反激型开关电源电路课程设计
- 格式:doc
- 大小:2.86 MB
- 文档页数:30
《电力电子技术课程设计》总结报告题目:单端反激式开关电源的设计学院:信息与控制工程学院目录一、课程设计的目的 (2)二、课程设计的要求 (2)三、反激式功率变换器的原理及设计方法 (2)1.引言 (2)2.基本反激变换器工作原理 (3)3.反激变换器的吸收电路 (5)4.反激变换器的系统结构 (5)5.反激式变换器的变压器设计思路 (6)6.控制系统设计 (9)四、总体设计电路图 (14)五、参数的计算与选择 (15)六、遇到的问题和解决方法 (18)七、输出电压波形及驱动信号波形 (20)八、心得体会 (21)一、课程设计的目的(1)熟悉Power MosFET的使用;(2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用;(3)增强设计、制作和调试电力电子电路的能力;二、课程设计的要求本课程设计要求根据所提供的元器件设计并制作一个小功率的反激式开关电源。
设计要求170V输入,9V/1A输出的反激式开关电源,进行必要的电路参数计算,完成电路的焊接调试。
三、反激式功率变换器的原理及设计方法1.引言电力电子技术有三大应用领域:电力传动、电力系统和电源。
在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。
电源可以分为线性电源和开关电源两大类。
线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其阻值的大小,实现稳压的输出,电路简单,但效率低。
通常用于低于10W的电路中。
通常使用的7805,7815等就属于线性电源。
开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小,效率高,稳压范围大宽,体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。
反激式开关电源的电路设计与参数计算_陈建林
一、反激式开关电源的电路设计
据报道,反激式开关电源可以提供高效率、小型体积和低成本的解决方案,它在电脑、消费电子产品以及数字电路系统中应用较为广泛。
反激式开关电源是指在典型的AC/DC转换过程中,通过开关电路,从交流电源抽取能量进行直流转换的电路。
下面将详细介绍反激式开关电源的电路设计。
(1)反激式开关电源电路的主要组件
交流输入电路:交流输入电路是反激式开关电源电路的起始模块,它的功能是把电源电压提供给其他组件。
开关功率电路:开关功率电路的最重要的组件是开关元件,它们是把AC输入电压装入到电源系统中的基础,通常可以使用MOSFET、差动管、晶闸管等。
控制电路:控制电路是反激式开关电源电路的关键组件,它的功能是控制开关管的开合以实现输入电压的正常转换。
一般来说,控制电路通过一系列的电路元件,如比较器、占空比调节器、稳压器、脉冲发生器和定时器等实现诸如占空比调节,稳压、启动和保护等功能。
第一章设计的基本要求题目:反激型开关电源电路设计(1)注意事项:①学生也可以选择规定题目方向外的其它开关电源电路设计。
②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
(2)主要技术数据1、交流输入电压AC220V,波动±50%;2、直流输出电压5V和12V;3、输出电流1.5A和200mA;4、输出纹波电压≤0.2V;5、输入电压在±50%范围之间变化时,输出电压误差≤0.03V (3)设计内容:1、开关电源主电路的设计和参数选择2、IGBT电流、电压额定的选择3、开关电源驱动电路的设计4、开关变压器设计5、画出完整的主电路原理图和控制电路原理图6、电路仿真分析和仿真结果第二章主电路的原理2.1 总体方案的确定输入—EMI滤波—整流(也就一般的AC/DC类似全桥整流模块)—DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC)—输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC 变换部分,以及负载部分,其中整流滤波和DC—DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
开关稳压电源的基本原理框图如图2.1所示。
图2.1 开关稳压电源基本原理框图2.2 反激型电路原理反激型电路存在电流连续和电流断续两种工作模式,值得注意的是,反激型电路工作于电流连续模式时,其变压器磁芯的利用率会显著下降,因此实际使用中,通常避免该电路工作于电流连续模式。
其电路原理图如图2.2所示。
图2.2 反激型电路原理图工作过程:当S 导通时,电源电流流过变压器原边,1i 增加,其变化为11//W U dt di s =,而副边由于二极管VD 的作用,2i 为0,变压器磁心磁感应强度增加,变压器储能;当S 关断时,原边电流迅速降为0,副边电流2i 在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//W U dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。
