性和广泛性。
一、多重积分在几何学中的应用几何学是研究空间形状和位置关系的学科,而多重积分在几何学中的应用主要涉及到空间体积和质心的计算。
以三维空间为例,我们可以通过多重积分来计算任意形状的立体体积。
对于简单形状如球体、立方体等,可以直接利用几何关系进行计算;而对于复杂形状,可以通过将其分解为无穷小的体积元素,再进行积分求和来计算体积。
此外,多重积分还可以用于计算曲面的面积以及空间曲线的弧长。
二、多重积分在物理学中的应用物理学是研究自然界各种现象的学科,而多重积分在物理学中的应用主要涉及到质量、质心和力学矩的计算。
以质量为例,我们可以通过多重积分来计算物体的质量分布情况。
对于连续分布的物体,可以将其分解为无穷小的质量元素,再进行积分求和来计算总质量。
而对于质心的计算,可以通过多重积分来计算物体在各个方向上的质量分布情况,从而确定质心的位置。
此外,多重积分还可以用于计算物体的力矩,从而研究物体的平衡情况以及转动运动。
三、多重积分在经济学中的应用经济学是研究人类社会中资源配置和经济行为的学科,而多重积分在经济学中的应用主要涉及到利润、收益和效用的计算。
以利润为例,我们可以通过多重积分来计算企业的成本和收入情况,从而确定企业的利润水平。
对于成本的计算,可以将其分解为无穷小的生产要素,再进行积分求和来计算总成本。
而对于收入的计算,可以通过多重积分来计算销售量和价格的函数关系,从而确定总收入。
此外,多重积分还可以用于计算效用函数,从而研究消费者的选择行为以及市场供求关系。
结论:多重积分在几何学、物理学和经济学中的应用举足轻重,为解决实际问题提供了强有力的工具。
通过对空间体积、质心、质量、力矩、利润、收益和效用等的计算,我们可以深入理解和分析各个领域的问题,并提出相应的解决方案。