第一章设计的基本要求题目:反激型开关电源电路设计(1)注意事项:①学生也可以选择规定题目方向外的其它开关电源电路设计。
②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
(2)主要技术数据1、交流输入电压AC220V,波动±50%;2、直流输出电压5V和12V;3、输出电流1.5A和200mA;4、输出纹波电压≤0.2V;5、输入电压在±50%范围之间变化时,输出电压误差≤0.03V (3)设计内容:1、开关电源主电路的设计和参数选择2、IGBT电流、电压额定的选择3、开关电源驱动电路的设计4、开关变压器设计5、画出完整的主电路原理图和控制电路原理图6、电路仿真分析和仿真结果第二章主电路的原理2.1 总体方案的确定输入—EMI滤波—整流(也就一般的AC/DC类似全桥整流模块)—DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC)—输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC—DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
开关稳压电源的基本原理框图如图2.1所示。
图2.1 开关稳压电源基本原理框图2.2 反激型电路原理反激型电路存在电流连续和电流断续两种工作模式,值得注意的是,反激型电路工作于电流连续模式时,其变压器磁芯的利用率会显著下降,因此实际使用中,通常避免该电路工作于电流连续模式。
其电路原理图如图2.2所示。
图2.2 反激型电路原理图工作过程:当S 导通时,电源电流流过变压器原边,1i 增加,其变化为11//W U dt di s =,而副边由于二极管VD 的作用,2i 为0,变压器磁心磁感应强度增加,变压器储能;当S 关断时,原边电流迅速降为0,副边电流2i 在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//W U dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。
反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。
2.整流电路:将输入交流电压转换为直流电压。
3.开关变压器:通过变压器实现电压的升降。
4.开关管:通过快速开关控制电源的输出。
5.输出滤波电路:对输出电压进行滤波,减小纹波。
二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。
2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。
3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。
较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。
4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。
5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。
6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。
7.其他辅助电路设计:如过温保护电路、过流保护电路等。
8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。
9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。
三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。
2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。
3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。
4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。
5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。
通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。
反激变换电源课程设计一、课程目标知识目标:1. 学生能理解反激变换电源的基本原理和工作流程。
2. 学生能掌握反激变换器中关键参数的计算方法。
3. 学生能描述反激变换器在不同负载下的性能特点。
技能目标:1. 学生能够设计简单的反激变换电源电路,并进行参数计算。
2. 学生能够利用仿真软件对反激变换电源进行性能分析。
3. 学生能够通过实验验证反激变换电源的理论知识,并能解决实际问题。
情感态度价值观目标:1. 培养学生对电子技术课程的兴趣,提高学生的学科热情。
2. 培养学生具备团队协作精神,增强实践操作能力和动手解决问题的能力。
3. 培养学生严谨的科学态度,关注环保和节能,了解反激变换电源在现代电子设备中的应用。
课程性质:本课程为电子技术学科的专业课程,结合理论知识和实践操作,培养学生的实际工程设计能力。
学生特点:学生已具备一定的电子技术基础知识,具有较强的学习能力和动手能力。
教学要求:结合课本内容,注重理论与实践相结合,强调学生自主学习和实践操作,提高学生的工程设计能力。
在教学过程中,分解课程目标为具体学习成果,以便于教学设计和评估。
二、教学内容本章节教学内容主要包括以下三个方面:1. 反激变换电源原理及电路分析- 反激变换器的工作原理- 反激变换器电路的组成及功能- 课本第3章第2节内容:反激变换器的基本电路分析2. 反激变换器参数计算与设计- 反激变换器关键参数的计算方法- 反激变换器磁性元件的设计方法- 课本第3章第3节内容:反激变换器的设计与优化3. 反激变换电源性能分析及实验- 反激变换器在不同负载下的性能分析- 反激变换电源的仿真与实验- 课本第3章第4节内容:反激变换器的性能测试与实验验证教学安排与进度:1. 第一周:反激变换电源原理及电路分析2. 第二周:反激变换器参数计算与设计3. 第三周:反激变换电源性能分析及实验教学内容注重科学性和系统性,结合课本内容,引导学生掌握反激变换电源的基本原理、设计与性能分析,培养学生在实际工程中的应用能力。
反激电源课程设计一、课程目标知识目标:1. 让学生理解反激电源的基本原理,掌握其电路组成及各部分功能。
2. 学会分析反激电源的转换效率、输出电压纹波等性能指标。
3. 掌握反激电源设计中关键参数的计算方法。
技能目标:1. 培养学生运用所学知识设计简单反激电源的能力。
2. 提高学生动手搭建反激电源实验电路,进行性能测试的技能。
3. 培养学生通过查阅资料、开展小组讨论等方式解决实际问题的能力。
情感态度价值观目标:1. 培养学生对电子技术课程的兴趣,激发他们探索科学技术的热情。
2. 培养学生的团队协作精神,让他们学会在合作中共同解决问题。
3. 增强学生的环保意识,让他们认识到高效电源设计在节能减排中的重要性。
本课程针对高年级电子技术相关专业学生,结合学科特点,注重理论与实践相结合,旨在提高学生分析问题、解决问题的能力。
课程目标明确,可衡量,便于教学设计和评估。
通过本课程的学习,学生将能够掌握反激电源的相关知识,具备一定的电源设计能力,同时培养良好的团队协作和环保意识。
二、教学内容1. 反激电源基本原理:讲解反激变换器的工作原理,包括开关管、脉冲变压器、二极管和滤波电容等组成部分的功能。
教材章节:第三章“开关电源原理”第2节“反激变换器”2. 反激电源性能分析:介绍转换效率、输出电压纹波等性能指标的计算方法和影响因素。
教材章节:第四章“开关电源性能分析”第1节“反激电源性能分析”3. 反激电源设计方法:讲解关键参数的计算,包括开关频率、脉冲变压器匝比、输出滤波器参数等。
教材章节:第五章“开关电源设计”第2节“反激电源设计”4. 实验教学:指导学生搭建反激电源实验电路,进行性能测试,分析实验数据,优化设计方案。
教材章节:第六章“开关电源实验”第3节“反激电源实验”5. 电源设计案例分析:分析典型反激电源设计案例,让学生了解实际应用中的设计技巧和注意事项。
教材章节:第七章“电源设计案例”第2节“反激电源设计案例”教学内容按照科学性和系统性原则进行组织,教学大纲明确,确保学生能够循序渐进地掌握反激电源相关知识。
反激变换电源的课程设计一、课程目标知识目标:1. 学生能理解反激变换电源的基本原理,掌握其电路构成及工作流程。
2. 学生能掌握反激变换电源中主要元件的功能及影响,如变压器、开关管、二极管等。
3. 学生能了解反激变换电源在不同应用场景中的优缺点。
技能目标:1. 学生能够运用所学知识,设计并搭建简单的反激变换电源电路。
2. 学生能够通过实验,测试反激变换电源的性能参数,如电压、电流、效率等。
3. 学生能够分析反激变换电源在实际应用中可能出现的问题,并提出相应的解决方法。
情感态度价值观目标:1. 学生培养对电子技术课程的兴趣,增强对电源技术的认识和好奇心。
2. 学生在小组合作中,培养团队协作能力和沟通表达能力。
3. 学生通过学习反激变换电源,认识到电子技术在节能环保方面的重要性,提高社会责任感。
分析课程性质、学生特点和教学要求,本课程旨在让学生掌握反激变换电源的基本原理和实际应用,培养其动手操作和问题分析能力。
课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果,为后续教学设计和评估提供依据。
二、教学内容本章节教学内容依据课程目标,结合课本第四章“开关电源”相关内容,进行如下组织:1. 反激变换电源基本原理- 介绍反激变换器的工作原理及其与开关电源的关系。
- 分析反激变换器中变压器、开关管、二极管等关键元件的作用。
2. 反激变换电源电路设计- 详细讲解反激变换电源的电路构成及设计方法。
- 引导学生根据实际需求,选择合适的元件和参数。
3. 反激变换电源实验操作- 安排实验课,指导学生搭建反激变换电源电路。
- 教授学生测试反激变换电源性能参数的方法。
4. 反激变换电源应用与问题分析- 分析反激变换电源在实际应用场景中的优缺点。
- 探讨反激变换电源可能出现的故障及解决方法。
5. 教学进度安排- 原理讲解与电路设计:2课时- 实验操作与分析:2课时- 应用与问题分析:1课时教学内容按照以上安排,旨在保证科学性和系统性,使学生能够循序渐进地掌握反激变换电源相关知识。
单端反激式开关电源课程设计单端反激式开关电源设计1.引⾔开关电源具有⼯频变压器所不具备的优点,新型、⾼效、节能的开关电源代表着稳压电源的发展⽅向。
因为开关电源内部⼯作于⾼频率状态,本⾝的功耗很低,电源效率就可做得较⾼,⼀般均可做到80%,甚⾄接近90%。
这样⾼的效率不是普通⼯频变压器稳压电源所能⽐拟的。
开关电源常⽤的单端或双端输出脉宽调制(PWM),省去了笨重的⼯频变压器,可制成⼏⽡⾄⼏千⽡的电源。
传统的开关电源普遍采⽤电压型脉宽调制(PWM)技术,⽽近年电流型PWM技术得到了飞速发展。
相⽐电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能⼒和并联均流能⼒使控制电路变得简单可靠。
电流型PWM 集成控制器已经产品化,极⼤的推动了⼩功率开关电源的发展和应⽤。
电流型PWM控制⼩功率电源已经取代电压型PWM控制⼩功率电源。
Unitrode公司推出的UC3843系列控制芯⽚是电流型PWM控制器的典型代表。
本次设计将⽤UC3843制作⼀个⼩功率开关电源。
2.UC3843简介Unitrode公司的UC3843是⼀种⾼性能固定频率电流型控制器,包含误差放⼤器、PWM⽐较器器、PWM锁存器、振荡器、内部基准电源和⽋压锁定等单元,它具有功能全,⼯作频率⾼,引脚少外围元件简单等特点,它的电压调整率可达0.01%V,⾮常接近线性稳压电源的调整率。
⼯作频率可达500kHz,启动电流仅需1mA,所以它的启动电路⾮常简单。
其结构图和⼯作原理如下:1脚COMP是内部误差放⼤器的输出端,通常此脚与2脚之间接有反馈⽹络;2脚FEEDBACK是反馈电压输⼊端;3脚ISENSE 是电流传感端;4脚RT/CT是定时端;5脚GND是接地;6脚OUT是输出端;7脚Vcc是电源;8脚VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。
器件参数:UC3843的电压调整率可达0.01%,⼯作频率为500kHz,启动电流⼩于1mA,输⼊电压为10~30V,基准电压为4.9~5.1V。
ap8266反激式开关电源课程设计AP8266反激式开关电源是一种常见的电源设计方案,适用于各种电子设备和系统。
本文将介绍AP8266反激式开关电源的原理和设计要点。
一、AP8266反激式开关电源的原理AP8266反激式开关电源是一种高效率的电源设计方案,通过控制开关管的导通和断开来实现输入电压的转换。
其基本原理是利用开关管的导通和断开,将输入电压转换为高频脉冲信号,再经过整流和滤波等环节,得到稳定的输出电压。
二、AP8266反激式开关电源的设计要点1. 选择合适的开关管和二极管:开关管和二极管是反激式开关电源的核心元器件,需要根据设计需求选择合适的型号和参数。
常用的开关管有MOSFET和IGBT,而二极管则一般选择快恢复二极管。
2. 设计合适的变压器:变压器是反激式开关电源的重要组成部分,需要根据输入输出电压和功率要求进行设计。
变压器的设计包括主要参数的计算,如绕组匝数、磁芯截面积等。
3. 选取合适的滤波电容和电感:滤波电容和电感是用来削减开关电源输出端的纹波电压和噪声的。
需要根据输出电压的稳定性要求和负载特性选择合适的数值和型号。
4. 控制电路的设计:AP8266反激式开关电源需要配备控制电路来实现开关管的控制。
控制电路包括开关管的驱动电路和反馈电路。
其中,开关管的驱动电路需要通过控制信号来控制开关管的导通和断开,而反馈电路则用来实现输出电压的稳定控制。
5. 安全保护措施:在AP8266反激式开关电源的设计中,还需要考虑安全保护措施,如过载保护、过压保护、过温保护等。
这些保护措施可以提高电源的可靠性和稳定性。
三、总结AP8266反激式开关电源是一种高效率、稳定性好的电源设计方案。
设计时需要注意选择合适的开关管和二极管,设计合适的变压器,选取合适的滤波电容和电感,设计控制电路和安全保护措施。
通过合理设计和优化,可以实现高效、稳定的电源输出,满足各种电子设备和系统的需求。
反激开关电源课程设计一、课程目标知识目标:1. 让学生理解反激开关电源的基本原理,掌握其电路组成和工作流程。
2. 让学生掌握反激开关电源的关键参数计算,包括变压器的匝比、功率、效率等。
3. 让学生了解反激开关电源的优缺点,以及其在实际应用中的注意事项。
技能目标:1. 培养学生运用所学知识进行反激开关电源电路设计的能力。
2. 培养学生运用相关软件(如PSPICE、MATLAB等)对反激开关电源进行仿真分析的能力。
3. 培养学生通过实验验证反激开关电源性能,并能对电路进行调试和优化。
情感态度价值观目标:1. 培养学生对电子技术学科的兴趣和热情,增强其学习动力。
2. 培养学生具备团队协作精神,能在小组讨论中发挥自己的优势,共同完成课程任务。
3. 培养学生严谨的科学态度和良好的工程素养,使其在设计和实践中注重细节,追求高质量。
课程性质:本课程为电子技术学科的专业课程,旨在让学生掌握反激开关电源的设计和应用。
学生特点:学生具备一定的电子技术基础知识,具有较强的学习能力和动手能力。
教学要求:结合课程性质和学生特点,本课程要求教师采用理论教学、案例分析、实验操作等多种教学方法,引导学生主动参与,提高其设计能力和实践能力。
通过分解课程目标为具体的学习成果,便于教学设计和评估。
二、教学内容1. 反激开关电源原理及电路组成- 介绍反激开关电源的工作原理- 分析反激开关电源的电路组成,包括开关元件、变压器、整流滤波等部分2. 反激开关电源关键参数计算- 讲解变压器匝比的计算方法- 介绍功率、效率等关键参数的计算公式3. 反激开关电源设计方法- 分析反激开关电源的设计步骤- 引导学生运用教材中提供的公式、图表等进行电路设计4. 反激开关电源的优缺点及注意事项- 讲解反激开关电源的优点、缺点- 强调在实际应用中需注意的问题,如电磁干扰、热管理等5. 反激开关电源仿真与实验- 介绍相关软件(如PSPICE、MATLAB等)的使用方法,进行仿真分析- 安排实验课程,让学生动手搭建反激开关电源电路,验证性能并进行调试优化6. 教学进度安排- 将教学内容分为8个学时,其中理论教学4学时,案例分析2学时,实验操作2学时- 教学内容与教材章节相对应,确保科学性和系统性教学内容根据课程目标制定,旨在使学生掌握反激开关电源的理论知识和实践技能。
反激变换电源课程设计报告一、课程目标知识目标:1. 学生能理解反激变换器的工作原理,掌握其电路组成和关键参数的计算。
2. 学生能描述反激变换电源的开关过程,解释其能量转换机制。
3. 学生掌握反激变换器在不同负载条件下的效率分析和优化方法。
技能目标:1. 学生能够运用所学知识,设计简单的反激变换电源电路,并进行参数计算。
2. 学生能够运用仿真软件对反激变换电源进行模拟,观察和分析其工作状态。
3. 学生能够通过实验操作,搭建反激变换电源实验平台,并验证理论分析的正确性。
情感态度价值观目标:1. 学生通过本课程的学习,培养对电力电子技术领域的兴趣和探究精神。
2. 学生在学习过程中,养成合作、交流和分享的学习习惯,增强团队协作能力。
3. 学生能够认识到反激变换电源在现代电子设备中的重要性,提高社会责任感和环保意识。
课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式,使学生掌握反激变换电源的基本原理和应用。
学生特点:高二年级学生,已具备一定的电子技术基础,具有较强的学习能力和动手能力。
教学要求:注重理论与实践相结合,提高学生的实际操作能力,通过课程学习,使学生能够独立完成反激变换电源的设计与制作。
同时,注重培养学生的团队协作能力和创新思维。
二、教学内容1. 反激变换器基本原理:包括反激变换器的工作过程、能量转换方式及其在电力电子设备中的应用。
- 课本章节:第三章“开关电源”,第1节“反激变换器原理”。
2. 反激变换器电路组成与参数计算:分析反激变换器电路的各个组成部分,讲解关键参数的计算方法。
- 课本章节:第三章“开关电源”,第2节“反激变换器电路分析与设计”。
3. 反激变换器在不同负载下的效率分析:研究反激变换器在不同负载条件下的效率特性,探讨优化方法。
- 课本章节:第三章“开关电源”,第3节“反激变换器效率分析”。
4. 反激变换电源设计与仿真:介绍反激变换电源设计方法,运用仿真软件进行电路模拟,分析其性能。
东北石油大学课程设计2012年7月18 日东北石油大学课程设计任务书课程电气工程课程设计题目反激型开关电源电路设计专业电气工程及其自动化姓名学号主要2012.7.10至2012.7.18指导教师专业负责人2011年7 月9 日电气工程课程设计(报告)目录1 设计要求 (2)2 电路的设计原理 (2)2.1 电路的总体方案设计 (2)2.2开关稳压电源原理 (2)3 开关变压器设计 (3)3.1 稳压电源设计原理·················································错误!未定义书签。
4 主要元器件的选型 (8)4.1 EMI滤波电路 (8)4.2 整流电路的设计 (8)4.3 控制电路模块 (9)4.4反馈电路的设计 (9)4.5输出电流反馈 (10)4.6输出整流滤波电路设计 (11)5 电路仿真与结果 (12)6 结论 (12)参考文献 (13)1电气工程课程设计(报告)1 设计要求(1)开关电源主电路的设计和参数选择。
(2)IGBT电流、电压额定的选择。
(3)开关电源驱动电路的设计。
(4)开关变压器设计。
(5)画出完整的主电路原理图和控制电路原理图。
(6)电路仿真分析和仿真结果。
2 电路的设计原理2.1 电路的总体方案设计输入—EMI滤波—整流(也就一般的AC/DC类似全桥整流模块)—DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC)—输出。
目录摘要 (I)第一章开关电源概述 (1)1.1 开关电源的定义与分类 (1)1.2 开关电源的基本工作原理与应用 (1)1.2.1 开关电源的基本工作原理 (1)1.2.2 开关电源的应用 (2)第二章反激式稳压开关电源电路设计 (5)2.1引言 (5)2.2 系统设计框图 (6)2.3 稳压电源基本原理 (6)2.4 基本反激变换器工作原理 (7)2.5 反激变换器的吸收电路 (9)2.6 反激变换器的系统结构 (9)2.7开关电源控制电路的设计 (10)2.7.1 PWM 集成控制器的工作原理 (10)2.8 EMI滤波电路 (12)2.9 整流滤波电路 (13)第三章高频变压器设计 (14)3.1 相关量的计算公式 (14)3.2 实例计算 (16)3.3 变压器漏感产生和解决方法 (18)第四章主要器件介绍 (19)4.1 AT89S52简介 (19)4.2 ADC0809工作原理……………………………………………………………错误!未定义书签。
总结……………………………………………………………………错误!未定义书签。
参考文献………………………………………………………………………错误!未定义书签。
摘要开关电源的高频化电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并使开关电源进入更广泛的领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约资源及保护环境方面都具有深远的意义。
为此本论文以反激式高频开关电源为设计方向而展开,对高频变压器的认知及所注意的问题,其中包括磁芯损耗、绕组损耗、温升以及磁芯要求。
单端反激式高频变压器是本文的中心内容,其核心参数设计许多,具体内容正文中有详细介绍。
其次是控制电路的设计,首先我们要对PWM集成控制器原理的有所了解,在此基础上保护两种控制模式分别是电压模式和电路模式。
开关电源的质量指标应该是以安全性、可靠性为第一原则,所以,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视。
目录一、引言2设计背景2设计根本要求2二、功率开关管的选择……………………………………………………………………………错误!未定义书签。
三、UC3842简介…………………………………………………………………………………..错误!未定义书签。
UC3842的结构错误!未定义书签。
UC3842的功能错误!未定义书签。
四、变压器设计6估算输入和输出功率6计算最小和最大输入电流7计算脉冲信号最大占空比8磁芯参数确定方法8五、光耦信号传输电路 (9)999六、输出滤波电路 (10)七、整体电路与实物 (11)八、心得体会 (12)一、引言UC3842是开关电源用电流控制方式的脉宽调制集成电路。
与电压控制方式相比在负载响应和线性调整度等方面有很多优越之处。
该电路主要特点有:内含欠电压锁定电路、低启动电流〔典型值为0.12mA〕、稳定的内部基准电压源、大电流推挽输出〔驱动电流达 1A〕、工作频率可到 500kHz、自动负反应补偿电路、双脉冲抑制、较强的负载响应特性。
电流型控制系统是电压电流双闭环系统,一个是检测输出电压的电压外环,一个是检测开关管电流且具有逐周期限流功能的电流内环,具有更好的电压调整率和负载调整率,稳定性和动态特性也得到明显改善。
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。
传统的开关电源控制电路普遍为电压型拓扑,只有输出电压单闭控制环路,系统响应慢,线性调整率精度偏低。
随着PWM 技术的飞速开展产生的电流型模式拓扑很快被大家认同和广泛应用。
〔1〕设计一款72V多路输出的flyback拓扑开关电源。
〔2〕要求:输入电压:60-85V;〔3〕输出:5V/1.5A;15V/1.2A;需与输入隔离;〔3〕控制芯片:UC3842;二、功率开关管的选择第一步是选用N沟道还是P沟道。
这是设计选择正确器件的第一步。
在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。
第一章设计的基本要求题目:反激型开关电源电路设计(1)注意事项:①学生也可以选择规定题目方向外的其它开关电源电路设计。
②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
(2)主要技术数据1、交流输入电压AC220V,波动±50%;2、直流输出电压5V和12V;3、输出电流和200mA;4、输出纹波电压≤;5、输入电压在±50%范围之间变化时,输出电压误差≤(3)设计内容:1、开关电源主电路的设计和参数选择2、IGBT电流、电压额定的选择3、开关电源驱动电路的设计4、开关变压器设计5、画出完整的主电路原理图和控制电路原理图6、电路仿真分析和仿真结果第二章主电路的原理总体方案的确定输入—EMI滤波—整流(也就一般的AC/DC类似全桥整流模块)—DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC)—输出。
系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC—DC变换器构成开关稳压电源。
整流电路是直流稳压电路电源的组成部分。
整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。
直流/直流转换电路,是整个开关稳压电源的核心部分。
开关稳压电源的基本原理框图如图所示。
图开关稳压电源基本原理框图反激型电路原理反激型电路存在电流连续和电流断续两种工作模式,值得注意的是,反激型电路工作于电流连续模式时,其变压器磁芯的利用率会显著下降,因此实际使用中,通常避免该电路工作于电流连续模式。
其电路原理图如图所示。
图 反激型电路原理图工作过程:当S 导通时,电源电流流过变压器原边,1i 增加,其变化为11//W U dt di s =,而副边由于二极管VD 的作用,2i 为0,变压器磁心磁感应强度增加,变压器储能;当S 关断时,原边电流迅速降为0,副边电流2i 在反激作用下迅速增大到最大值,然后开始线性减小,其变化为22//W U dt di o =,此时原边由于开关管的关断,电流为0,变压器磁心磁感应强度减小,变压器放能。
第三章 器件的设计选型以及参数计算EMI 滤波电路开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。
但是,由于开关电源工作过程中的高频率、 di/ dt 和高 du/ dt 使得电磁干扰问题非常突出。
开关电源工作时,电磁干扰可分为两大类:共模干扰是载流体与大地之间的干扰,干扰大小和方向一致,存在于电源任何一相对大地、或中线对大地间,主要是由du/ dt 产生的,di/ dt 也产生一定的共模干扰。
差模干扰是载流体之间的干扰,干扰大小相等,方向相反,其存在于电源相线与中线及相线与相线之间。
典型的单相EMI电路如图所示。
图单相EMI滤波电路其中共模电感L1和L2采取双线并绕的方式,电感量与EMI滤波器的额定电流I有关。
需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。
此外,适当增加电感量,可改善低频衰减特性。
Cx电容采用薄膜电容器,容量范围大致是μF—μF,主要用来滤除差模干扰。
Cy电容跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。
Cy亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF—μF。
为减小漏电流,电容量不得超过μF ,并且电容器中点应与大地接通。
因此,最后选取个元件参数如下: 差模干扰抑制电容:Cx=μF 共模干扰抑制电感:T=20mH 共模干扰抑制电容:Cy=μF整流滤波电路在整流滤波环节采取的是单相桥式不可控整流滤波电路,其电路图如图所示。
图 单相桥式不可控整流滤波电路根据设计要求可知交流输入电压范围为110V —330V ,单相桥式整流电路中,如果接有滤波电容且有负载时,输出电压一般设计为倍的输入电压,滤波电容越大输出电压越高,反之越低;而在负载开路时,输出电压为交流输入电压的峰值,即2倍的输入电压。
这里我们以2倍的输入电压来计算,则Uo =156V —467V二极管承受的最大压降为467V 330×2 ,所以选取二极管型号为IN4005,其最高反向峰值电压为600V 。
滤波电容选用220μF 的电解电容。
变压器反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数。
设计变压器已知参数: 输入电压:VU i 311=两路输出电压和电流:VU o 51=,AI o 5.11=;VU o 122=,mAI o 2002=反馈电压和电流::VU f 20=,mAI f 50=输出功率W P o 9.1005.0202.0125.15=⨯+⨯+⨯=开关频率kHzf s 50=首先应根据以下公式计算变压器的电压比:max maxs i T oU U k U -=式中,maxs U 是开关工作时允许承受的最高电压,该电压值应低于所选开关器件的耐压值并留有一定裕量,max i U是输入直流电压最大值,Tk 是变压器电压比。
根据设计要求可知交流输入电压值是 220V ,通过整流滤波输出的直流电压值为311V 。
由于有波动,输入的波动是±50%,所以VU i 467)5.01(311max =+⨯=,maxs U 取2倍的maxi U ,故maxs U 取934V 。
由于有两路输出和一路反馈,所以变压器变比如下:4.9354679341max max 1=-=-≤o i s T U U U k9.38124679342max max 2=-=-≤o i s T U U U k 4.23204679343max max 3=-=-≤o i s T U U U k式中:1o U —5V 的输出,2o U —12V 的输出,3o U —20V 的反馈1T k —原边与输出5V 的匝数比。
2T k —原边与输出12V 的匝数比。
3T k —原边与反馈20V 的匝数比。
当输出电流最大、输入直流电压为最小值时开关的占空比达到最大,假设这时反激型电路刚好处于电流连续的临界工作模式,则根据下式可以计算出电路工作时的最大占空比maxD 为:75.05.02220467934467934min max =⨯⨯+--=+=i o T o T U U k U k D取实际占空比为0.45D =,计算Tk 的值,如下:4.456.0531145.0145.06.0)1(1o i 1=+⨯-=+⨯-=)()()(U U D D k T2.206.01231145.0145.06.0)1(1o i 1=+⨯-=+⨯-=)()()(U U D D k T4.126.02031145.0145.06.0)1(1o i 1=+⨯-=+⨯-=)()()(U U D D k T这里假定效率为90%,则初级平均电流avI 可由假定效率η=0.9,输出总功率WP o 9.1005.0202.0125.15=⨯+⨯+⨯=及最小总线电压mini U 算出。
AU P I i o av 081.05.03119.09.10min =⨯⨯=⨯=η一次侧峰值电流:A D I I av p 216.075.02081.02max =⨯=⨯=计算一次侧电感值:H I U D L m 4.32216.010*******.0f 3p s imax max 1=⨯⨯⨯==选择所需铁芯时,使用e wA A 法:1.1441max 10p p e w c cL I A A A B k d ⎛⎫⨯⨯==⎪ ⎪⎝⎭式中A w—磁芯窗口面积,单位为2cm ;eA —磁芯截面积,单位为2cm ; maxB —磁芯工作磁感应强度,取maxB =;ck —窗口有效使用系数,根据安全规定的要求和输出路数决定,一般为~,此处取;cd —电流密度,一般取395A/cm2。
则求得的e wA A 的值为:47.13954.03.010216.0104.32)d k 10(43-14.1cc max 41=⨯⨯⨯⨯⨯=⨯⨯==)(B I L A A A p w e p 4cm选择合适的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减小漏感,即确定选用CL-76。
CL-76的磁芯其具体数据为:2240.36cm , 4.03cm , 1.45cm e w p A A A ===按如下公式计算原边匝数,2.21636.03.010********f 41034e max s 4max 1=⨯⨯⨯⨯⨯=⨯=A B U N i即取2161=N 匝。
再根据原、副边的匝比关系可以求出副边的匝数。
若求出的匝数不是整数,这时应该调整某些参数,使原、 副边的匝数合适。
根据上述所求得的1T k 、2T k 、3T k 求二次侧匝数,8.44.45216111===T o k N N 7.102.20216212===T o k N N 4.174.12216313===T o k N N 1o N —输出为5V 的二次侧匝数,取5 2o N —输出为12V 的二次侧匝数,取11 3o N —反馈为20V 的二次侧匝数,取18为了避免磁芯饱和,应该在磁回路中加入一个适当的气隙,计算如下:mm 586.03.01036.0216.00324.010410424-27-2me 2pp 7-=⨯⨯⨯⨯⨯=∆⨯=ππB A I L l g绕线的选择由设计方案可知在变压器上有三部分绕组,输入绕组电流 A I 216.0in =,由c d =3.95A/mm2 可得绕线的截面积为2c in in mm 0537.095.3216.0d ===I S 第一路输出绕组电流 A I 5.1o1=,2c o1o1mm 3797.095.35.1d ===I S 第二路输出绕组电流 A I 2.0o2=,2c o22mm 0506.095.32.0d ===I S o 第三路反馈绕组电流 A I 05.0o3=,2c o33mm 0127..095.305.0d ===I S o 本次设计采用AWG 导线,AWG 导线的相关数据如表 所示表 AWG 导线规格表根据表1结合所计算出来的导线截面积,选择导线型号,结果如下:输入绕组选用AWG-29;5V输出绕组绕组选用AWG-21;12V输出绕组选用AWG-30;反馈绕组选用AWG-35。
最后考虑各方面影响因素,变压器绕制采用操作工艺相对简单的“三明治”式绕法,即初级绕组先绕一半,再绕次级绕组,绕后再将初级绕组剩余的匝数绕完,最后将次级绕组包裹在里面,这样漏感最小。
该方法是通过变压器绕制工艺设计,控制变压器的漏感,进而减小MOSFET的漏源极电压尖峰。